

Production Systems and Information Engineering
Volume 9 (2020), pp. 5-18 5

EFFICIENCY ANALYSIS OF NNS METHODS

Balázs Bolyki
University of Miskolc, Hungary

Student of Computer Science Engineering

bolyki@iit.uni-miskolc.hu

Dávid Polonkai
University of Miskolc, Hungary

Student of Computer Science Engineering

polonkai3@iit.uni-miskolc.hu

Dr. László Kovács
University of Miskolc, Hungary

Department of Information Technology

kovacs@iit.uni-miskolc.hu

[Received . . . and accepted . . .]

Abstract. Nearest Neighbor Search is a key operation in multiple in-
formation technologies fields, for example, string matching, plagiarism
detection, natural language processing, image clustering, etc. It is cru-
cial, that we have cost efficient methods and structures for retrieving
data based on similarity. We conducted a survey of two popular – Van-
tage Point tree and Locality Sensitive hashing –, and one more recent –
Prefix tree with clustering – NNS methods. In order to perform a wide
range of tests on these algorithms, we adapted each to Python language,
and developed multiple tests. In this paper we present the description
of the three algorithms and the results of our tests. We aim to provide
an informative comparison of the three major Nearest Neighbor Search
structures.

Keywords: NNS, VP-tree, LSH, Prefix tree, Nearest Neighbor, search,
comparison

1. Introduction

The search for similar objects is a key operation in general information man-
agement. When we retrieve information based on the high level of similarity –
or in other words, the smallest distance – between known and unknown data,

6 B. Bolyki, D. Polonkai and Dr. L. Kovács

we execute Nearest Neighbor Search (NNS). The applications of NNS are nu-
merous and also are the methods invented to make it faster, more effective.
The query for nearest neighbor elements is used, among others in autocomplete
and spell checking [1], plagiarism detection [2, 3, 4, 5, 6], natural language pro-
cessing [7], image clustering [8], and medical databases [9]. The time efficiency
of NNS operations is a crucial cost factor in the whole information system.
Similarity and distance are two measures approaching the same problem from
the opposite directions. The more similar two objects are to each other, the
less the distance is between them, while the greater the distance between them,
the less similar they are. Therefore we use both measures in this essay.
This work focuses on an important application area, the search in a word
repository. This paper’s main purpose is twofold, first to analyze the cost
efficiency of the known NNS methods and to adapt them to the investigated
problem domain, namely the similarity search in word repositories. The work
analyzes two popular methods, VP- tree and LSH algorithms and compares
them with a recent approach, the prefix-tree NNS structure. The performed
tests cover both time efficiency and search accuracy analyses. Our goal is to
list, explain and evaluate these methods and to give the readers an insight into
the strengths and weaknesses of each.

Nearest Neighbor Search. Nearest Neighbor Search (NNS) is the opera-
tion, which retrieves a data object, from a given dataset, based on its distance
from a query object. Formally, if U is the universe and S ⊆ U is the dataset, in
which we search, and q ∈ U is the query object, we can define NNS as follows.

d : U2 → {x ∈ R | x ≥ 0} (1.1)

N1 (q) = {y ∈ S | ∀z ∈ S, d (q, y) ≤ d (q, z)}
|N1 (q)| = 1

(1.2)

Nk(q) = {∀x ∈ Nk(q), y ∈ S : d(q, y) < d(q, x)⇒ y ∈ Nk(q)}
and |Nk(q)| = k

where k ∈ N+ and k ≤ |S|
(1.3)

Formula 1.1 defines a distance function d , which we use in the Nearest Neigh-
bor Search definition in the Formula 1.2. In Formula 1.3 we also define the
generalization of NNS to k-NNS, where we retrieve the k nearest neigbors of
the query q, from the dataset S.

2. Description of evaluated algorithms

The three evaluated approaches, Vantage Point tree (VP-tree), Locality
Sensitive Hashing, and Prefix tree with clustering (prefix tree) each realize
an efficient way to execute nearest neighbor search operation, however, their

Efficiency analysis of NNS methods 7

Figure 1. Representation of VP-tree concept

approach is quite different. In this section we will describe the approach of
each algorithm generally.

2.1. Vantage Point tree

VP-tree realizes NNS operation based on the concept of general metric
spaces. It requires the dataset containing the data objects and the distance
function d to build the indexing structure. Here, the distance function must
satisfy the properties of a metric (positivity, identity of the same objects,
symmetry, and triangle inequality), because the VP-tree can use the triangle
inequality to prune branches, when searching.
Our main reference for the VP-tree is the paper [10]. The main concept of the
VP-tree algorithm to solve the NNS problem is to build an indexing structure
in such a way that the data objects get distributed according to their distance
from vantage points, which are chosen from the dataset, one at each non-
leaf node. At the building stage if the current dataset Si does not fit into a
leaf, we apply Formula 2.1, where we denoted the base dataset as S0 and the
created subsets are S1, S2 and Si in further nodes, while m is the median of
the distances from the vantage point (the distance between the vantage point
and the elements of Si is calculated for each element during the partitioning
at each node). This partitioning scheme would be recursively repeated at each

8 B. Bolyki, D. Polonkai and Dr. L. Kovács

node, until all created subsets are allocated into leaves.

