

Production Systems and Information Engineering
Volume 9 (2020), pp. 54–66 54

EVALUATION OF PYTHON BASED NLP FRAMEWORKS
FOR TEMPLATE BASED AUTOMATIC QUESTION

GENERATION

Walelign Tewabe Sewunetie
University of Miskolc, Hungary

Department of Information Engineering

sewunetie@ait.iit.uni-miskolc.hu

László Kovács
University of Miskolc, Hungary

Department of Information Engineering

kovacs@iit.uni-miskolc.hu

[Received . . . and accepted . . .]

Abstract. Automatic question generation techniques emerged as a so-
lution to the challenges facing test developers in the development of
smart e-tutoring systems. The current challenge in selecting the avail-
able developer tools is depend on several aspects, including the kind and
source of text, where the level, formal or informal, may influence the
performance of such tools. This tool, popular packages for NLP: NLTK,
spaCy, TextBlob, and CoreNLP.
Our experiences show that spaCy is several times faster than others in
tokenization, tagging and parsing. It has also the best feature set of
neural network models and of entity recognition methods. Based on our
test results spaCy would be an optimal choice for the implementation of
template based automatic question generation. The downside of spaCy
is the limited number of supported languages. The choice which NLP
package to choose depends on the specific problem you have to solve.

Keywords: Python, NLP Frameworks, Template Based Question Gen-
eration, spaCy, NLP

1. Introduction

Natural Language Processing (NLP) is a subfield of linguistics, computer sci-
ence, and artificial intelligence concerned with the interactions between com-
puters and human, in particular how to program computers to process and
analyze large amounts of natural language data. It mainly concerns about

55 Walelign Tewabe Sewunetie and László Kovács

teaching machines how to understand human languages and extract meaning
from text [1].

Natural language processing is a computer process that requires superior
knowledge of mathematics, machine learning, and linguistics. Now, devel-
opers can use ready-made tools that simplify text preprocessing so that they
can concentrate on building machine learning models [1]. Google, Amazon, or
Facebook are pouring millions of dollars into NLP line of research to power
their chatbots, virtual assistants, recommendation engines, and other solu-
tions powered by machine learning. NLP relies on advanced computational
skills, developers would like to use the best available tools for creating services
that can handle natural languages.

There are many things about Python that make it a really good programming
language choice for an NLP projects. The simple syntax and transparent se-
mantics of this language make it an excellent choice for complex projects like
NLP tasks. Moreover, developers can enjoy excellent support for integration
with other languages and tools that come in handy for techniques like machine
learning.

Python provides developers with an extensive collection of NLP tools and li-
braries that enable developers to handle a great number of NLP-related tasks
such as document classification, topic modeling, part-of-speech (POS) tag-
ging, word vectors, and sentiment analysis. AQG is characterized as the task
of generating syntactically sound, semantically correct, and appropriate ques-
tions from multiple input formats such as text, a structured database, or a
knowledge base.

Asking assessment questions is an essential feature of advanced learning tech-
nologies such as smart tutoring systems, game-based learning environments
and inquiry-based environments [2]. A general human technique for generat-
ing questions is to thoroughly read the article setting up an internal model
of information and then generating questions accordingly. In the case of au-
tomated question generation (AQG) the engine generates the questions auto-
matically from the available text documents. Many AQG systems are used in
educational applications, such as skill development assessment and knowledge
assessment. In the Extended ITS Architecture [3] the question generation
module is using intuitionistic logic for evaluation of the generated questions.
The field of AQG is an important research area that can be useful in intelligent
tutoring systems, dialog systems, educational technology, educational games,

Evaluation of Python Based NLP Frameworks for Template Based
Automatic Question Generation

e.t.c [4].

The main goal of the study is to compare, to test and to analyze different
available Python based NLP frameworks for template based question gener-
ation. Template-based QG is a baseline which utilizes templates created by
experts of human extracted from training set and then generates questions by
filling the particular templates with certain topic entities.

2. Extensions of the article Evaluation of Python-based NLP
Frameworks

2.1. Question Generation from Databases

One approach for AQG is to use a database, like relational database for the
input source. The relational database [6] has the benefit that it contains a
strict structure to store information and data. This structure enables to de-
termine the meaning, semantic role of the different data items. In this case,
the schema may refer to the different semantic components using references
to the column names. On the other hand, to generate the NL sentences, the
framework requires an NLP module to transform the lemma forms into the
corresponding inflected forms.

