PRODUCTION SYSTEMS AND INFORMATION ENGINEERING

Volume 7 (2015), pp. 55-65 55

WEB BASED DESKTOP ENVIRONMENT

IMRE PILLER
University of Miskole, Hungary
Department of Applied Mathematics
piller@iit.uni-miskolc.hu

SANDOR FEGYVERNEKI
University of Miskolc, Hungary
Department of Applied Mathematics
matfs@uni-miskolc.hu

[Received August 2015 and accepted November 2015]

Abstract. The web browser has become the natural platform of the
graphical applications. This paper introduces a desktop environment
concept which makes the development and deployment of the applica-
tions easier. The approach combines the thin client technology and lo-
cally installed servers. This hybrid solution is proper for the common use
cases. The paper primarily analyzes two aspects of the desktop environ-
ment; the rendering of the desktop and the synchronization of the user
data. The proposed solutions are compared with the available similar
alternatives.

Keywords: web desktop, thin client, display manager, version control

1. Introduction

There are usually some misconception of the user about the importance of
underlying software stacks. We can found many debates on the Internet about
various operating systems and kernels. Most of them only compare the thin
top layers namely the desktop environment. This recognition suggests that
from the viewpoint of the user the underlying layers are irrelevant because
they provide non-functional features.

The graphical user interface toolkit (near the top of the software stack) has
huge impact to the user experience. The commonly used components have
already standardized but their behaviour and appearance are not defined ex-
actly. It results inconsistent look and feel when we use applications from a
different kind. It is the source of some further problems. The inconsistent

56 I. PILLER AND S. FEGYVERNEKI

terminology and graphic elements make the usage of the software harder. The
various dependencies of the widget toolkit libraries cause unnecessary redun-
dancy and sometimes make the communication between software problematic.
(For example special clipboard and IPC implementations.)

The personal computing means nowadays that the user typically works with
at least two computers. We can assume that the computers are different in
some aspects. (The user works with more computers because all of them have
a benefit for example the location, the performance, the storage size or the
weight is more appropriate in a given situation.) The data are usually shared
between the machines. It makes necessary to synchronize the data.

The thin client technology is able to solve the previously mentioned prob-
lems. The client is only responsible for displaying the contents and for sending
the commands to the servers. The applications are provided by the server
therefore the set of applications can be collected carefully by the system ad-
ministrator. The synchronization is not a problem because all data is stored
on the server. However there are some disadvantages also. For instance the
thin client conceptually has only a limited offline functionality.

The paper concentrates on the consistent visual representation of the user
interface and the problematic of the synchronization. It shows compromised
solutions between the thin client and offline workstation.

2. Related Works

The term ”web based” here means that the desktop application is a web
application where the server can be local or remote. We can found some
similar architectures in the contemporary operating systems.

The Bell Laboratories has developed an operating system for distributed
servers [1]. Its main design goal is to became graphical, portable and net-
worked. The system’s programming language is the Limbo. For portability it
uses machine independent bytecode and the Dis virtual machine. (The con-
cept of the project is close to the Java Environment. Basically this project
was the concurrent technology when the Java project started.)

The FirefoxOS is an operating system designed for the web [2]. It uses open
standards and provides a low cost alternative for smart devices. It’s layered
architecture consists the following parts.

e Gonk: A common layer for the Linux kernel and the Hardware Abstrac-
tion Layer.
e (Glecko: Web browser engine. Its main task is to render HTML pages.

WEB BASED DESKTOP ENVIRONMENT 57

e Gaia: User interface implementation written in HTML, CSS and Java-
Script. It communicates over the Open Web API therefore the applica-
tions can be works in other web browser.

e HTMLS applications: The FirefoxOS is able to run web applications.
It provides access to device drivers.

We can use applications in online or offline mode. The online mode is the
same as in the case of desktop web browsers. For offline usage we need to
install the application. In this case, instead of nativ application we can run
the application server on the given device.

The Chrome OS (and its open source version called Chromium OS) is also a
browser oriented operating system [3]. Technically this is a Linux distribution
with some unique features and hardware support. Primarily it is a thin client
which provides access to Google services.

