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Abstract. Voxel-based technology has already been present in the early
years of computer visualization. However its usage was almost entirely
confined to the field of medical image synthesis. Due to the continuous
development of the CPU and graphics hardware, its role has increased
again nowadays. It came to the fore especially in the field of computer
games because of its specific properties. This publication presents a
simplified visualization model and optimization techniques, which are
able to visualize smaller (perhaps animated) voxel sets in real-time with
certain compromises. The objective of the solution is not to reach the
level of photorealistic image synthesis, but a provide a well applicable
and simple method which can be applied for computer games and other
graphical applications
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1. Introduction

Almost the entire area of the computer visualization is dominated today by
GPU rasterized polygon models. Although the voxel-based approach has been
available from the very beginning, but the early slow hardware were not yet
ready in performance for an approach based on atomic model structure. They
were strongly limited in memory and storage, so it is no wonder that the filling
based (scanline, half space approaches) polygon image synthesis has become
dominant.
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In the early ages, the process of rasterization was performed entirely and ex-
clusively by the CPU, the graphics accelerator hardware appeared only later.
However, the technology has been continuously evolved over the years, mainly
due to the computer games. Today it seems that voxel based technology is
a major trend in the area of photorealistic visualization. Besides the grow-
ing of hardware performance, the expectation about visualization have also
increased. A modern computer game has millions of polygons on the screen
at the same time. All of the voxelized versions of these would consume a lot
of memory and CPU/GPU time. Today’s GPUs are able to render a smaller
scene with various real-time effects (e.g. lighting, depth of field, shadows etc),
but in cases where many models are on the screen, the available GPU mem-
ory is probably insufficient. This led to the unfolding techniques of real-time
background data streaming into GPU memory.

To summarize, we can state that modern computer graphics stands before
the introduction of the effective voxel technology. Companies, the greatest
players in the computer game industry are constantly looking for voxel based
complementary solutions to achieve a more realistic view. These techniques,
algorithms are complicated, require a high level of knowledge from different
areas. This article therefore does not focus on photorealistic visualization,
rather displaying smaller voxel sets in a simple way. To answer the question
how voxel sets can we visualize without a deep mathematical knowledge beside
acceptable quality compromises.

2. Related works

The voxel-based, alternative rendering technology has already appeared in
the early years of the computer visualization. Because early hardware did
not allow to use displaying models which are able to provide professional,
high images quality, thus voxel-based techniques became less known. The
main area of its application was the medical diagnostic image synthesis, but
some interesting computer games were born applying ray base solutions at
the rendering. Although the CPUs were not yet fast enough, but owing to
the so-called Wave Surfing algorithm, low-end hardware were able to visualize
three dimension models (mainly terrains) in real time. Good examples are:
Comanche - 1992, Delta Force - 1998, Armored Fist - 1994, Blade Runner -
1997, Hexplore - 1998 etc. The early consoles (Amiga, Nintendo, Gameboy)
used similar technology with the help of software rasterization.

After the continuous spread of the GPU based rendering, which supported
the polygon based approach, the software based (voxel) solutions fell more
and more into the background. Although there have always been software
products (Outcast - 1999, Motocross Stunt Racer - 2002, Red Alert series),
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which used the voxel approach, the polygon-based technologies come to the
fore.

In recent years, voxels have become to a frequented area again. Due to the
evolution of the GPU, mainly the approaches using some kind of ray-based
technology (ray-tracing, cone tracing etc.) are showing progress. Solutions ap-
plying tree structures for faster rasterization are also popular. In publication
[3], one of the leader of the GPU market, the NVidia examines the possibili-
ties of using voxel representations as a generic way for expressing complex and
feature-rich geometry on current and future GPUs. Their benchmarks show
that the octal tree based voxel representation is competitive with triangle-
based representations in terms of ray casting performance. Szymon and Marc
[4] describe a system for representing and progressively displaying complex
meshes that combines a multiresolution hierarchy based on bounding spheres
with a point based rendering system. In [11] sparse voxel database structure
(GVDB) was investigated based on the voxel database topology. GVDB intro-
duces an indexed memory pooling design for dynamic topology, and a novel
hierarchical traversal for efficient raytracing on the GPU. They method can
give large performance improvements over CPU methods.

