
C/C++ APPLICATIONS ON THE WEB

Martin Szabó
University of Miskolc, Hungary

Department of Information Engineering

sz.martin91@gmail.com

Károly Nehéz
University of Miskolc, Hungary

Department of Information Engineering

aitnehez@uni-miskolc.hu

[September 2017 and accepted November 2017]

Abstract. The JavaScript technology, especially in the latest five years,
has been evolving very rapidly. In the world of WWW, of course, other
technologies are also available for developers, but JavaScript is one of
the best ways to develop applications for both traditional web and the
latest mobile environments. The modern web application frameworks
unfortunately do not support direct integration of C/C++ technolo-
gies. This problem can be solved by various utility software, e.g. the
Emscripten compiler, which translates C/C++ codes into JavaScript
leveraging LLVM technology as a transitional layer. Thus C/C++ pro-
grammers are not omitted from the world of Web and mobile develop-
ment and they can reuse existing mature codebases, especially in the
field of computer graphics. This paper describes theory, practical use
and inherent potential deals of Emscripten technology. A native C++
OpenGL application will be used as a real-world example, demonstrat-
ing efficiency and flexibility of this technique. Performance evaluation
of the JavaScript code compared to the native C/C++ application will
also be presented. To promote better understanding, our source code is
also available upon request.

Keywords: C/C++, JavaScript, LLVM, Emscripten, OpenGL

1. Introduction

Evolution of mobile and web technology development more and more excludes
C/C++ programmers from the web client and mobile software market. The
reason is that users prefer thin-client applications which can be launched on

69

Production Systems and Information Engineering
Volume 8 (2019), pp. 69–87

https://doi.org/10.32968/psaie.2019.005

Martin Szabó and Károly Nehéz

mobile devices and in desktop browsers. Applications are written in JavaScript
easier to be carried over between different browsers/platforms, easy to main-
tain and can be developed faster. These advantages can reduce the cost of
development. Also, there are some different optimization techniques to in-
crease performance, and reduce resource requirement of applications at the
same time. In contrast, high-level C/C++ programming language is harder
to port between different platforms, and require a recompilation in the most
cases. But, in case of complex and resource-intensive tasks (i.e. game engine
development), it’s still worth choosing C/C++ technologies.

Based on the current studies [1] programmers prefer more C/C++, than
JavaScript. In additional, a lot of complex systems have been written in
C/C++. These applications are constantly under maintenance and upgrades,
so they are still doing their job well (so they are still able to do their job well).
So the question is, why cannot we use these great systems via web or mobile
devices? The traditional idea is that, we should rewrite source code of the
whole application. But this problem can be solved with a new approach, via
Emscripten technology.

Using Emscripten, applications written in C/C++ programming language,
can be translated to JavaScript. During compilation process, the code trans-
lated to LLVM bit code, so it can be optimized. The result will be a less
resource-intensive, but outstanding performance JavaScript-based software.
Unlike the original code, the applications have been created this way, will
be able to run on mobile devices and in browsers. So the recompiling code
automatically provides the benefits of JS technology.

This article can be divided into four parts. The first part contains de-
scription of the essential theoretical background of Emscripten framework,
including a solid theoretical description of JavaScript, and its advantages and
disadvantages will be presented. As an integral part of Emscripten, we present
the structure and the most important functions of the LLVM compiler. The
second part of the paper presents the Emscripten itself, and contain a guide
required to use the technology. The third section shows how to use the frame-
work in practice, via a simple graphical application. It includes the constraints
of the technology, and other tasks required to achieve a proper final result. The
last part describes our experiences gained through the testing of the frame-
work, and contains some benchmark data, we got from the C/C++, and the
translated JavaScript application.

70

C/C++ Applications on the Web

2. Background

A basic knowledge of C/C++ language is required to use Emscripten tech-
nology. The usage of the compiler can be problematic without understand
the code appears at the frontend of the framework (even if we have a lot of
source files (even in the case of having a lot of source files). There will be more
information about this issue in Section 4. Furthermore, the JavaScript code
generated by the Emscripten does not require additional development work, it
is necessary to briefly introduces the script language, including its advantages
and disadvantages.