The formal model of the database oriented AQG system can be given as fol-
lows.

• D : {T1, T1, ..., Tn}: input database
• Ti : Ti(mi1,mi2,,mim) : table schema containing columns
• S : {(Si, Qi)} : set of QA schemas
• Si = w1, w2, ..., wm : query schema, where wi denotes either a NL word

or a reference to a table column of the form Ti.mj

• Qi : select ...from ...where ..., the SQL query to yield the answer, where
the SQL query can contain references to the symbol parameters used in
the query schema.

For the tests, we have implemented a background database in sqlite. The
database schema contains the following tables.

In Table 1, we can find examples for the generated QA schema with references
to the implemented database. To implement this system we have used SQLite
tools to create a relational database and python for template-based question
answering systems.

56

57 Walelign Tewabe Sewunetie and László Kovács

Figure 1. Restaurant food ingredient database schema

No Question/Query Template Sample
1 S: What is the active ingredient in

@food.name? Q: Select i.ing name
From ingredient i inner join
food ingredient g on i.ingredient id
= g.ingredient id inner join food
f on f.food.id = g.food id where
f.name = @food.name

S: What is the active ingre-
dient in potato? A: vitamin
C, potassium, phosphorus and
magnesium

2 S: What is the price of @food.name?
Q: select price from food where
name = @food.name

S: What is the price of potato?
A: 20

3 S: What is the category of
@food.name? Q: select cate-
gory from food where name =
@food.name

S: What is the category of or-
ange? A: fruit

4 S: What kind of food have in-
gredient @ing.name? Q: Select
f.name From ingredient i inner join
food ingredient g on i.ingredient id
= g.ingredient id inner join food f on
f.food.id = g.food id where i.name
= @ing.name

S: What vegetable have
more protein? A: Edamame,
Lentils

Table 1. Sample question templates with answers

As the examples show the accuracy of database oriented question generation
is very high but it needs to create a template for all possible ways of ques-
tions. Thus, in case of large domain it is more challenging and time taking to

Evaluation of Python Based NLP Frameworks for Template Based
Automatic Question Generation

construct all the required templates. In future, we will extend this work for
automatized schema generation for databases. Here below is a sample python
code that we have used for a template-based question answering system with
database support.

Rules = [("What is the active ingredient in @food.name",

"Select i.ing_name From ingredient i inner join

food_ingredient g on i.ingredient_id = g.ingredient_id

inner join food f on f.food.id = g.food_id where f.name

= @food.name"),

("What is the price of @food.name","select price from

food where name = ’@food.name’")

]

def qa_process (qid):

conn = sqlite3.connect(’../Python_Cube/aqgtest’)

cur = conn.cursor()

qid = 1

qry = Rules[qid][0]

qrys = qry.split("@")

qrys2 = qrys[1].split(" ")[0]

qryss = qrys2.split(".")

sql = "select " + qryss[1] + " from " + qryss[0]

result = conn.execute(sql);

for rec in result:

break

qtext = qry.replace("@"+qrys2,rec[0])+"?"

#print ("Q:", qtext)

qry = Rules[qid][1]

sql = qry.replace ("@"+qrys2,rec[0])

#print (sql)

result = conn.execute(sql);

for rec in result:

break

atext = str(rec[0])

#print ("A:", atext)

return (qtext,atext)

58

59 Walelign Tewabe Sewunetie and László Kovács

2.2. Question Generation from Free Text

NLP plays a critical role in many intelligent applications such as automated
chat bots, article summarizers, multi-lingual translation and opinion iden-
tification from data. Every industry which exploits NLP to make sense of
unstructured text data, not just demands accuracy, but also swiftness in ob-
taining results [11]. Some of the tasks in NLP are text classification, entity
detection, machine translation, question answering, and concept identification.
Python is a top developing software that can handle natural languages in the
context of artificial intelligence. For the implementation of Template Based
Question Generation the researchers’ analyzed different python based NLP
frameworks.

In a research work Nguyen-thinh le et al [6] use extracted key concepts to gen-
erate questions and determine the types of questions to be generated. They use
the domains of energy and economy topic to select the sentences and question.
The author presents nouns and noun phrases first extracted from a discussion
topic and replace by X placeholder. The template displayed in Table 1 shows
that question templates are filled with the noun phrase “nuclear energy” and
result in some questions. As we have seen on the template below questions
are more dependent on domain and topic.