Global illumination is a modern trend to make scene lighting more realistic.
The voxel representation is becoming more important in this area. The lead-
ing company, Unreal Technologies presented a voxelisation based model for
global illumination, applying Deferred rendering [6]. The importance of this
technique lies in the fact that the technology is ready for the modern computer
games. Paper [7] and [8] also approach the problem of modern lighting using
voxel-based technology.

The voxel-based image synthesis is constantly evolving, it will be seen on the
screen of every average computer within a few years.

3. Voxel based visualization

Voxel based visualization is not a new area in the field of digital image syn-
thesis. The idea behind the name is that the model builds the 3D model from
voxels instead of describing it by today’s popular a polygon mesh. It can be dif-
ficult to define the term voxel. The literature often calls it as three-dimensional
pixel, but can also be called as atom. A typical voxel representation contains
the position, size and color information. In addition, renderers using different
technologies can store other information (e.g. normal vector), which are used
to achieve a more realistic visualization used (e.g. Ambient Occlusion). The
voxel-based representation has several advantages over polygon-based storage
model. Since the voxel set includes all necessary information of the model
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for displaying, texture mapping and mip mapping are not needed. The color
stored in voxels determines exactly the “look” of the model. Another advan-
tage of the representation is that we can define a very detailed model structure,
built upon atomic units. If observe the current trends in the computer game
industry, we can declare that the voxel technology can be a very possible fu-
ture of the computer graphics. This conclusion comes from the fact, that the
global objective of real time computer visualization is to reach more realis-
tic, physically correct results on the screen. Therefore the number of applied
triangles are constantly increasing and their size is getting smaller. This is a
process which tends to an atomic level, which is the world of voxels. Nowa-
days, screen space solutions (Normal Mapping, Occlusion Mapping, Parallax
Mapping etc) are dominated against complex triangle based model structures,
because using current screen space algorithms to add detail to a model are
cheaper for the GPU, than working with millions of triangles.

The main downside of the voxel technology is hidden in the large data set.
Even less detailed model structure has a relatively large set of voxels. Big
data set of models requires large amount of main and GPU memory, which is
fairly limited in case of GPU based visualization. Various, so-called streaming
technology must be developed to keep the current possible visible parts of the
virtual world in the GPU memory, however this technology needs a very com-
plex computer and visualization knowledge. Further additional problem of
the voxel set is the following: because the voxel based world comprises a large
number of voxels, the graphics pipeline should handle large data sets during
the various transformations. Because every CPU or GPU cycle counts, this
property has a significant impact on performance [1]. Today’s graphics hard-
ware does not directly support the voxel based visualization. There are some
trends emerged, mainly based on ray-based solutions, but there is no officially
supported direction/pipeline from the GPU manufacturers and graphics APIs
(OpenGL, DirectX) like in case of polygon-based solutions. using polygons it
is enough to specify a set of vertices, textures, and other properties of the ob-
ject, the GPU can visualize the data almost directly. To visualize a voxel set
with the GPU, the programmer usually should develop a custom technology
using (sometimes very complex) shaders performing some kind of simplified
ray-based technology.

Today, the NVidia company provides a ray tracing engine called Optix, which
is able to perform ray tracing on their GPUs. But since it is not officially sup-
ported by the common graphics APIs, its application possibilities are limited.
The computer game industry will not use this technology until it is not part
of the the graphical APIs (OpenGL, DirectX) and uniformly supported on all
modern GPU.
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The representation of the voxel set is independent of the displaying process.
In practice, many volume rendering algorithms have been developed. This
paper reviews the most important approaches and also presents a software
based simplified solution.