S1 = {s ∈ S0 | d(s, vp0) < m}
S2 = {s ∈ S0 | d(s, vp0) ≥ m}

(2.1)

The algorithm for searching in the tree is presented in the paper [10]. It uses
a recursive strategy to traverse the tree and prunes branches of it based on
the triangle inequality.

2.2. Locality Sensitive Hashing

The Locality Sensitive Hashing is based on hash functions. The hash func-
tions map a key into a hash value. The hash function represents the same
value for the same input. It is possible, that two different keys mapped into
the same hash value. This is hash collision. [11]
The LSH uses hash collision to find similar keys. This method hashes data
objects by multiple hash functions and stores the hash value and key pairs.
Therefore if more collisions are found in different hash functions, it is more
probable that keys are similar. To find similarities the algorithm hashes the
query point and returns the elements from the buckets that contain that point.
[12] This method also uses minhash. It is a special hash function, that we ex-
ecute multiple times to receive the same hash values for similar keys. In our
case it is used to map the keys into hash values, which we add to the LSH
function. For better understanding we have to declare shingling, which is a
method, that can divide its input into k lenght sequences. After shingling the
hash value, the method puts them into the buckets of the LSH function. The
idea of the LSH algorithm is represented in Figure 2. In our case the algorithm

Figure 2. Representation of Locality Sensitive Hashing concept

we use is a library based on the [13].

Efficiency analysis of NNS methods 9

2.3. Prefix-tree with clustering

This method uses clustering for preprocessing and the prefix-tree for storing
the actual words. The prefix-tree is a special kind of tree, in which the nodes
are letters. A word is represented by the path of letters.

Figure 3. Representation of Prefix-tree concept

Prefix-tree. In case of insertion the method starts to go down in each branch
and finds the current letter in the structure. If there is no such a letter, it
creates a new node. So for example if we want to find the word, then in the
first level from the root we look for a letter w. In the query for 1NN search we
go down in each branch and check if the current character is the same in the
structure. If they are different, it means that the distance between them is one
more. By this method we can find the best fitting similarity in the structure,
but if we go down in every branch it costs much in time, so the method also
uses a limit parameter, which determines the maximum distance in a branch.
If the distance reaches this value, we cut the branch.

Prefix-tree with clustering. This method also uses clustering. This means
that we map the words into different sets. These sets are further from each

10 B. Bolyki, D. Polonkai and Dr. L. Kovács

other and does not overlap. In each cluster there is a tree and the words
are stored there. The stucture building starts with calculating the central
points of the clusters. After this we build all the prefix trees. In case of
insertion the algorithm calculates the nearest cluster and builds the word into
the tree. For calculation the method represent the words into vectors and runs
a minimum search on the cluster distance from the word in order to find the
nearest cluster. The query method works the same, so it finds the cluster,
then goes down in the tree and searches for the word as described above. The
base implementation of the method is presented in [14].

3. Adaptation of investigated methods

In order to test the methods, we adapted them to a common implementation
framework. We chose the Python programming language, because it provides
libraries and partial implementation of the used methods, and it hides most
of the lower level operations, so we could focus on the unique parts of the
algorithms.
The parameters of the computer in which the tests have run are the following:

• cpu: Intel®Core™i7-8550U @ 1.80GHz
• ram: 7.7 GiB @2400 MHz and 7.5 GiB of swap memory
• swap device: M.2 Solid state drive with 600 MB/s data transfer rate
• operating system: Ubuntu 18.04.3 LTS 64-bit

3.1. Vantage Point tree

Our VP-tree implementation is based on the paper [10]. We should also
reference [15] for the implementation of the Autosorting list and as a structural
example. However, due to our different platforms and emphasis – namely us
using mainly Python language and our tests focusing on speed rather than
page access rates – we diverged from [10] in multiple aspects. We followed the
proposition of the paper for

• building the tree and
• executing k-NNS in the tree.

We performed the following extensions of the base model:

• We set the leaf size based on the quantity and not the size of the data
objects, that would be contained within. This is more advantagous in a
higher level programming language, since it provides more information,
than does the data object size.
• We designed our own insertion algorithm. This looks up the leaf, in

which the data object to be inserted should be placed, and allocates it

Efficiency analysis of NNS methods 11

in the leaf, it still has space. If does not have space, then the algorithm
starts to go up the tree, and checks if the subtree marked my the checked
node (its descendants are its subtree) has space. If it has, the algorithm
retrieves the data stored in that subtree, then rebuilds it. If the entire
tree is full, then the entire tree is rebuilt.