There are other operating systems which are designed directly to the web
[4]. Their interfaces resembles to the frequently used desktop environment.
The most notable representatives are the eyeOS, Glide OS and the Joli OS.

As we can see the browser has become a platform in the Web 2.0 era. The
application of thin client is not a trivial decision. The main differences of the
architectures originated from the measure of network dependency.

3. Interaction with the User
3.1. Desktop as Primary Interface

The desktop environment is an essential part of the interaction with the
user. We can see the main steps of interaction cycle in Figure 1. The input
and output devices are physically available for the user. In the case of web
browser the typical input devices are the keyboard and mouse, the output
devices are the screen and the speaker.

We can notice the Model-View-Controller pattern in the cycle. The con-
troller here responsible for registering and preprocessing the input. The ap-
plication logic is stateful in most cases. The layout arrangement calculates
the positions and sizes of the visual elements. In the rendering step from the
tree-like component structure an image will be created.

3.2. Online and Offline Works

The online services have many advantages. For instance, they require only
a minimal standard installation because most of the applications are installed
on the remote server.

58 I. PILLER AND S. FEGYVERNEKI

User &
Y
Input devices Output devices
A
Rendering
v A
Controller
Layout
arrangement
A
«| Application
£ logic
A
Y
Model

Figure 1. The main steps of the interaction.

The platform of this type of software is the web browser. It results that the
applications are portable. We can use the software on any device which can
run web browser.

The reliable and fast network connection is a natural requirement in in-
formation technology. In the case of online services these requirements are
essential. When the network connection is slower or we have no connection at
all these online services are unable to work.

The thin client technology often assumes that the client device has only a
limited resources and cannot run the application locally. The computational
power of smart devices is enough for managing file systems and databases.
The thin clients are still preferred because intensive calculations requires more
energy and the battery becomes the bottleneck.

4. Layered Architectures

4.1. Client types

We can distinguish different client types as we can see on Table 1. The
clients are classified by their components. The literature use the light, rich

WEB BASED DESKTOP ENVIRONMENT 59

and heavy names as synonyms in general [5]. Here these names reflect to its
complexity. In the following paragraphs their advantages and disadvantages
will be summarized.

type Model | App. L. | Controller | Layout Arr. | Rendering
thin

light X

rich X X X
heavy X X X X
desktop X X X X X

Table 1. The types of the clients.

thin client: The client only display the previously rendered image. It
requires only a minimal amount of resources on the client side but assumes
that the network is able to stream the view of the desktop real-time. This
solution is very flexible on the client side but the rendering requires graphical
capabilities on the server. For example the VNC client and remote desktops
belong to this category.

light client: In this case the server send document object, vector graphics
or only the difference of the desktop image from the previous one. Most of
the web pages can be considered as light client because the browser waits the
response from the server and render graphical elements from the HT'ML source
code.

rich client: The web browser usually able to manage the user input events
and calculate the layout arrangement. In web environment the rendering pro-
vided by the HTML rendering engine. As rich suggests the Rich Internet
Applications are in this type.

heavy client: The application runs in the client. The persistent storage
still on the server side. This construction is beneficial for example the case of
calculation intensive applications. The drawback is that the client must have
enough resource for running the application but unable to work offline. The
clients of online games are heavy clients in this sense.

desktop client: The desktop client means that all components and data
are available for offline working. The client in the name is intentional. The
model is available on the machine but the data are shared or the application
partially depends on online services. It can be for instance the file sharing or
mail client.

60 I. PILLER AND S. FEGYVERNEKI

4.2. Function Locations

The client-server model is a simple distributed architecture. The reliable
network connections give a choice to locate some functionality either the client
or the server side. We have possibility to separate some elements of the server
side to remote machines. On Figure 2 we can see the two preferred construction
of the layered architecture. At this step we have already assume that the user
works with web browser on the client side.

Browser

e

Browser

e

Rendering Rendering
Controller A Controller A
Layout arrangement Layout arrangement
server side * | ; |
Application logic Application logic
A A
Y Y
Model Model

* client side

5 S

P Y S U S S g S S PR S |

Repository synchronization

Figure 2. The preferred layered architectures.