The authors used an improved NER spaCy which is capable of labeling more
entity types, including money, dates/times, etc to generate questions contain-
ing the question word Why, How much, to what extent etc, [8].

In the work [8] the template creation focuses on the events (actions, happen-
ings) and existents (characters, settings). The questions in the templates ask
about the subject, the predicate, and the object of the events and existents.
After removal the errors, they created 19 improved templates under 6 cate-
gories that are included in the system [8].

In David’s [9] thesis report he explored semantics-based templates that uses
Semantic Role Labeling (SRL) in conjunction with generic and domain-specific
scope for self-directed learning. According to his report the questions that are
generated are not answerable from the original sentence, they were judged an-
swerable from the source document in our evaluation. The ability to generate
questions that require the learner to consult other parts of the text is due to
the flexibility of the templates.

In this study the authors have used spaCy libraries for POS tagging and
this information is used to identify the potential content for the template of

Evaluation of Python Based NLP Frameworks for Template Based
Automatic Question Generation

Type Question
Definition What is @X? What do you have in mind when

you think about @X? What does @X remind you
of?

Feature/Property What are the properties of @X? What are the
(opposite)-problems of @X? What features does
@X have?

Example What is an example of @X
Verification Is there any problem with the arguments about

@X?
Judgment What do you like when you think of or hear

about @X
Interpretation How can @X be used today?
Expectation How will @X be in the future, based on the way

it is now?
Quantification How many sub-topics did you partners talk

about? Which sub-topics do you partners focus
on?

Concept Comparison What is the difference or relations between these
sub-topics?

Table 2. Question Templates Proposed for AQG [6]

As recently as 12,500 years ago, the Earth was in the midst of a glacial
age referred to as the Last Ice Age.
T: How would you describe [A2-Ipp misc]?
Q: How would you describe the Last Ice Age?
T: Summarize the influence of [A1-lp !comma !nv] on the environment.
Q: Summarize the influence of a glacial age on the environment.
T: What caused [A2-Ipp nv misc]? ## [A0 null]
Q: What caused the Last Ice Age?

Table 3. Sample templates and questions [9]

questions [10]. A part of the speech tagger are used to encode necessary infor-
mation. In order to decide the type of questions that can be produced from
this sentence, verb, object and preposition will be categorized on the basis of
the subject.

60

61 Walelign Tewabe Sewunetie and László Kovács

3. Comparative analysis of NLP Libraries in Python for Template
Based Question Generation

The most common tools and libraries that created to solve NLP problems
are Natural Language Toolkit (NLTK), spaCy, TextBlob, and CoreNLP. The
NLTK , for English written in the Python programming language, is a suite
of libraries and programs for symbolic and statistical NLP [13]. It can include
various datasets in multiple languages that can be deployed depending on the
features you need. Stanford CoreNLP is a community that created core NLP
components such as Tokenization, Sentence Recognition, POS Tagging, NER,
Entity Linking and Training Annotation, etc [14]. The most distinctive char-
acteristic of the Stanford NLP Group is its successful integration of advanced
and deep linguistic modeling and data processing with innovative probabilis-
tic approaches to NLP, machine learning, and deep learning. The comparison
of the features offered by spaCy, NLTK, TextBlob and Stanford CoreNLP in
table 4 shows that spaCy is an advanced modern NLP library. spaCy have
pre-trained NLP models capable of performing the most common NLP tasks,
such as tokenization, POS tagging, NER recognition, lemmatization and word
vector transformation [15]. TextBlob is a Python library which offers a simple
API for accessing its methods and carrying out basic NLP tasks. It offers a
simple API for diving into specific NLP tasks such as part-of - speech tag-
ging, extraction of the noun phrase, interpretation of emotions, classification,
translation and more [16].

Table 5 shows the comparison of per-document processing time of various
spaCy functionalities against other NLP libraries. We show both absolute
timings (ms) and relative performance (normalized) to spaCy [17].

Reviewed papers confirmed that spaCy offers the fastest syntactic parser in
the world and that its accuracy is within 1% of the best available. The few
systems that are more accurate are 20x slower or more [17].