JavaScript [2] is an object-oriented, prototype-based scripting language that
is mainly used for Web sites, either as an integral part of an html file or
in a separated JS file. It started to spread in the 1990s, and still widely
used as the part of the websites, with HTML, and CSS. Other programming
languages also can be run on the web, such as Java, and Flash, but in these
cases, the extensions are not integrated into the browser applications, but
must be manually installed. Furthermore these are not platform independent
tools, for example usually cannot be run on iOS devices. Because of these
issues JavaScript becomes the most widely used programming language to
create the client side of web applications. The advantages of the language
are the following. software created by JavaScript can be run on desktop,
and mobile browsers too. It runs on client side, the development is relatively
easy, quick, and does not require recompilation. Disadvantages include the
fact, that it is browser dependency and slow speed. Although it standardized,
but different engines (layout engines) can interpret it in different ways, which
leading to operational inconsistencies. Compared to C/C++ applications, it
significantly provides less performance, but with optimization procedures of
LLVM compiler (which is the part of the Emscripten technology) a majority
of the lost performance can be recovered.

Before creating the JavaScript code, Emscripten compiles the C/C++ sources
into LLVM bit code. This procedure can give a quasi-optimal code as a final
result, which is already ready to run in browsers. LLVM compiler is a very im-
portant, and useful part of Emscripten, so this paper deals with its theoretical
background as well.

We have collected and investigated other technologies designed to run a
specific programming language on the Web. For example Google Web Toolkit
[3] which translates Java to JavaScript, Pyjamas (Python → JavaScript),
SCM2JS [4] (Scheme→ JavaScript), and AFAX [5] (F#→ JavaScript) frame-
works are serve this purpose too. But, in this paper we are focusing C/C++,
and these tools are not suitable for our goals, so we will not deal with them.

71

Martin Szabó and Károly Nehéz

2.1. Low Level Virtual Machine (LLVM)

Emscripten framework uses LLVM to optimize the output of the JavaScript
code. The LLVM compiler has been designed to optimize any programming
languages in compile-time, link-time, run-time, and in idle time. A robust
open source application, that competes with GCC in terms of compilation
speed and the performance of the generated code. As a consequence, it has
been widely used in both academia and industry [7].

The code representation describes the code as an abstract RISC-like (re-
duced) instruction set, but also provides higher level information for more ef-
ficient analysis. Including type information, explicit control flow graphs, and
an explicit dataflow representations. It supports language independent in-
struction set and type systems. The instructions stored in SSA (Static Single
Assignment) form, which helps to simplify analysis of dependencies between
variables [8].

The LLVM code representation has the following novel properties [7]:

1. Low-level, language-independent type-system for implement data types
and operations from high level languages, eliminating the primitives at
all stages of optimization. The type system includes type information
used by sophisticated (but language-independent) techniques, such as
algorithms for pointer analysis, dependence analysis, and data trans-
formation. In other words: simple, language-independent type system,
that exposes the primitives generally used to implement high level pro-
gramming language features.

2. Instruction set for performing type conversions and low-level address
arithmetic without losing the type information.

3. Two, low-level exception-handling instructions for effectively implement-
ing high-level language specific exceptions with simple methods.

The LLVM compiler is source-language-independent due to low-level in-
struction set, and memory model. The technology slightly offer more than the
standard assembly languages, and the type system does not prevent to add
type information to the code. It also does not have specific runtime require-
ments [7].

Figure 1. Simplified model of LLVM

72

C/C++ Applications on the Web

The simplified usage of the compiler framework can be described as follows:
The source code at the frontend (written in any programming language) trans-
lated to machine code. Then different optimization methods (depends on the
user choice) optimize the source. Finally the result will be runnable code at
the backend, written in an appropriate programming language for the target
architecture (Figure 1).

Figure 2. Detailed model of LLVM

The LLVM-based compiler allows to compile the high level programming
language resources to LLVM IR language (Figure 2). The IR (Intermediate
Representation) is assembly-like low-level programming language that allows
optimization, code compilation, and static analysis. The resulting code runs
on a variety of systems, including for example the X86/64, and the ARM
architectures. The technology allows static translation (as usual in the case
of the GCC), but also supports dynamic JIT (Just-In-Time) translation. The
project created mainly for C/C++ front-end, but has the ability to compile
any other programming language too, for example Haskell, Scheme, Scala,
Objective C etc. [6]