The two configuration nearly the same because they use the same interfaces.
The difference between them is the location of the application and the model.
The left is a rich and the right is a desktop client. We prefer these types
because in the case of desktop applications the hardware requirement of the
application engine and the model are similar. (In many applications the logic
and the model are not separated.)

At the bottom of the figure we can see that the models are connected and
able to synchronize the data. The model basically has two parts: file storage
and metadata.

The file is a unit of data. We use files from many reasons, for example,

e the data is unstructured,
e we cannot edit with online editor,

WEB BASED DESKTOP ENVIRONMENT 61

e we are trying to be compatible with other systems,
e the file is large and we cannot store it in the database,
e the filesystem is common, available and supported.

The metadata stores structured data. It provides consistency checking and
flexible queries. The type of the database is not important at this point
because the choice is highly depends on the given application.

From the user’s viewpoint the application is a web application. Many rich
clients can use the same web application while in the case of desktop client
it presumably dedicated to the user. Therefore the web application is not
necessarily installed by the user but enables to install locally for offline work.

The controller, layout arrangement and rendering can be implemented in the
browser. It is usually developed in JavaScript as one of the most dominant
programming language of the Internet. (In the web browser we have only
some other alternatives, because the support of other programming languages
is rare.)

5. Optimal selection of configuration

The proposed architecture makes possible to choose between configurations.
The decision is based on the following factors.

o Network availability, and reliability: We can configure the application
for online or offline work. Most of the applications are sensitive to
network problems. The periodically updated local repository helps to
smooth the differences between the real time online work and offline
workstation-like usage.

e Local resources: We need to examine the impact of locally installed
applications and stored shared files. In general, the synchronization of
all files from the repository is not an appropriate solution.

The length of the updating process in the case of distributed configuration
based on the speed of network and from the amount of data. It does not affect
the behaviour of the application after the synchronization is ready.

We can consider the model as the part of the application from the aspect
of performance. Therefore we need to compare the cost of local configuration
(t; + ¢;) and the cost of remote configuration (¢, + ¢,), where

e t;, t,: average response time for locally and remotely installed applica-
tion,
e ¢, ¢;: average time cost of local and remote data exchange.

62 I. PILLER AND S. FEGYVERNEKI

The (ty + ¢r) — (t1 + ¢;) value shows the average response time advantage of
the locally installed application.

6. Desktop Interface

The proposed concept help us to create application to this distributed en-
vironment. In the following sections the part of the toolkit will be presented.

6.1. User input and the controller

The considered desktop environment uses the keyboard and the mouse as
the input devices. It defines the following events.

e key down/up: Uses keycode for identify the key.
e mouse move: It contains the position (z,y) of the mouse cursor.
e mouse down/up: It identifies the mouse buttons similarly to the keys.

The controller is responsible for creating or abtract the event. For instance
instead of sending the raw input to the application it can send request for
starting or stopping a process, clear the input field or other context dependent
commands. It has an internal state but it is limited and not overlapped with
the application logic.

6.2. Layout arrangement

The application only sends responses to the requests. In the layout arrange-
ment step the following informations are combined:

e the data which should be presented for the user,
e the rules of the layout arrangement,
e the previous arrangement.

It is hard to divide the functionality of layout arrangement and rendering. As
a guideline we should consider only with the structure of the user interface
and leave tasks related to the appearance for the rendering.

6.3. Display renderer

The mentioned simple interface can be implemented on any hardware or
software platform. The trends suggest that the most appropriate tool nowa-
days is the HTMLS5 [6]. It is able to listen the keyboard and mouse events and
to display the rendered image.

We can trust the design decesions of HITML5 canvas. It inherits the prim-
itives of widely used graphical toolkits. When we build our display manager

WEB BASED DESKTOP ENVIRONMENT 63

on the top of this primitives we can assume that it will have hardware support
in the future.