Spacy is very powerful and industrial strength package for almost all natural
language processing tasks. The following figure shows the comparison of spaCy
with CoreNLP and NLTK based on accuracy for entity extraction.
Spacy consists of a fast entity recognition model which is capable of identifying
entity phrases from the document. Entities can be of different types, such as
person, location, organization, dates, numerals, etc. These entities can be
accessed through “.ents” property. According to the research work [18] and
we have also observe that spaCy is easy to use, provides the best overall
performance compared to Stanford CoreNLP Suite, Google’s SyntaxNet, and
NLTK Python library.

Evaluation of Python Based NLP Frameworks for Template Based
Automatic Question Generation

Feature spaCy NLTK Stanford
CoreNLP

TextBlob

Programming Language X
Easy Installation X X X
Neural Network Models X X
Integrated word vectors X
Multi language support X X X
Tokenization X X X
Part of Speech Tagging X X X
Sentence segmentation X X
Dependency parsing X X X
Entity recognition X X
Stemming X X X
Lemmatization X X X
Table 4. Comparison of the functionalities offered by spaCy, NLTK,
TextBlob and Stanford CoreNLP

System Tokenize Tagging Parsing Tokenize Tag Parse
spaCy 0.2 ms 1 ms 19 ms 1x 1x 1x
coreNLP 018 ms 10 ms 49 ms 0.9x 10x 2.6x
ZPar 1 ms 8 ms 850 ms 5x 8x 44.7x
NLTK 4 ms 443 ms n/a 20x 443x n/a
Table 5. Compare the per-document processing time of various
spaCy functionalities against other NLP libraries

Figure 2. Accuracy for entity extraction

One of the most powerful feature of spacy is the extremely fast and accurate
syntactic dependency parser which can be accessed via lightweight API. The
parser can also be used for sentence boundary detection and phrase chunking.

62

63 Walelign Tewabe Sewunetie and László Kovács

The relations can be accessed by the properties “.children”, “.root”, “.ances-
tor” etc[12].

4. Feature Level Comparison

The two significant libraries used in NLP are NLTK and spaCy. There are
substantial differences between them, which are as follows: NLTK provides a
plethora of algorithms to choose from for a particular problem which is boon
for a researcher but a bane for a developer. Whereas, spaCy keeps the best
algorithm for a problem in its toolkit and keep it updated as state of the art
improves.

NLTK is a string processing library and it takes strings as input and returns
strings or lists of strings as output. Whereas, spaCy uses object-oriented
approach. When we parse a text, spaCy returns document object whose words
and sentences are objects themselves. spaCy has support for word vectors
whereas NLTK does not. As spaCy uses the latest and best algorithms, its
performance is usually good as compared to NLTK. As we can see below, in
word tokenization and POS-tagging spaCy performs better, but in sentence
tokenization, NLTK outperforms spaCy. Its poor performance in sentence
tokenization is a result of differing approaches: NLTK attempts to split the
text into sentences. In contrast, spaCy constructs a syntactic tree for each
sentence, a more robust method that yields much more information about the
text.

Figure 3. Number of features offered by spaCy, NLTK, Stanford
CoreNLP and TextBlob

The most popular NLP tools available in Python, spaCy supports 9 features
out of 10. In our observation spaCy have fast processing speed in 3 major key
functionalities Tokenization, POS Tagging, Entity Extraction.

SpaCy, on the other hand, is the way to go for app developers. While NLTK
provides access to many algorithms to get something done, spaCy provides

Evaluation of Python Based NLP Frameworks for Template Based
Automatic Question Generation

the best way to do it. It provides the fastest and most accurate syntactic
analysis of any NLP library released to date. It also offers access to larger
word vectors that are easier to customize. For an app builder mindset that
prioritizes getting features done, spaCy would be the better choice. Both
NLTK and spaCy offer great options when you need to build an NLP system.
As we have seen, however, spaCy is the right tool to use in a production
environment.

5. Conclusion

In this article, we compared some features of several popular NLP libraries.
While most of them provide tools for overlapping tasks, some use unique ap-
proaches for specific problems. Definitely, the most popular packages for NLP
today are NLTK and spaCy. In our opinion, the difference between them lies
in the general philosophy of the approach to solving problems.