Figure 3. LLVM LTO

73

Martin Szabó and Károly Nehéz

Most of the modern compiler environments support optimization in linking
time (LTO)(Figure 3). The disadvantage of LTO is that, it can deal with only
one unit simultaneously (like a C file, with its headers) and cannot optimize a
larger context. LLVM compilers, (like Clang) support this type of optimization
with the –flto, and –o4 commands. These settings indicate to the compiler,
that it needs to produce .o file from the LLVM byte code instead of a native
object file, and that, the code generation have to be in the linking phase, as
shown in Figure 3. The linker detects, that the generated .o files are not native
object files, but contain LLVM byte code, therefor it reads every byte code
file into the memory, and after linking executes optimization processes on the
entire code. As the optimizer unit oversees the entire structure now, it can
perform its tasks more effectively [9].

Figure 4. LLVM ITO

Installation time optimization (ITO) can take into account special features
of the target architecture as well (eg. MMX, SSE, AVX). The advantage of
this method is that, the optimizer unit will recognize the device specifications
in all cases, so the architectural benefits are exploitable(Figure 4).

3. Emscripten Conception

Applications, written in C / C++ language are generally ”make life easier
for the computer” so it can achieve higher performance. In contrast, applica-
tions written in JavaScript make life easier for programmers, but some loss in
performance occurs. If high performance is essential for a given kind of soft-
ware (for example, video-game engines, distributed systems etc.) the C/C++
language is inevitable. Of course, it is not expected to make the same applica-
tion for multiple platforms, by the reason of the short deadlines, generated by
rapidly developing technology. This problem can be solved by the Emscripten
technology that converts the C/C++ source code for the web and/or the mo-
bile version of the same product, with minimal modification (adds Emscripten
specific methods etc., see Chapter 4). Build-in LLVM compiler also eliminates

74

C/C++ Applications on the Web

the above-mentioned performance loss using various optimization methods.
The behavior of the resulting software is same as the original application, but
its availability (due to the web environment) and its performance (due to the
optimization) is greater (Figure 5).

Figure 5. Emscripten compiling conception [11]

Emscripten framework is written in JavaScript language, and it can be
downloaded from the following link under MIT open source license:
http://www.emscripen.org. The compiler is designed to fix parts of the origi-
nal high-level structure of the code, that were lost during the compilation to
low level LLVM byte code, when creating the JavaScript code. In the follow-
ing we describe the LLVM – JavaScript compilation process, and present the
Relooper algorithm, which is able to create high level loop structure from the
low level branching data.

There are two available methods to use this technology: the first option
is the pre-translation (static) mode, the second is the runtime translation
(dynamic) mode. Then we translate the resulting code to JavaScript with
the help of Emscripten. The latter option is useful when the run time of the
language is written in a programming language, that has, but the language
itself has no frontend. For example, currently Python does not have a frontend,
but it is possible to translate CPython (Python standard C implementation)
to JavaScript, and run Python code. Frontends for various languages exist,
including C/C++, and also various new and emerging languages (e.g., Rust)
[11].

3.1. Optimization process

Many (mostly big, but sometimes smaller) application’s code, during the soft-
ware development processes become too complex, so the errors almost in-
evitable, and the final performance can be far below what is expected. The
most common problem is that the developers do not invest enough emphasis on
optimization, and do not clarify various dependencies like dynamic libraries,
etc., because these limitations have not been appeared on the platform, which
the application is designed. If we would like to run the application on another
hardware, it might not be able to ensure proper performance, and/or it will
be difficult to port to other platform.

75

Martin Szabó and Károly Nehéz

Emscripten itself does not provide optimization automatically without the
appropriate command line settings. With default settings, the framework
generates the JavaScript code without any optimization (i.e. it contains more
than necessary variable declaration). For example it stores every variable in
an array, and controls the flow of execution using a switch-in-a-loop, instead
of normal JavaScript loops and ifs. Before compiling the C/C++ code to
JavaScript, the Emscripten technology optimize it with the help of the built-in
LLVM, furthermore the Closure Compiler give some more optimization for the
.js code afterwards. These procedures remove unneeded variables, eliminate
dead code and inline functions [11]. There are two important optimization
methods, as follows:

1. Variable nativization: converts every variable that are on the stack
to native JavaScript variables. The Emscripten tries to implement this
process to the maximum number of variables during the optimization
processes. Except those variables, which were used outside of a function,
or were passed to another method.

