
COST ANALYSIS OF THE PREFIX TREE DATA
STRUCTURE

Edit Csizmás
Pallasz Athéné University, Kecskemét, Hungary

Department of Informatics

csizmas.edit@gamf.kefo.hu

László Kovács
University of Miskolc, Hungary
Institute of Information Science

kovacs@iit.uni-miskolc.hu

[Accepted July 2017]

Abstract. The data tree is a very widely used data structure in many
application areas. The tree structure provides an efficient storage and
data manipulation for different data lists or data sets. The prefix tree
is a special tree structure to store ordered lists of data elements. In the
prefix tree, the lists with common prefix part share the same path. As
the prefix tree can be involved in many data manipulation algorithms,
the cost estimation of the tree is an important component in the cost
function of the whole data manipulation algorithm. This paper provides
a cost analysis related to the tree size for a random input set of object
lists. The analysis includes both analytical and simulation methods and
the main result presented in this paper is an approximation function
based on the gamma-distribution.

Keywords: prefix tree, cost function, gamma-distribution

1. Introduction

The ordered list is a good implementation structure for the set representation.
The ordering of the elements enables a more efficient implementation of the
set operations. For example, the set intersection can be implemented with a
sorted merge algorithm. This kind of implementation is used among others in
the query engine of the relational databases during the execution of an inner
join operation. Thus, we have an object set with a total ordering on it:

〈Ooi,≤〉

39
 

Production Systems and Information Engineering
Volume 8 (2019), pp. 39–49

https://doi.org/10.32968/psaie.2019.003



E. Csizmás, L. Kovács

The size of O is denoted with M . A set of objects can be represented with
an ordered list:

l = o1, ..., on where oi−1 ≤ oi
A set of lists, L = 〈lj〉 can be represented with a special tree, prefix tree [1],
T , where every list l is represented with a path starting from the root element.
The prefix tree constructed from the lists on O is denoted by TO. The paths
with similar prefix part share the same segment in the tree. In the tree every
node is assigned to an element o ∈ O, except the root, which is empty node.
In the tree, every node represents an object sequence related to the nodes
along the path from the root. As some lists may be included in other lists as
sub-lists, we need a special flag in the nodes to denote the end symbol of the
lists. A given list o1, ..., on is contained in T , if there exists a path where the
i-th element of the path is assigned to oi and at the node related to on has
end-node flag set to 1. In Fig. 1, a sample prefix tree is shown which contains
the following lists: (1,2),(2,3),(3).

Figure 1. Sample prefix tree

The size of the tree T is equal to the number of nodes in the tree. The
prefix tree TO is a complete tree, if it contains all possible lists on O. The size
of the complete prefix tree for the O with M elements is 2M . This formula
can be deducted from the fact that if a new element is added to O, then a
node child node assigned to the new element must be appended to every node
of the tree. Thus in every step, the size of the tree is doubled (shown in Fig
2.).

In general, the cost of data manipulation operations depend on the size of
the data structure. Thus, the size of the prefix tree is an important factor in
cost estimation of the data manipulation algorithms. As the size of the data
tree depends on the set of input list, the total cost is also a function of the
input data. Considering the data set, there are two crucial factors in data
generation:

• number of lists

40



Cost Analysis Prefix Tree

Figure 2. Construction of complete prefix trees

• distribution of the elements in the lists.

The enumeration of tree structures is an intensively investigated topic in
the literature. Regarding the general complexity analysis of tree, we can find
many contributions [4], [5], [6]. On the other hand, there are no enumeration
studies on the prefix tree structure as a specific tree in the literature. The
goal of our contribution is to provide an initial analysis on the size complexity
of the prefix tree structures.

In our investigation, as an initial step, an independency assumption is ap-
plied, that means that the probability of the existence of element oi in the
list, is independent from the probability of any other element oj . The main
parameters of the input data generation are the followings:

• M : the number of elements in O,
• K: the number of lists in the input data set,
• pi: the probability of the element oi in the input lists,
• pO = (p1, ..., pM ) : the probability vector for O.

