PRODUCTION SYSTEMS AND INFORMATION ENGINEERING

Volume 7 (2015), pp. 43-53 13

UTILIZING APACHE HADOOP
IN CLIQUE DETECTION METHODS

LAszLO KovAcs
Jozsef Hatvany Doctoral School for Computer Science and Engineering
University of Miskolc, Hungary
Department of Information Engineering
kovacs@iit.uni-miskolc.hu

GABOR SZABO
Jozsef Hatvany Doctoral School for Computer Science and Engineering
University of Miskolc, Hungary
Department of Information Engineering
szgabsz910gmail.com

[Received August 2015 and accepted November 2015]

Abstract. There are many areas in information technology and mathe-
matics where we have to process large graphs, for example data mining
based on social networks, route problems, etc. Many of these areas re-
quire us to explore the connections among nodes and find all the maximal
cliques in the graphs, i.e. all the node sets whose members are mutu-
ally connected with each other. One possible and widely used clique
detection method is the so-called Bron-Kerbosch algorithm. However,
this technique alone might be too slow for big graphs, thus porting the
method into a massively parallel system can reduce the overall runtime.
This paper introduces some possibilities and starting points in utilizing
the open source Apache Hadoop framework that can help in using the
resources of multiple computers. The so-called MapReduce architecture
makes it possible to divide and conquer the big task into smaller chunks
and eventually solve the problem faster than the equivalent sequential
methods.

Keywords: graph algorithms, clique detection, mapreduce architecture,
Apache Hadoop, parallel systems
1. Applications of Clique Detection

In the era of Internet of Things or IoT [1] for short, sensors are creating
unprecedented amount of new data continuously. The measured values can

44 L. KovAcs AND G. SzABO

often be structured into hierarchies or networks. These graphs need to be pro-
cessed quickly to extract the information out of them, as most of the values
are useless in themselves, we need to clean and interpret them, which would
be very difficult, often impossible without proper automatization.

However, IoT is only one area that we can apply graph algorithms. A more
popular territory of Information Technology where we can work with huge
graphs is the databases and services of different social media sites like Face-
book, Google+ or Twitter just to mention a few. These sites are excellent ex-
amples of world-wide distributed databases that provide almost uninterrupted
services 24/7 all around the globe. Facebook Graph API for instance helps us
query different parts of their graph structure that contains not only people and
their properties, but also places, locations and all the connections among these
graph nodes. One of the more popular widely-known area of social network
analysis [2] is answering the question who knows who, where we can also apply
clique detection if we want to find those people who mutually know each other.

A classical mathematical problem, the symmetric travelling salesman prob-
lem can also be solved with the help of clique trees [3] which are optimal data
structures for storing cliques of a graph. Although this solution requires more
advanced mathematical theory as well, clique detection and clique tree build-
ing introduces a new method for this well-known problem.

If we want to search for application areas other than IT, we can find many-
many methods and models in different disciplines like biochemistry [4]. So we
can see in the literature that clique detection is part of many scientific studies,
and thus solving it well and quickly is usually crucial. There are, of course,
many models that try to achieve the same goal optimally.

One model that we can use deals with neighborhood relationships. The al-
gorithm presented in [5] tries to solve the clique detection problem in the least
iteration steps, analyzing the adjacency of the input graph. A more modern
approach is given in [6] where genetic programming is used to solve the same
problem. As we can expect, genetic programming or any other artificial intel-
ligence method can be utilized in clique detection algorithms, but these tools
are often blind or mostly-blind due to the fact that not the specific problem
is solved, but the problem is transformed to the domain of the AI model.

One of the classical models is the so-called Bron-Kerbosch algorithm that
solves the clique detection problem with classical mathematical tools. This

UTILIZING APACHE HADOOP IN CLIQUE DETECTION METHODS 45

method was first introduced in [7] and since its first appearance in 1972, many
other Bron-Kerbosch variations have appeared that tried to amend the origi-
nal ancestor in different areas or subproblems.

In this paper the original Bron-Kerbosch algorithm will be used to demon-
strate how to apply the old concepts in the fairly new area of MapReduce
architecture and Apache Hadoop in order to process huge graphs in parallel.

2. The Bron-Kerbosch Algorithm

Let G = (V, E) be an undirected graph of v € V nodes and e = (v;,v;) € F
edges.

Definition 1 (Clique). C'(G) is a clique of n nodes if
C(G)={vieV|1<i< n A Vv, v € C(G): (’Uj,vk) € E}.