2. Relooping: recreate the high level loop and of structures from the low
level LLVM assembly code.

3.2. Relooper algorithm

The Relooper is the most complex module of Emscripten. It generates high-
level JavaScript flow structures (loops, ifs), Emscripten code blocks from set
of labeled fragments of code [11]. The JS engines are designed to run the codes
as fast as possible, so the structure of the code have to be manufactured to
comply with this restriction. To present the steps of the Relooper algorithm
we have to define the three different blocks of Emscripten. These are shown
below [11]:

1. Simple: contains one internal label, and a reference to the Next block,
which the internal label branches to.

2. Loop: it represents a basic loop, and contains two internal sub-blocks
(the Inner block, that appears inside the loop, and the Next block, that
appear outside the loop).

3. Multiple: it represents branches joining each other, and also contains
two internal sub-block, the Handled, and the Next blocks.

The steps of the Relooper algorithm are as follows [11]:

1. Receive a set of labels and entry point. The goal is to make a block
from the labels.

2. Tracking one of the possible execution path, it calculates for every label
which other labels it can reach.

76

C/C++ Applications on the Web

3. If there is only one entry point, and cannot return back, then creates a
Simple block, where the entry point is the internal label, and the Next
block contain every other label. The entry points of the Next block are
those points, which the internal label can branch.

4. If it can return all of the entry points, creates a Loop block, whose Inner
block contains all of the labels, which can reach one of the entry points,
and whose Next block contains every other labels.

5. If there are more than one entry point, then it creates a Multiple block.
Find all labels that cannot be reached by other entry points for all entry
point.

6. If it cannot create a Multiple block, then it prepares a Loop block as
described above.

4. How to Use Emscripten

The installer available at the following link: http://www.emscripten.org.
A lot of tutorials are available on the same link too. Source codes can be
found in the Emscripten’s sub-folder after the installation. The framework is
available on Windows, Linux, and iOS as a command-line environment. The
official website provides detailed descriptions about the technology, but in this
paper we present a more complex example via a C/C++ graphical application.
The manual does not complete, is shows only the functions we utilized. The
demo application is available at the following link: http://goo.gl/YmV2EA.
(Figure 6)shows the the demo application.

Figure 6. Demo application

77

Martin Szabó and Károly Nehéz

4.1. Coding process

Usually if the source code does not contain graphical elements, then it does not
require interventions before use. However, most of the code of graphical appli-
cations have to be prepared for different environments (i.e. if the code contains
infinite loop [gameloop]). This is the job of application developers. The code
transformation process will work, but the JavaScript code will not run properly
in the browsers. The JavaScript code can run only in one thread, so these so-
lutions cannot be used without modifying the code. To solve this program the
developers of the Emscripten technology creates the emscripten set main loop
(function, int fps, int simulate infinite loop) method. The function parameter
indicates the primary method have to be done by while loop; fps means frames
per second (0: unlimited); and the last parameter represents the infinite loop
simulation (0: run only once, 1: infinite loop). In our application we used this
method as follows:

#ifdef EMSCRIPTEN

#include <emscripten.h>

#endif

void loop(){

/* draw models, translations, rotations */

/* draw particles */

}

int main(void){

/* initializing GLEW */

/* Creating matrices, textures, particle system, models (coordinates, colors)
*/

#ifdef EMSCRIPTEN

emscripten set main loop(loop, 0, 1);

#else

do{
loop();

}
while(glfwGetKey(window, GLFW KEY ESCAPE) != GLFW PRESS

&&

78

C/C++ Applications on the Web

glfwWindowShouldClose(window) == 0);

#endif

}
In order to use the Emscripten specific methods in our code, we have to

include emscripten.h header file. With the use of #ifdef , we can compile the
source code and run the application as a C/C++ and Emscripten versions too
without performing any changes in the code. So, if we would like to run it as a
C/C++ application, Emscripten specific parts will not compile, on the other
hand, if we would like to transform the source code to JavaScript, then these
parts will compile too.

Developers of the Emscripen offer the SDL window manager library to use.
In contrast we used GLFW3, and our experiences show that this library is
fully compatible with the Emscripten as well. However, the necessary header
files are not included in the framework. The solution to this problem is simple,
we only need to copy the appropriate files into the Emscipten’s include folder.
But the SDL tools do not require any action from the developers.