3.1. Cube based approach

This approach is the easiest, we might say the naive approach to display voxel
sets. During the visualization, all elements of the voxel set is represented
by a three-dimensional cube on the screen. The size of the cube is usually
predetermined. Although it is a simple technique, it is fairly popular in today
computer games (e.g. Minecraft, FEZ, Stonehearth, Voxatron etc). There are
several reasons for this: the visualization model is simple, easy to understand
and the results are cubic having retro impressions.

Although the model seems to be simple, because basically every cube is speci-
fied by a specific color, in practice, displaying larger models (millions of cubes)
cause many serious problems to the GPU due the high number of polygons.
As typical example, the shadow creations process can be mentioned. If we
use the popular shadow mapping technique, the models need to be renderer in
multiple passes. Handling point lights are even more complex, because cube-
map is required to store the 6 depth textures in case of only one light. The
another approach, shadow volume has also problem with large data sets: this
algorithm builds a coherent polygon mesh in real time from the world vertices
which are visible from the light perspective. In order to achieve a reasonable
frame rate, a number of additional optimization process (e.g. Space parti-
tioning, Occlusion Culling, Ordering objects by z coordinate etc) should be
introduced, which makes this technique also complex at the professional level.

3.2. Ray based solutions

An another popular rasterization form of a voxel-based world are the ray-based
approaches. A simplified variant (Wave surfing algorithm-2D raycasting) of
this technique has already been developed and used in early computer games
(Comanche, Wolfeinstein, Delta Force, Armored Fist, Outcast etc) and med-
ical diagnostic procedures. The main idea behind these approaches is that
the rasterization problems and the hidden surface determination are solved
independently by pixel to pixel. The algorithm casts rays through the render
target (e.g. the screen) pixels to the virtual space, then it recursively examines
their traversal, collision points and features. The big advantage of the pro-
cedure lies in its simplicity. The algorithm can solve numerous visualization
problem, which are able to be achieved with current “forward” and “deferred”
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Figure 1. Example of a cube based voxel visualization (Voxatron game)

rendering techniques, but using only a variety of additional techniques that re-
quire deep technological and mathematical knowledge (e.g. Cascaded Shadow
mapping, Ambient Occlusion etc).

Raytracing and its variants (e.g. path tracing) is the primary starting point
for today’s global illumination rendering solutions. Today, many attempts
unfolds, where the target of the experiment is to develop real time global
illumination using voxel based representations. Example: Epic Games-Sparse
Voxel Octree Global Illumination, ID Software - Sparse Voxel Octree, NVidia
- Efficient Sparse Voxel Octrees [3].

Performing global illumination like ray tracing on a voxel set is a computa-
tionally intensive, slow process. Therefore it is essential to use accelerator
structures, which are usually based on some kind of space partitioning tree
(e.g. KD-tree, BSP tree etc.). Using these structures, the visualization pro-
cess is the following: the casted rays are hit with the tree levels in order to
speed up the voxel searching process, which color should be drawn on the
screen. The main disadvantage of ray based solutions is that it is not sup-
ported by official graphics APIs(OpenGL, DirectX). Although the graphics
pipeline is programmable via shaders, the GPUs are not designed to support
the ray-based algorithms by directly by hardware. Today’s fast GPUs are able
to achieve some ray based rendering in real time. However these algorithms
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are currently applied only in graphical demos, not in commercial projects (like
games).

4. Simplified voxel rendering

The briefly described above techniques are not able to serve all demands.
However, there are cases when we want to display smaller voxel sets with
acceptable performance and with certain visual compromises (reduced shad-
ing/shadows etc.). Good examples are the two-dimensional computer games,
where although the projection is two-dimensional, some simple pickable items,
models are three-dimensional, they rotate or perform simple animation. Be-
cause the display does not want to rent a retro characteristic to the screen,
using larger cubes can not be a solution. The rendered voxel set should reflect
a two-dimensional characteristic on the screen, but stored in a 3D voxel model
format. Figure 2 shows the nature of the approach.