3.2. Locality Sensitive Hashing

The algorithm originally used for similarity search in big texts like para-
graphs. So we have to tweak the parameters to work with word similarity
search. One of the most important parameters is the permutations, which
determines the number of permutations by the minhash function. If this pa-
rameter is big, then the memory consumpsion and building time of this method
increase, but the query time will be less. We determined that the ideal number
for this parameter is 60. The other parameter is n_gram, which determines
the shingle size for minhash. We choose this to be 2, because by this we can
enter bigger than 2 lenght words. To make sure that the words contain more
than 2 characters we built a function, which fills the words, which are less
than 4 characters with characters. Later in the query we also run this on
the searched word, to make sure that the right results are returned. We also
changed the no_of_bands parameter, which defines the number to break the
minhash signature before hashing into the buckets. The accuracy is affected
by this parameter. We set the sensitivity to 2 which means the number of
buckets texts must share to be declared as similar. Moreover we implemented
the k-NNS methods, which calculates the k nearest from the result set.

3.3. Prefix-tree with clustering

In case of this method we also modified the parameters. The most impor-
tant parameter for this method is the limit, which determines the maximum
distance that we want to search in the tree. As is mentioned this parame-
ter determines how deep the search can go down to find the best match in
a branch. The parameter has to be larger than the distance of the searched
word and its nearest neighbour, otherwise the algorithm does not return a
word. But if the limit is much larger than the nearest neighbor, then the
search time increases dramatically. In most of our tests we declared the limit
parameter as 3, in some of them we used also 3 and 6. The other crutial
parameter is the number of clusters. Because the word cluster determination
is a step with high costs we have to choose it properly. our wordlists use 50000
to 2.4 million words, therefore we choose a rather big clusternumber, which
is 100. In addition to the parameter settings we created methods for k-NNS

12 B. Bolyki, D. Polonkai and Dr. L. Kovács

search and for the insertion. The k-NNS search method goes through the tree
until k number of results are found or the limit distance reached.

4. Performed tests

To test the algorithms on similar word searching, we have to create wordlists.
These wordlists contain Hungarian and English words. The building wordlist
consists of 2.4 million Hungarian words. In order to build structures with less
words we take a sublist from this. The searchlist is a Hungarian and mostly
English wordlist. These words are not in the building list.
We created several tests:

• build time tests for different wordlists,
• search time tests for different wordlists and different percentage of known-

unknown words,
• k-NNS tests: scaling depending on the k value;
• accuracy tests,
• insert time tests.

Most of the tests measure time required to do the task, except for accuracy
tests, which measure that the returned word is the real nearest neighbour.

Build test. The building time test is, where we tested the required time to
build up the structure from zero. We ran this test on different wordlists,
from 200000 to 2.4 million in each cycle we increased the number of words by
200000. The results of the test is represented in Figure 4.

Accuracy comparison. We measured the accuracy of each algorithm by first
building a structure from a wordlist of 50000 words, then executing nearest
neighbor search in two ways. We retrieved the nearest neighbor using the
evaluated algorithm, and also using a linear search algorithm, that we wrote for
this purpose. We accepted the result returned by the linear search algorithm
as the real nearest neighbor, and compared it to the result returned by the
evaluated structure. If the two returned objects were of the same distance
from the query point, then we considered the search accurate, otherwise we
considered it inaccurate. We looked up the nearest neighbor of 20 words, and
calculated the percentage of accuracy. We also executed this test for different
proportions of known-unknown words in the wordlist (for example, 20% of the
search list was also in the structre). The results are presented in Figure 5.

Search test. The search time tests measure the time required to run the
query method. We used 20 words size wordlists, and measured the time each
algorithm takes to look up the nearest neighbor of the 20 words, then divided

Efficiency analysis of NNS methods 13

the result by 20 to receive the average search time per word value for each algo-
rithm. The results for the 20 unknown words (words not inside the structure)
are represented in Figure 6.

K-NNS test. We tested the algorithms for their scaling given multiple k
values, when we execute k-NNS operation. To do so, we built the structures
from 50000, 100000, . . . , 400000 words size wordlists, then executed k-NNS,
with the above mentioned 20 words search list (none of the 20 words were
inside the structure), with the k values of 1, 3, 10. As before, we present the
average search time per query word in Figure 7.

Insert time test. The insert time test is a test, in which we measure the
time needed to insert 100 words into the different structures. We executed this
insertion on structures built from 200000 to 1.2 million words size wordlists.
The results of the test are represented in Figure 8.