To move and to rotate three-dimensional shapes, it is required to perform
matrix transform operations. The GLM libraries contain the necessary meth-
ods for this. This header files are not part of the Emscripten framework, but
easy to install them, as described above.

The application has been made in OpenGL 3.3 environment. To draw the
models, we originally used GLSL 3.3 (OpenGL Shading Language) language,
which is a high-level language based on the C programming language syntax.
Most of the sample programs we found on the internet use this version as
well. However, we realized that the Emscripten only supports the WebGL
compatible GLSL ES 1.0, and 2.0 shader languages, and GLSL 3.3 code cannot
be automatically converted to one of these. We can solve this problem with
manual code modifications. The following table shows the differences between
the two mentioned shader language implementation through the vertex and
the fragment shader we used in our application.

79

Martin Szabó and Károly Nehéz

Table 1: Differences between the vertex shaders

GLSL 3.3 GLSL ES 1.0
#version 330 core

layout(location = 0) in vec3 attribute vec3

vertexPosition modelspace; vertexPosition modelspace;

layout(location = 1) in vec3 attribute vec3 vertexColor;

vertexColor;

out vec3 fragmentColor; varying vec3 fragmentColor;

uniform mat4 MVP; uniform mat4 MVP;

void main() { void main() {
gl Position = MVP * gl Position = MVP *

vec4(vertexPosition modelspace, 1); vec4(vertexPosition modelspace, 1);

fragmentColor = vertexColor; fragmentColor = vertexColor;

} }

Table 2: Differences between the fragment shader

GLSL 3.3 GLSL ES 1.0
#version 330 core precision mediump float;

in vec3 fragmentColor; varying vec3 fragmentColor;

out vec3 color; /* varying vec3 color; */

void main() { void main() {
color = fragmentColor; gl FragColor =

vec4(fragmentColor, 1.0);

} }

Table 3: Summary of the differences between the two versions

GLSL 3.3 GLSL ES 1.0
vertex shader fragment

shader
vertex shader fragment

shader
#version xxx
core

#version xxx
core

– precision medi-
ump float

layout(location
= x) in

in attribute varying

out out varying varying
out variable’s
name

gl FragColor

texture texture2D

80

C/C++ Applications on the Web

There were no further issues has been reported during the translation of
the sample application. However, we tried to compile a complex video-game
engine, but a new issue appeared. The software contained some old, OpenGL
1.x specific methods that Emscripten was unable to translate correctly. This
problem should be solved by the –s LEGACY GL EMULATION = 1 argu-
ment, but based on our experiences, some functions are not useable yet. Note
that: the framework could not translate the following OpenGL methods:

1. glListBase

2. gluBuild2DMipmaps

3. glDeleteList

4. glDrawPixels

5. glLightf

6. glVertex2D

7. glGenLists

8. glEndList

9. glCallLists

10. glNewList

4.2. Compiling process

The compiler framework can only work in a command-line environment. For
large-scale projects, it is subservient to create a Makefile, because of the nu-
merous source files and other auxiliary files, like models, shader, and textures.
This prevents (using different technologies, changing name, or number of the
source files etc.) you from typing the – usually long – commands into the
command prompt again.

81

Martin Szabó and Károly Nehéz

Figure 7. Detailed model of Emscripten

The compiler input is the C/C++ files and the output depends on the
extensions specified (.js, .html). It can be .bc (or .o), .js, and .html. The first
represents pure LLVM byte code, the second represents JS code, and the last
one represents JS code embedded into html template. Tracking and setup the
runtime parameters are easier using the html template. The code obtained in
this manner will be immediately executable in desktop and mobile browsers
(Figure 7). The LLVM byte code cannot run on its own.