Figure 2. Red Alert, 2D game with 3D voxel units

None of the above solutions are not fully capable of performing these type
of rendering tasks. In case of the cube based approach, very small cubes (or
possibly balls) could be used in order to achieve high quality game objects.
Almost every cube would represent one pixel on the screen. In this case, an
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unnecessary amount of vertex set is created, which would impose a serious
load on the GPU.

The question may arise: why do we need a voxel set to represent a game
object, why not implement polygons? In these cases, the polygon set itself
would also be dense. But an another important cause is that the developers
would like to use the characteristic of the voxel representation, that the object
is built from atomic parts and therefore it is destructive.

In the following a simplified voxel rendering solution is presented, which is
capable to perform the above-defined tasks efficiently.

4.1. The square based approach

To describe the approach of the simplified voxel renderer, let start from the
logic of the displaying process. A voxel is a three-dimensional unit, its raster-
isation generally requires a two-dimensional mathematical projection, where
the corresponding pixels should be determined in function of the voxel color
and size. However the question arises, that if the voxel is mapped to the two-
dimensional space anyway, why bother the three-dimensional extent? Can the
extent of the voxel be modeled in two dimensions only?

We can apply a simple square based mapping to solve the problem. This
technique allows to visualize small voxel sets well in real time under certain
compromises. The following figure shows this simple mapping:

Figure 3. The image shows a magnified mapping of 4 voxels. Two
voxels are next to each other and two voxels are located behind

So, during the displaying process, voxels are represented as painted “tiles”
(square/rectangle) with predetermined size. The color of the tile is the color
determined by the voxel. The difference in x and y directions between the two
rows is a natural feature of three-dimensional mapping. In the above example,
the first row is located ahead in the space and the model isn’t positioned in
the origo.
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The following pseudo code describes the mathematical model which maps a
voxel into the two dimensional space.

var per_z = 1.0f / voxel.z;

var square_size = SIZE_FACTOR;

xs1 = + ((voxel.y - square_size) * per_z) + half_screen_width;

ys1 = - ((voxel.x - square_size) * per_z) + half_screen_height;

xs2 = + ((voxel.y + square_size) * per_z) + half_screen_width;

ys2 = - ((voxel.x + square_size) * per_z) + half_screen_height;

The result can be seen on Figure 4:

Figure 4. The shape of a screen mapped voxel

The (x, y, z) in the above formulas represent the spatial coordinates of a voxel,
the square size is an empirical parameter of the two-dimensional mapping,
the size of the square and the xs1, ys1, xs2, ys2 coordinates are the corners
of the 2D square. square size parameter can be configured according to the
rendering requirements. Usually this parameter is constant. Its behavior is
the following: if the voxel position is far from the view plane, the model will
be smaller on the screen. Therefore we can adjust this parameter to a smaller
number, because of the distance of the mapped voxel centers will be also closer
and their shape will overlap each other. If the model is closer to the new view
plane, the distance between the voxels will be larger. For this reason, the
size parameter should be a bigger number, otherwise there will be gaps in the
mapped model on the screen as the following image shows:
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Figure 5. Gap between projected voxels

4.1.1. Rasterizing the voxels

The easiest way to draw a voxel is to use a software based rendering approach.
Software rendering uses the power of CPU to create the final voxel graphics.
During the rendering process each voxel is drawn into a framebuffer which
is located in the main memory, then the buffer is passed to the GPU and
will be displayed on the screen. The solution is not incompatible with the
GPU-based visualization: the real objective in this case is to integrate the
two rendering techniques. During or after the hardware rendered models, the
software framebuffer can also be drawn.