Definition 2 (Maximal clique). C(G) is a mazimal clique if A0y (G) for
which C (G) C Oy (G) is true.

The Bron-Kerbosch clique detection algorithm returns all the maximal
cliques for the given graph, effectively returning a set of node sets.

The Bron-Kerbosch method is a recursive algorithm that requires three sets
as its input:

e P: the set of nodes that have not been processed yet.

e X: the set of nodes that are not part of the currently investigated clique.

e RR: the set of nodes that are all members of the currently investigated
clique.

The first step of the algorithm is BronKerbosch (V (G),{},{}), thus pro-
viding the whole graph as the set of yet-to-be-processed nodes.

After every recursive call we check if the current clique is a maximal clique,
and if so, we return it. Otherwise we process every member of P and call our-
selves recursively, slightly modifying the input sets according to the neighbors
of the currently processed node.

Let N (v) be the neighbors of an arbitrary node v € V' (G). With these no-
tations, a simple pseudocode of the Bron-Kerbosch method looks like listing 1.

46 L. KovAcs AND G. SzABO

Listing 1. The Bron-Kerbosch algorithm

BronKerbosch (P, X, R):
if length(P) = length(X) = 0:
yield R

for v in P:
P2 = intersect (P, N(v))
X2 = intersect (X, N(v))
R2 = union (R, {v})
BronKerbosch (P2, X2, R2)
P=P\ {v}
X = union(X, {v})

As noted above, there are multiple variations on the Bron-Kerbosch algo-
rithm that try to mend it in different ways. Since the method is recursive, by
eliminating some of the recursive calls we can make the algorithm faster.

Another way of speeding up the algorithm in case of large graphs is applying
parallel programming. In the next sections some of the existing approaches
are introduced, then some thoughts on utilizing Apache Hadoop in clique de-
tection using the original Bron-Kerbosch algorithm.

3. Parallel Programming Approaches

In the history of computer science multiple different approaches have come
to life in the need of executing code in parallel. The three most popular areas
of them nowadays are native threading, GPGPU and distributed systems.

3.1. Native Threading

One of the first methods for parallel execution that everybody considers
is native threading. All the currently used desktop operating systems and
modern universal programming languages provide a way to fire up a separate
thread and load some of the work to that one. Classical example is the mighty
POSIX threading [8], but recently C++11 got its own threading types as
well, moreover modern languages like Java and C# provide higher level APIs
to work with threads like Java’s Fork/Join framework and parallel stream API.

UTILIZING APACHE HADOOP IN CLIQUE DETECTION METHODS 47

However, there are some commonly known drawbacks of using native thread-
ing: first of all, the number of parallel threads cannot be higher than the num-
ber of logical CPU cores in our system. That’s why we need to take care of this
fact, because starting more threads can actually slow down our application if
we’re not cautious. Another issue is that the number of CPU cores is rather
low even in the more modern computers, so any threads started above this
number will be executed in the old sequential order by the operating system.

3.2. GPGPU

To solve the second issue of native threading, we can utilize graphical pro-
cessors in our computers to solve general problems. This is called GPGPU
[9] which can be used in general purpose applications but is currently applied
more widely in computer graphics and games.

One problem with GPGPU is that there are two major uncompatible ap-
proaches as well: CUDA [10] which is developed by NVidia and provides a
higher level interface to work with the GPU, and OpenCL [11] which is slightly
lower level, but platform independent, meaning that it works on both NVidia
and AMD graphics cards.

However, we must make sure that the integration of GPGPU in our appli-
cation is well suited for these APIs, because implementing some algorithms
directly on the CPU and some of them on the GPU won’t achieve the expected
results, as copying data back and forth between the two memory spaces causes
a lot of overhead.

3.3. Distributed Systems

The most widely used approach for parallel programming in data mining al-
gorithms — such as our clique detection sample — is using distributed systems,
where the parallelism doesn’t occur inside a computer, but instead across mul-
tiple computers.

With this approach, we eliminate the current hardware limits and build a
virtual supercomputer that contains the combined power of the member ma-
chines. Of course the delay and overhead cannot be eliminated, but this is
not the goal with such systems. The purpose of distribution is to build an
elastic and scalable parallel network so that we can add or remove computers

48 L. KovAcs AND G. SzABO

anytime we want.

Although distributed systems have their own history and subcategories, we
only deal with the MapReduce architecture and Apache Hadoop in this paper.