The command which is required to compile the application is divided into
five parts. The first part is the emcc (in case of C source), or the em++ (in
case of C++ source) command. This is followed by the list of source files, then
the switches required for the used technologies. If other files are needed to run
the application properly (models, textures, shader etc.) Emscripten has to
preload these, so we need to mark them as well. In this case, a .data file will
be generated (besides .js and .html files), which will contain these information.
The last part of the command will indicate the output file.

emcc main.c shader.c –s USE SDL = 2 –preload-file texture.jpg –o index.html

Switches and other necessary commands we used in our application are shown
in the following table with explanation:

82

C/C++ Applications on the Web

Table 4: Command line switches for the different technologies [10]

-s USE SDL = 2 allow SDL2
-s USE SDL IMAGE = 2 allow SDL image
-s USE GLFW = 3 allow GLFW3
-s FULL ES2 = 1 allow GLSL ES2
-s LEGACY GL EMULATION=1force to handle OpenGL 1.x

methods
-s DEMANGLE SUPPORT = 1 convert class and function

names
-std=c++11 handle c++11 specific opportu-

nities (i.e. lambda) kezelése
–preload-file dir/fájl neve load files (without file name the

whole directory will be loaded)

Each switch performs different operations depending on what is required.
(Table 5) We analyzed the results given by all the available switches. Our
experiences will be summarized later.

83

Martin Szabó and Károly Nehéz

Table 5: Switches for optimization [10]

-O0 No optimization
-O1 Simple optimization. Fast, but not really in-

crease the performance. Eliminates run-time
exception handling assertions. Relooping.

-O2 Same as the –O1 switch, but extended with
JS optimization. It is useful in preparing the
final version of the application. The trans-
lation is slow, however, this method provides
the smallest and the fastest JS code.

-O3 Same as the –O2 switch, but provides more
JS code optimization.

-Os Same as the –O2 switch, but provides ,,ex-
tra” optimization, that reduces the size of the
code, and increases the speed of the applica-
tion. Only for byte code optimization.

-Oz Same as the –Os switch, but takes further
code size reduction. Only for byte code op-
timization.

-s DISABLE EXCEPTION Enable exception handling
CATCHING = 0

-s AGGRESSIVE VARIABLE Eliminate unnecessary variables
ELIMINATION = 1

-s ALLOW MEMORY Unlimited memory usage
GROWTH = 1

As explained above, it is always useful to create a makefile for our projects
– especially if it contains a large number of files – to facilitate the translation
process, and the practical testing. With this method it is enough editing the
makefile, instead of typing all of the commands again and again. Of course,
the resulting makefile is not compatible with the Emscripten system, so we
need to perform some changes. The converted, Emscripten compatible make-
file contains the following code:Emscripten makefileW9067CC = emcc
SOURCES := $(wildcard *.cpp)
LDFLAGS = -O2 –llvm-opts 2
OUTPUT = glcore.html
F = –preload-file
all: $(SOURCES) $(OUTPUT)
$(OUTPUT): $(SOURCES)
$(CC) $(SOURCES) –bind -s USE GLFW = 3 -s FULL ES3 = 1 -std = c++11

84

C/C++ Applications on the Web

$(F) ColorFragmentShader.fragmentshader $(F) TransformVertexShader.vertexshader
$(F) TextVertexShader.fragmentshader $(F) TextVertexShader.vertexshader
$(F) Particle.vertexshader $(F) Particle.fragmentshader $(F) particle.DDS $(F)
font.DDS $(LDFLAGS) -o $(OUTPUT)
clean:
rm $(OUTPUT)
rm $(OUTPUT).mapW9067

5. Performance Analysis

Based on our experiences there are some cases, when the use of this technology
is simple, and the C/C++ source code does not require any code modifica-
tion. However, there are – mainly – graphical applications, where we have to
modify the source code of the original C/C++ application. Fortunately, these
changes are quite simple, only infinite loops ([gameloops]) should be changed
as described above.

Another problem is that, although a lot of files needed to develop a graphical
software are built into the compiler, the service is not complete, some of the
methods we have to use, are not part of the package. Mostly, these are the
functions used in the older OpenGL 1.1 technology. The personal solution
to this problem is not an easy task, it requires programming work within
the Emscripten framework. According to our research, the most appropriate
solution is the Regal graphics library package [14]. Furthermore there are some
other tools, which are unavoidable in many cases, but the framework does not
include them. For example the GLM library package for matrix operations, or
the GLFW3 windows manager technology (instead of SDL/SDL2). However,
in these cases, we only need to copy the necessary header files into to include
folder of the Emscripten, as described above.

The files (models etc.), used by the framework, need to be preloaded, and
this must be done by the developer. It is not a problem, but it may cause
a minor inconvenience. However, there are many other suitable solutions, for
example setting the root folder, wrapping the files etc.