The following code describes the drawing of a voxel:

for i = x_scr to x_scr2

for j = y_scr to y_scr2

index = i * frame_buffer_width + j;

if (j > frame_buffer_width || i > frame_buffer_height || j < 0 ||

i < 0)

continue;

if (voxel.z < zBuffer[index] )

z_buffer[index] = voxel.z;

frameBuffer[index] = voxel.color;

end

end

end

It is clearly visible, that the solution also requires a z-buffer implementation.
The reason for this is that, due to the spatial location of the voxel set, the
mapped squares can overlap each other in certain areas. The following image
summarizes the result of this technique:
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Figure 6. Voxel models in case of different z values

Figure 6 shows two models, where the first model appears twice with different
z values. It can be seen that viewing the horse figure from a distance we
can obtain satisfactory result, but if from closer the characteristics of the
rectangular representation appear. The level of angularity can be eliminated
by the tuning of the voxel density and its size. However the rendering time
may increase significantly, as the rendering of the second models shows. The
medkit model consist of 1.548.288 voxels. Obviously the visual quality is much
better, but while 355 FPS was measured at the horse model (49.152 voxels),
the performance was dropped to 63 FPS (without optimization) in case of
rendering the medkit.

For this reason, this approach is mainly intended for rendering small models
in real-time locating not too close to the camera.

5. Accelerating the rendering process

The procedure - although it does not contain any complex mathematical for-
mula - is quite computationally intensive because of the double iteration loop.
For every voxel an area of the framebuffer should be colored. The situation
is much worse when the voxels are located in the way, that they need to be
draw from back to front. In this case, due to the ordering of the voxels, the z
buffer cannot reject the non-visible pixels and a lot of pixels will be continu-
ously overwritten. Therefore this rendering technique requires some additional
extension, to reduce the number of necessary iterations.
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One of the most important optimization is to skip the non-visible voxels of the
model. This requires to build a suitable representation for the model, which
is capable to determine the outer voxels. During the rasterization the load of
the renderer can be reduced significantly.

A further acceleration approach can be the following: if the position of the
model changes along the z direction, after a certain z distance it makes no sense
to draw squares into the framebuffer. Because of the distance, the boundary
points of the mapped voxel are slipped to each other, therefore it is enough to
assign a simple pixel to a voxel. With this extension, the performance can be
also improved.

Figure 7. Significant jump in performance: left image is rendered
as true squares, right image is rendered as points with different z
distance. Number of voxels: 1.548.288

The redundant rasterization due to the formerly mentioned “unfortunately”
order of rendering can also be eliminated. Two solutions arise: On the one
hand, we can sort voxels along the z direction, then the drawing should began
with the nearest. This minimizes the number of overdraws because the z
buffer will reject the pixels. The second option is to determine the visible
voxels based on the angle of the camera and the model and display only the
visible parts.

Implementation of the solution requires substantial changes to the basic struc-
ture, where the properties of the voxels are stored separately. An enclosing
data structure should be developed that clearly identifies the adjacent voxels.
This structure and the approach has the advantage that in this case during
the transformations, the calculations shouldn’t be performed on each voxel
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Figure 8. Sample coherent voxel subsets. During the calculations
voxels can be handled in one unit, which increases the performance.

separately, but it is enough to be done on the coherent subset (Figure 7.).
During the rasterization, the renderer can use these precalculated structure
level parameters for drawing and calculating the position of the individual
voxels.

6. Conclusion

The field of computer visualization is dominated by the polygon model rep-
resentations. The graphics hardware vendors based their GPUs on this ap-
proach. The voxel technology has been present from the beginning, but it
only began to emerge in recent years due to the performance of computers.
The method presented in this paper attempts to fill a gap at the field of pop-
ular voxel rendering algorithms, which allows fast rendering for smaller voxel
sets under certain visual compromises. The solution cannot compete with the
performance of the polygon-based visualization, however due to the beneficial
properties of voxelization it is well applicable in certain areas. A good exam-
ple of this is, when the graphics engine combines the voxel-based solutions to
the polygon-based visualization opening the way to a modern mixed rendering
technology.
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