You can use it to try different methods and algorithms, combine them, etc.
spaCy, instead, provides one out-of-box solution for each problem. Also, spaCy
is several times faster than NLTK. Despite the popularity of these two libraries,
there are many different options, and the choice which NLP package to choose
depends on the specific problem you have to solve. spaCy would be an optimal
choice for template based question generation.

Acknowledgements

The research reported here was carried out as part of the EFOP-3.6.1-16-
2016-00011 “Younger and Renewing University – Innovative Knowledge City
– Institutional development of the University of Miskolc aiming at intelligent
specialization” project implemented in the framework of the Széchenyi 2020
program. The realization of this project is supported by the European Union,
co-financed by the European Social Fund.

REFERENCES

[1] Dominik Kozaczko, Best python natural language processing nlp libraries, [On-
line]. Available: https://sunscrapers.com/blog/8-best-python-natural-language-
processing-nlp-libraries/,2018.

[2] K. E. a. P. P. e. Boyer: Proceedings of QG2010. The Third Workshop on
Question Generation, in Pittsburgh, questiongeneration.org, 2010.

[3] Walelign T.S et al: The development and analysis of extended of architecture
model for intelligent tutoring systems, Gradus ISSN 2064-8014 , vol. 6, no. 4, pp.
128-138, 2019.

64

65 Walelign Tewabe Sewunetie and László Kovács

[4] J. P. a. I. S. Dhaval Swali:, Automatic Question Generation from Paragraph,
International Journal of Advance Engineering and Research Development, vol.
3, no. 12, pp. 73-78, 2016.

[5] M. H. N. A. Smith:, Good Question! Statistical Ranking for Question Gen-
eration, in Human Language Technologies: Conference of the North American
Chapter of the Association of Computational Linguistics, Proceedings, , Los An-
geles, California, USA, June 2-4, 2010.

[6] N.-T. Le and N. Pinkwart, Evaluation of a question generation approach us-
ing semantic web for supporting argumentation, Research and Practice in Tech-
nology Enhanced Learning , vol. 10, no. 3, p. 19, June 2015.

[7] , G. Keswani,AutoQuest (An Intelligent Automatic Question Paper Generator
System), Abdul Kalam Technology University, Lucknow, 2018-19.

[8] K. Mhartre, Question Generation using NLP, International Journal of Scien-
tific Research & Engineering Trends, vol. 5, no. 2, pp. 394-397, 2019.

[9] E. L. Fasya, Automatic question generation for virtual humans,Enschede, The
Netherlands, August 2017.

[10] D. Lindberg, Automatic question generation from text for self directed learn-
ing,Simon Fraser university, Canada, 2013.

[11] Mandasari Yani: Follow-up question generation, University of Twente M.Sc
Thesis, 2019.

[12] S BANSAL, Natural Language Processing Made Easy using spaCy (in
Python),[Online]. Available: https: //www.analyticsvidhya. com/blog/2017/04/
natural-language-processing-made-easy-using-spacy- [Accessed 19 10 2020].

[13] Awesome Python, Natural Language Processing packages and projects, https:
//python.libhunt.com/categories/169-natural-language-processing,[Accessed 19
10 2020].

[14] Manning and Christopher D. at al, The Stanford CoreNLP Natural Lan-
guage Processing Toolkit, In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pp. 55-60,
2014.

[15] Online,Python PoS Tagging and Lemmatization using spaCy, Avail-
able: https://www.geeksforgeeks.org/python-pos-tagging-and-lemmatization-
using-spacy/,[Accessed 19 10 2020].

[16] S. Loria, TextBlob: Simplified Text Processing, [Online]. Available:
https://textblob.readthedocs.io/en/dev/. [Accessed 25 07 2020].

[17] spaCy, Facts & Figures, [Online]. Available: https://spacy.io/usage/facts-
figures. [Accessed 16 4 2020].

[18] F. N. A. Al Omran and C. Treude, Choosing an NLP Library for An-
alyzing Software Documentation A Systematic Literature Review and a Series
of Experiments,IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR) DOI: 10.1109/MSR.2017.42, pp. 187 - 197, 20-21 May 2017.

Evaluation of Python Based NLP Frameworks for Template Based
Automatic Question Generation

[19] M. H. N. A. Smith, Good Question! Statistical Ranking for Question Gen-
eration, in Human Language Technologies: Conference of the North American
Chapter of the Association of Computational Linguistics, Proceedings, , Los An-
geles, California, USA, June 2-4, 2010.

66