We compiled and launched our graphical application with every possible op-
timization parameter. Our benchmark analysis includes CPU usage, memory
usage, rendering speed (FPS), size of the resulting code, and speed of the trans-
lation process. The study was extended to the original native C/C++ appli-
cation as well. The measurements were made with 1,500 new particles/frame.
The results are summarized in the following table.

85

Martin Szabó and Károly Nehéz

Table 6: Benchmarks

opti-
mization
level

CPU
usage
[%]

memory
usage
[MB]

speed
[FPS]

size of
the JS
code
[KB]

trans-
lation
speed
[sec]

original
C/C++

∼ 23.7 ∼ 84.9 ∼ 53 429 0.33

O0 (none) ∼ 12.1 ∼ 35 ∼ 115 2686 5.07
O1 (js) ∼ 9.4 ∼ 31 ∼ 142 2169 4.81
O2 (js) ∼ 8.2 ∼ 26 ∼ 162 581 6.62
O3 (js) ∼ 7.7 ∼ 19 ∼ 162 553 6.79
Os (LLVM) ∼ 8.1 ∼ 27 ∼ 162 546 6.80
Oz (LLVM) ∼ 8.0 ∼ 28 ∼ 160 549 6.83

6. Summary

With the help of the Emscripten technology, application codes written in al-
most any high level languages (such as C/C++, Python etc.) can be trans-
formed into JavaScript code, thus the original applications can be used on the
web, or on even mobile devices. This technology can optimize source codes
on many ways during the translation process. This feature is available due to
the LLVM (Low Level Virtual Machine) compiler framework. Emscripten is
accessible through a command-line environment and if the user would like to
use various technologies (SDL, GLFW, OpenGL 1.x methods etc.), load files
(models, textures, fonts etc.) or select optimization level and several different
other options are available.

A C/C++ graphical application has been implemented for the purpose of
doing benchmark tests. The JS code can run in a browser, in WebGL envi-
ronment. The required HTML file is created by the Emscripten too. We used
OpenGL 3.3, GLSL, GLFW3, and GLM libraries for the graphical visualiza-
tion. Our measurements 2include CPU utilization, and memory usage, FPS
(frames per second) values, size of the codes and translation speed. The tests
were performed with all the available optimization techniques. The source
code of sample application is available here: http://goo.gl/YmV2EA.

This paper contains the theoretical foundations for the technology acquisi-
tion, including JavaScript, LLVM and Emscripten. We have presented practi-
cal usage of the workspace and our experiences through our sample application.

86

C/C++ Applications on the Web

Acknowledgements

The described article was carried out as part of the EFOP-3.6.1-16-2016-00011
Younger and Renewing University Innovative Knowledge City institutional
development of the University of Miskolc aiming at intelligent specialisation
project implemented in the framework of the Szechenyi 2020 program. The
realization of this project is supported by the European Union, co-financed by
the European Social Fund.

REFERENCES

[1] TIOBE Index for February 2016,
http://www.tiobe.com/tiobe index?page=index

[2] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, 2006

[3] C. Prabhakar. Google Web Toolkit: GWT Java Ajax Programming. Packt
Publishing, 2007

[4] F. Loitsch and M. Serrano. Hop Client-Side Compilation. InTrends in Func-
tional Programming, SetonHall University, Intellect Bristol, 2008

[5] T. Petek and D. Syme. AFAX: Rich client/server web applications in F#.
Draft. Retrieved April 2011

[6] http://www.llvm.org

[7] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation, 2004

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form and the control
dependence graph. October 1991

[9] Chris Lattner. LLVM, 2004.

[10] Official homepage of Emscripten: http://www.emscripten.org

[11] Alon Zakai. Emscripten: An LLVM-toJava-script Compiler, 2013

[12] Joel Galenson, Cindy Rubio-González, Sarah Chasins, Liang Gong.
Research.js: Evaluating Research Tool Usability on he Web, University of Cali-
fornia, Berkeley, 2014

[13] Malek Musleh, Vijay S. Pai. Architectural Characterization of Client-side
JavaScript Workloads & Analysis of Software Optimizations, Purdue University,
2015

[14] Source code of Regal tool: https://github.com/p3/regal

87

	05_Szabo_Martin