The main advantage of HTMLb) is the web browser support. The HTML5
canvas is available in all major browser. It has no standardized widget toolkit
yet. For a higher level functionality (for example windowing) it is necessary
to use a third party Javascript library or creating a new one. The portability
of the applications remains but the consistent look and feel is not guaranteed.

7. Repositories and synchronization

The web application is responsible for the synchronization. It must make
available the current data automatically [7]. For synchronizing the data the
web applications require the change sets from other web applications instances.
From this aspect we can consider the application as a version control system.
The database behind the desktop environment is practically a repository [8].

We must distinguish two cases in synchronization. At the simple case the
user works with only one browser at the same time. It is a plausible assump-
tion, because the environment is designed for multitasking and for supporting
the all required feature. As an advanced scenario, the user is able to work
with many desktops parallel. In this case it is hard to avoid collisions and
inconsistent states. The login interface helps us to restrict the user to work
with a single instance of the desktop.

7.1. Log based synchronization

The structure distinguish the data and the metadata. Ideally one database
should enough but the management of binary files make necessary to store
the files without knowing its internal format. It require different approach for
synchronizing the metadata and the file storage part.

The log based synchronization is beneficial, because

e the calculation of deltas is straightforward since all changes are discrete
events with timestamp,

e makes merging easier; the problematic steps can be detected and cor-
rected,

e helps to follow the growth of the repository.

We can group the changes into named sets of changes, but this is optional.
The commit messages help to make the modifications easier to follow but the
conflicts are not necessary separated by revisions.

64 I. PILLER AND S. FEGYVERNEKI

7.2. Repository types

The local repository often contains only the subset of the managed data.
We can create repository for working and for backup. We can define further
types also by considering the following properties of the files.

e file size: We expect that the synchronization of the repository will be
fast and the size of local copy is small as possible. We can avoid large
local storage size via on-demand synchronization.

e last access or modification date: Presumably we will work on a set of
files on a given period. From this reason we can remove the old files
from the local repository.

e importance: This is a subjective factor. Some cases it does not turned
out from the access or modification dates.

As we can see, the repository types are the results of adaptation to the user
behaviour. It is a complex optimization problem which try to achieve small
repository size and prompt access at the same time.

8. Conclusion

The paper considers two difficulties in providing convenient desktop environ-
ment, namely the graphical representation and the repository synchronization.
The preferred solution is based on contemporary web technology (standards,
software, tools and methodology). It has showed a possible categorization of
client types according to the functions of the client. We prefer the rich and
desktop clients because the comparisons show that these configurations are
able to adapt to the available hardware and software environment properly.
These represent a compromise in the aspect of low resource requirement and
the possibility of offline work.

Acknowledgements

The presented research work was partially supported by the grant TAMOP-
4.2.2.B-15/1/KONV-2015-0003.

REFERENCES

[1] S. DorwARD, R. PIKE, D. L. PrEsoTTO, D. M. RITCHIE, H. TRICKEY, P.
WINTERBOTTOM: The Inferno Operating System, Bell Labs Technical Journal,
Vol. 2, No. 1, Winter 1997, pp. 5-18.

[2] NETWORK, MOZILLA DEVELOPER, AND INDIVIDUAL CONTRIBUTORS. " Firefox
OS architecture.” (2014).

WEB BASED DESKTOP ENVIRONMENT 65

AzAD, S. " Chrome OS and System Architecture. Retrieved November 3, 2014.”
(2012).

LAWTON, GEORGE. ” Moving the OS to the Web.” Computer 3 (2008): 16-19.
SATYANARAYANAN, MAHADEV. ” Pervasive computing: Vision and challenges.”
Personal Communications, IEEE 8.4 (2001): 10-17.

W3C, HTML5 Recommendation, http://www.w3.org/TR/html5/, 2014.
KArLsON, AMYy K., GREG SMITH, AND BONGSHIN LEE. ” Which version is
this?: improving the desktop experience within a copy-aware computing ecosys-

tem.” Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2011.

CONSTANTIN, CAMELIA, ET AL. ” A desktop interface over distributed document

repositories.” Proceedings of the 15th International Conference on Extending
Database Technology. ACM, 2012.