2. Cost Analysis of the prefix tree size

Two basic approaches are analyzed in our work. The first is based on ap-
plication of exact probabilistic formulas to determine the size of the generated
prefix trees. This method provides precise values but the formulas become
too complex when M > 2. The second method uses simulation to generate
random lists to build up prefix trees. The size of the generated prefix trees
are investigated using statistical methods. Based on the experiences, this ap-
proach is more suitable to approximate the size of the tree for larger data sets
too.

41



E. Csizmás, L. Kovács

2.1. Enumeration formula

For the case, M = 2, the analytical, exact formulas can be constructed
on a straightforward way. The formula for the tree size is built up from the
following components.

• P0 = (1− pa)(1− pb), probability that none of the two elements occurs
in the list,
• Pa = pa(1− pb), probability that only element a occurs in the list,
• Pb = (1− pa)pb, probability that only element b occurs in the list,
• Pab = pa · pb, probability that both elements a and b occur in the list.

It can be verified that

P0 + Pa + Pb + Pab = (1− pa)(1− pb) + pa(1− pb) + (1− pa)pb + papb = 1

Considering the size of the resulted prefix tree, the probabilities of the
different size values can be calculated. The probability of the size i is denoted
by Pi and the value can be calculated on the following way:

P1 = PK0

P2 =
K∑
i=1

(
K

i

)
P iaP

K−i
0 +

K∑
i=1

(
K

i

)
P ibP

K−i
0

P3 =
K∑

i=1,j=1

(
K

i

)(
K − i
j

)
P iaP

j
b P

K−i−j
0 +

K∑
i=1,j=0

(
K

i

)(
K − i
j

)
P jaP

i
abP

K−i−j
0

P4 =
K∑

i=1,j=1,l=0

(
K

i

)(
K − i
j

)(
K − i− j

l

)
P laP

i
abP

j
b P

K−i−j−l
0

The average value of the tree size is calculated with:

E[Ntree] = P1 + 2 · P2 + 3 · P3 + 4 · P4

The exact formulas were calculated in a Matlab application for different el-
ement probability values. For the sake of simplicity, both elements have the
same probability: pa = pb. The resulted size-function is shown in Figure 3.

As for an arbitrary M , the number of tags in the formula increases to 2M ,
it is not possible to use this approach for analysis of larger problems. Thus
the application of the exact enumeration formulas is very limited.

42



Cost Analysis Prefix Tree

Figure 3. The average size for different element probabilities (M=2)

2.2. Cost Analysis with Simulation

In the simulation, prefix trees are built up from random lists. The gen-
eration function to construct the random lists is based on the Monte Carlo
method and it depends on three parameters:

• M : the number of elements in O,
• K: the number of lists in the input data set,
• p: the common probability of the elements to appear in the list.

The goal of the simulation is to determine the dependency between the tree
size and the input parameters. In our implementation, the lists are stored in
a binary matrix form, where the columns correspond to the elements and the
rows denote the generated lists. The matrix element m(i, j) is equal to 1 if
the i-th list contains the j-th element, otherwise the value is equal to 0.

The size of the trees are calculated with the following algorithms:

• ordering of the input lists by the length of the list,
• eliminating the lists contained in other lists,
• tree construction from the reduced set of lists.

In the simulation, N denotes the number of performed tests. The average
of the test results is used to construct the size function. The empirical cost
function yielded by the tests for M = 2, is shown in Fig. 4.

As it is expected, the simulated cost function for larger N values is more
smoother than the functions for small N values. In the investigated parameter

43



E. Csizmás, L. Kovács

Figure 4. The experimental cost function in dependency from K. M
= 2; p = 0,3 and 0,5; N = 10; 1 000; 100 000

ranges, the simulated cost functions are very similar to the exact calculated
cost functions. The corresponding error values, calculated as the difference
between the simulated and calculated cost values, are given in Table 1.

Table 1. The error of the simulated cost function

N = 10 N = 1000 N = 100000
p = 0.3 0.6981146 0.098185 0.010077
p = 0.5 0.549177 0.064796 0.007265

For larger M and K values, as the run time of the simulation became
significantly high, only lower number of tests were executed. The parameter
range investigated in the test series are given in Table 2.

Table 2. The investigated parameter ranges in the simulations

min max step
M 5 50 5
K 200 12000 200
p 0.3 0.5 0.2

In Fig. 5 and Fig. 6, the tree size is shown in dependency of K for different
M values. It can be seen that for a higher K value, the prefix tree will be
complete and the cost remain constant. The shape of the cost function in Fig

44



Cost Analysis Prefix Tree

Figure 5. Simulated cost function for large K values

Figure 6. Simulated cost function for small K values

6 shows that the investigated parameter range is still far from the saturation
threshold.