4. Apache Hadoop

The main goal of MapReduce [12] and Apache Hadoop [13] is to split the in-
put data to multiple nodes and process them locally. Therefore the distributed
system contains mutliple mapper and reducer tasks that can be located on dif-
ferent machines and get input from the core framework.

A mapper task’s goal is to produce key-value pairs, grouping the input into
multiple subcategories. Each key gets processed by the same reducer task that
tries to return an aggregated return value for that key. Data flows and data
persistence is controlled by Hadoop that uses the distributed Hadoop File Sys-
tem, or shortly HDFS, that is an open source variant of GFS (see e.g. [14]).
HDEF'S is responsible not only for distributing data to the nodes, but also per-
sisting each chunk on multiple nodes to defend against node failures and data
loss. Figure 1 illustrates the logical components and layers of Apache Hadoop
1 and HDFS. Apache Hadoop 2 is slightly different after the introduction of
the Yarn framework, but the core concepts have remained the same, only the
configuration and flexibility have been improved.

As we can see, Hadoop works in a master-slave fashion where a core com-
ponent on master controls the slave components. Of course the complexity
of the distributed nature and the necessary redundancy is not visible in the
rather simplified figure.

5. Using MapReduce to Solve the Classical Bron-Kerbosch
Algorithm

When porting a classical algorithm like the Bron-Kerbosch method to the
MapReduce architecture, we must solve the following issues:

1. How to split the input data among the nodes?
2. How to test our approach without much overhead?

The next two subsections will answer the above two questions.

UTILIZING APACHE HADOOP IN CLIQUE DETECTION METHODS 49

Master Slave 1 Slave 2

/ /
|
MapReduce

HDFS

I

Figure 1. Architecture of Apache Hadoop 1

5.1. Splitting the Input Among the Nodes

When we work directly with Apache Hadoop, we must implement different
interfaces that will be called by the framework during execution. These main
interfaces are:

o WritableComparable: all domain data model classes must implement
this interface if they need to be copied among the nodes.

e Mapper: this class must be extended by our custom mapper.

e Reducer: this class must be extended by our custom reducer.

Every mapper and reducer has four generic type arguments as well: the type
of received keys, the type of received values, the type of produced keys and
the type of produced values. We have chosen a very intuitive type argument
subdivision, that can be seen in table 1.

Table 1. Generic Type Arguments

Input Output
key | value | key | value
Mappers | Null | Graph | Integer | Clique
Reducers | Integer | Clique | Null | Clique

50 L. KovAcs AND G. SzABO

The reason behind this is that the mappers will receive only a graph, it
doesn’t need to have a key at all. After processing the input graph, they will
produce key-value pairs consisting of the hashcode of the resulting clique and
the clique itself. The reducer will then receive a clique hash code and the
list of every occurrence of the same clique. Since these objects will be equal,
the only logic in the reducer is that it returns the first occurrence without a key.

Only one question remains: how to split the big input graph into smaller
chunks? Our method was to iterate over the nodes of the graph and extract
a smaller graph consisting of the selected node and all of its neighbors. This
way we got as many small graphs as there are nodes in the big graph. It’s
easy to see that if such a small graph contains a maximal clique, it will be a
maximal clique in the original graph, too.

Of course there are other approaches for divide and conquer in this exam-
ple as well. For instance, we could pass the whole graph to every mapper and
they would select the appropriate cliques by node index. However, in case of
big data this method proved to be slower because the initialization of such
distributed systems tend to be slower, since the whole graph has to be copied
to every single mapper node, and the mappers must wait until every copy is
ready locally.

5.2. Test Environment for Testing Hadoop Based Solutions

When testing a distributed system, usually we have to differentiate a devel-
opment and a production mode, as maintaining multiple machines for testing
purposes is not very remunerative. In our case we had three possibilities be-
side using a physical distributed system.

The first, and probably the most sophisticated method — that can also be
used for production systems — is using a 3rd party cloud service. There are
many different providers like Microsoft, Amazon, Oracle, etc. who provide
easy-to-use, configurable and scalable solutions. We can pay for any number
of virtual machines that we can maintain and use as we wish. However, proof
of concepts tend to be more like experimentations that usually take longer
time than the available trial of these systems.

Another cheaper method is using local virtual machines. VirtualBox is a
free tool that can help us in maintaining arbitrary Linux boxes that we can

UTILIZING APACHE HADOOP IN CLIQUE DETECTION METHODS 51

use for our test distributed system. Usually one physical machine with enough
CPU and memory resources can execute even three or four virtual machines
that are more than enough for testing purposes. However, writing automated
scripts for VirtualBox is not a very easy task, while maintaining them by hand
is a bit error-prone.