Figure 4. Building time comparison

5. Conclusion

In this article we have listed a few application areas of Nearest Neighbor
Search, described a few import Nearest Neighbor Search algorithms, namely:

• Vantage Point tree (VP-tree)
• Locality Sensitive hashing (LSH)
• Prefix tree with clusterng (Prefix-tree)

14 B. Bolyki, D. Polonkai and Dr. L. Kovács

Figure 5. Accuracy comparison

VP-tree and LSH are more conventional and widely known methods, while
Prefix-tree is a more recent approach. We adapted each algorithm to a uniform
framework to perform a range of tests. From the results of our tests we can
conclude the following:

• LSH takes the less time to build up.
• VP-tree is the most accurate of the three methods.
• Prefix-tree and LSH clearly outperform VP-tree in regards of search

time.
• The speed comparison between Prefix-tree and LSH is not one-sided,

but Prefix-tree scales better, while LSH is less affected by whether the
searched word is inside the structure or not.
• Each algorithm scales reasonably depending on the k value at k-NNS

operation.
• The difference between insertion speed of the three algorithms is rather

small, Prefix-tree being slightly slower on the evaluated interval.

6. Acknowledgements

The described article was carried out as part of the EFOP-3.6.1-16-2016-
00011 “Younger and Renewing University – Innovative Knowledge City –
institutional development of the University of Miskolc aiming at intelligent
specialisation” project implemented in the framework of the Szechenyi 2020

Efficiency analysis of NNS methods 15

Figure 6. KNN search time comparison

16 B. Bolyki, D. Polonkai and Dr. L. Kovács

Figure 7. KNN search time comparison

Efficiency analysis of NNS methods 17

Figure 8. Insert comparison

program. The realization of this project is supported by the European Union,
co-financed by the European Social Fund.

REFERENCES

[1] Yulianto, M. M., Arifudin, R., and Alamsyah, A.: Autocomplete and
spell checking levenshtein distance algorithm to getting text suggest error data
searching in library. Scientific Journal of Informatics, 5(1), (2018), 75.

[2] Agrawal, M. and Sharma, D. K.: A state of art on source code plagiarism
detection. In 2016 2nd International Conference on Next Generation Computing
Technologies (NGCT), IEEE, 2016, pp. 236–241.

[3] Baba, K.: Fast plagiarism detection using approximate string matching and
vector representation of words. In Behavior Engineering and Applications, pp.
67–79, Springer, 2018.

[4] Srivastava, S., Mukherjee, P., and Lall, B.: implag: Detecting image
plagiarism using hierarchical near duplicate retrieval. In 2015 Annual IEEE India
Conference (INDICON), IEEE, 2015, pp. 1–6.

[5] Potharaju, R., Newell, A., Nita-Rotaru, C., and Zhang, X.: Plagiarizing
smartphone applications: attack strategies and defense techniques. In Interna-
tional symposium on engineering secure software and systems, Springer, 2012,
pp. 106–120.

[6] Hussain, S. F. and Suryani, A.: On retrieving intelligently plagiarized doc-
uments using semantic similarity. Engineering Applications of Artificial Intelli-
gence, 45, (2015), 246–258.

18 B. Bolyki, D. Polonkai and Dr. L. Kovács

[7] Goyal, A., Daumé III, H., and Guerra, R.: Fast large-scale approximate
graph construction for nlp. In Proceedings of the 2012 Joint Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning, 2012, pp. 1069–1080.

[8] Liu, T., Rosenberg, C., and Rowley, H. A.: Clustering billions of images
with large scale nearest neighbor search. In 2007 IEEE workshop on applications
of computer vision (WACV’07), IEEE, 2007, pp. 28–28.

[9] Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., and Protopapas,
Z.: Fast nearest neighbor search in medical image databases. Tech. rep., 1998.

[10] Fu, A. W.-c., Chan, P. M.-s., Cheung, Y.-L., and Moon,
Y. S.: Dynamic vp-tree indexing for n-nearest neighbor search given
pair-wise distances. The VLDB Journal, 9(2), (2000), 154–173, URL
https://doi.org/10.1007/PL00010672.

[11] Carter, J. L. and Wegman, M. N.: Universal classes of hash functions.
Journal of computer and system sciences, 18(2), (1979), 143–154.

[12] Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high di-
mensions via hashing. In Vldb, vol. 99, 1999, pp. 518–529.

[13] Rajaraman, A. and Ullman, J. D.: Mining of massive datasets. Cambridge
University Press, 2011.

[14] Kovacs, L. and Szabó, G.: Automated learning of the morphological charac-
teristics of the Hungarian language for inflection and morphological analysis.

[15] Sjögren, R.: VP-Tree. URL https://github.com/RickardSjogren/vptree.
Undefined: undefined Copyright 2017 Rickard Sjögren Permission is hereby
granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the ”Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to per-
mit persons to whom the Software is furnished to do so, subject to the fol-
lowing conditions: The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the Software. THE SOFT-
WARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