We have tested the value of the saturation threshold in the dependency of
the M value. The result is shown in Fig. 7. Our experience is that the K

45



E. Csizmás, L. Kovács

saturation value is an exponential function of M and the increase is larger for
p = 0.3 than for p = 0.5.

Figure 7. The saturation value (K) in dependency of M, p=0,3; p= 0,5

3. Approximation of the cost function

In order to find an appropriate analytical approximation function, we have
first normalized the experimental functions. The normalization on the axis
y means that the cost value is transformed into the [0,1] interval. The same
normalization can be performed along the axis x too. With the application
of the normalization, we can transform the shape of the cost function into a
form independent from the current value of M . Thus the resulted graphs can
be used to describe the cost function for every M value. Fig. 8 and Fig. 9
show the normalized form of the cost function given with a red color.

The analysis of the normalized cost functions shows that the have a com-
mon shape which is very similar to the gamma distribution. The gamma
distribution is a continuous probability distribution with two parameters [2].
The two parameters are the shape parameter (k) and the scale parameter (θ).
The probability density function of the gamma distribution is given with the
following formula:

f(x, k, θ) =
xk−1e−

x
θ

θkΓ(k)

46



Cost Analysis Prefix Tree

where

Γ(z) =

∫ ∞
0

xz−1e−xdx

The corresponding distribution function is given with

P (k, θx) =
1

Γ(a)

∫ θx

0
zk−1e−zdz

The approximation algorithm was implemented in Matlab using the system
function gamcdf [3].

Figure 8. The normalized cost function in dependency of normal-
ized K values, M = 15-50 p = 0.5, k = 0.75; theta = 0.8

Using the regression method for (k, θ) to determine the best matching
f(x, k, θ) gamma distribution, we could achieve a very good approximation
of the experimental cost functions. In Fig 8. and Fig 9, the approximation
gamma distribution functions are given in color blue.

4. Conclusion

In the performed analysis, we have tested the size function of the prefix
tree in dependency from the size and value distribution of the input data on
an analytical and experimental way. Test results show that simulation-based
experiments provide a good approximation of the analytical cost functions.
After normalization of the experimental cost functions, we have found that

47



E. Csizmás, L. Kovács

Figure 9. The normalized cost function and the gamma approxima-
tion in dependency of normalized K values, M =8; 9; 10; p = 0.5; k
= 0.75; theta = 0.8;

Figure 10. The normalized cost function and the gamma approx-
imation in dependency of normalized K values, M = 8; 9; 10; p =
0.3; k = 0.3; theta = 12

the normalized cost functions can be efficiently approximated with a gamma
distribution. In the next phase of the research project, the goal of the analysis

48



Cost Analysis Prefix Tree

will be the development of an efficient method for calculation of the scale and
shape parameters of the best matching gamma distribution.

REFERENCES

[1] M. Hamedanian, M. Nadimi and M. Naderi: An Efficient Prefix Tree for
Incremental Frequent Pattern Mining, International Journal of Information and
Communication Technology Research, Vol 3 (No 2), 2013, pp. 49-56

[2] L. Kenneth: Numerical analysis for statisticians, Springer Science and Business
Media, 2010.

[3] MATLAB Documentation. [Online]. Available:
https://www.mathworks.com/help/stats/gamcdf.html. [date: 19-12-2016].

[4] A. Cayley : A theorem on trees, Quart. J. Maths. Vol. 23 (1889), pp. 376-378

[5] C. Chauve, S. Dulucq and O. Guibert: Enumeration of some labelled trees,
Private Communication

[6] T.C. Cheng: On computing distinguishing numbers of trees and
forests, The Electronic Journal of Combinatorics Vol. 13 (2006)
https://doi.org/10.37236/1037

49


	03_Csizmas_Edit
	1. Introduction
	2. Cost Analysis of the prefix tree size
	2.1. Enumeration formula
	2.2. Cost Analysis with Simulation

	3. Approximation of the cost function 
	4. Conclusion
	REFERENCES