A perfect match for our purpose is a relatively new tool called Docker,
that also helps us to maintain virtual Linux boxes, however the method of
virtualization is faster and more configurable. Moreover, Docker provides
a way to write automated scripts that can download, initialize, install and
configure systems. Our script uses two custom virtual Debian Linux containers
and consists of the following steps:

1. It downloads the base Debian Linux container.

2. It installs all the required software for the machine like Java, Maven,
Hadoop, ssh, etc.

3. It copies the required Hadoop configuration files to the appropriate
folders based on external XML templates.

4. It builds the test application with Maven.

5. It executes the test application and shuts down the machines.

To keep DRY (don’t repeat yourself) principles, two custom Linux Docker
containers were used: the first one inherits from the base Debian container
and configures a base Hadoop slave machine, while the other one inherits the
first one and adds support for Hadoop master nodes. This way the installation
steps of Java, Maven, Hadoop, etc. are only stored once.

6. Summary

Hadoop provides an excellent way to make classical algorithms run faster
by making them parallel. It provides a way to run parts of the algorithm on
different computers, thus eliminating the limits of a single machine. The only
thing we must be prepared for, is how we want to divide and conquer the
input data. One classical graph algorithm is the Bron-Kerbosch method that
returns all the maximal cliques of a graph. The original algorithm is sequen-
tial, so we decided to port it to Hadoop by splitting the graph by its nodes.
The mappers receive a subgraph as input and return key-value pairs of the
hashcode of the found cliques and the maximal cliques themselves. After that
the reducers return the first occurrence of the mapper outputs because every
reducer receives all the mapper output with the same key (hashcode). To test
our proof of concept, we used randomly generated input graphs and Docker as

52

L. KovAcs AND G. SzABO

the virtualization technology because of its scalable and configurable nature.
The next step will be to use real physical machines bound in a real cluster
and real-life input data, so that we can properly test not just the validity, but
the performance of this algorithm compared to the original sequential method.

Acknowledgements

The presented research work was partially supported by the grant TAMOP-
4.2.2.B-15/1/KONV-2015-0003.

[1]

[13]

REFERENCES

DACosTA, FRANCIS: Rethinking the Internet of Things: a scalable approach to
connecting everything, 2013, Apress

ScoTT, JOHN: Social network analysis, 2012, Sage

GROTSCHEL, MARTIN AND PULLEYBLANK, WR: Cligue tree inequalities and the
symmetric travelling salesman problem, Mathematics of operations research, 11,
No 4, 1986, pp. 537-569

BUTENKO, SERGIY AND WILHELM, WILBERT E: Clique-detection models in
computational biochemistry and genomics, European Journal of Operational Re-
search, 173, No 1, 2006, pp. 1-17

OsTEEN, ROBERT E AND Tou, JuLius T: A clique-detection algorithm based
on neighborhoods in graphs, International Journal of Computer & Information
Sciences, Vol 2, No 4, 1973, pp. 257-268

HAYNES, THOMAS AND SCHOENEFELD, DALE A: Clique detection via genetic
programming, 1995, Citeseer

BroN, C AND KERBOSCH, JAGM AND SCHELL, HJ: Finding cliques in an
undirected graph, 1972, Technische Hogeschool Eindhoven

PACHECO, PETER: An introduction to parallel programming, 2011, Elsevier
EBERLY, DAVID H: GPGPU Programming for Games and Science, 2014, CRC
Press

CHENG, JOHN AND GROSSMAN, MAX AND McCKERCHER, TY: Professional
Cuda C Programming, 2014, John Wiley & Sons

SCARPINO, MATTHEW: OpenCL in Action: How to Accelerate Graphics and
Computation. NY, 2011, USA: Manning Publcations

DEAN, JEFFREY AND GHEMAWAT, SANJAY, MapReduce: simplified data pro-
cessing on large clusters, Communications of the ACM, Vol 51,No 1, 2008, pp.
107-113

WADKAR, SAMEER AND SIDDALINGAIAH, MADHU AND VENNER, JASON: Pro
Apache Hadoop, 2014, Apress

UTILIZING APACHE HADOOP IN CLIQUE DETECTION METHODS 53

[14] GHEMAWAT, SANJAY AND GOBIOFF, HOWARD AND LEUNG, SHUN-TAK: The
Google file system, ACM SIGOPS operating systems review, Vol 37, No 5, 2003,
pp- 29-43

