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Abstract. This paper gives an introduction to how graphical processing units can 
be used in non-graphical related problems or tasks.  First a history of GPU is 
provided. The next part focuses on GPU programming. A brief description is 
given about the available hardware facilities and the available programming 
languages. As an initial result of the project an easy and well-known scheduling 
algorithm was implemented for deterministic, single machine models. To check 
the performance achievement both the CPU and GPU code were implemented. 
Finally, some of the performance measurements are presented. 
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1. Aims and scope of the paper 

This paper aims to give an overview of the history of graphical processing units 
(GPUs) and how they can be used in non-graphical related tasks. After a short 
historical introduction it presents a short discussion on two programming languages 
and shows an easy example, where next to the CPU the GPU is used for solving 
deterministic, single machine scheduling problems.  

2. Historical overview of GPUs 

As Sanders put it “the state of graphics processing underwent a dramatic 
revolution. In the late 1980s and 1990s, the growth in popularity of graphically 
driven operating systems such as Microsoft Windows helped create a market for a 
new type of processors. In the early 1990s, users began purchasing 2D display 
accelerators for their personal computer. These display accelerators offered 
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hardware-assisted bitmap operations to assist in the display and usability of 
graphical operating systems” [1]. This accelerator approach was the first step to 
separate the graphic related tasks from the CPU. In 1992, Silicon Graphics opened 
the programming interface to its hardware by releasing the OpenGL library. It was 
a standardized, platform-independent method for developing 3D applications. At 
that time the computing of rendering was running in the CPU. The demand of the 
market was strong to have some kind of hardware support for 3D calculations to 
improve the application speed. The major companies were NVIDIA Corp., ATI 
Technologies and 3dfx Interactive.  
“August 31, 1999 marked the introduction of the graphics processing unit (GPU) 
for the PC industry, the NVIDIA GeForce 256.” [2] First the graphical hardware 
took care of the calculation of transformation and lighting computations, so these 
operations could run on the hard-wired graphical processors and the CPU could be 
used for other tasks. The next breakthrough in parallel-computing was the first 
graphic card, which supported the Microsoft’s DirectX 8.0 standard. This standard 
introduced the programmable vertex and pixel shaders. This was the first point 
when the developers were able to influence the control of GPU programs. 
Usually the developers used the GPU for graphics related tasks, but there were 
some developers who wanted to use the calculation power of the GPU cards. Since 
2010 there has been a greater focus on the GPU’s massive parallel computing 
capacity. Figure 1 shows how the calculation power of GPUs is increasing. 
 

 

Figure 1. NVidia GPU card GFLOPs evolution 
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2.1 Tasks of the GPU and the programming environments 

Let us have a look at what a GPU card should do. The application runs on the CPU 
and computes the 3D geometry. The geometry is loaded to the GPU and there is a 
transformation from 3D to 2D. After the transformation the card creates fragments 
and composes the image. 

 
Figure 2. The rendering pipeline of the GPU 

As described in the previous section, from the Microsoft’s DirectX 8.0 standard on, 
the developer was able to influence the behaviour of the GPU through the so-called 
shaders. The geometry transformation can be changed through the vertex shader, 
the rasterization through the pixel shader. 
There were disadvantages of programming GPUs through these shaders. The 
provided APIs were designed to support graphical APIs and the programmers 
needed a very deep knowledge of the graphical platform. There were resource 
constraints; data could be loaded as picture and texture and retrieved data was 
another picture. So if the algorithm required accessing a memory area to write, it 
could not run on GPU. It was nearly impossible to predict how your particular 
GPU can deal with floating-point data. There did not exist any good methods to 
debug implementations in GPU.  

3. New GPU programming languages 

Two main programming languages will be described briefly: they are used to 
develop applications running on GPU, without having any knowledge of the 
graphical API. 
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Open Computing Language (OpenCL) 
OpenCL is a multivendor open standard for general-purpose parallel programming 
of heterogeneous systems that include CPUs, GPUs and other processors. OpenCL 
provides a uniform programming environment for software developers to write 
efficient, portable code for high-performance computer servers, desktop computer 
systems and handheld devices. It is managed by the Khronos Group [4]. This 
standard is applied by industrial companies and academics as well. 
OpenCL has four main models 

• Platform model 

Figure 3. OpenCL platform model [12] 
 

The host coordinates execution and data loading from computing devices. 
Each computing device has one or more computing units, where one or 
more processing elements take place. 

• Execution model 
The host role is context management and controlling of processes. The 
kernel takes care of controlling the computing units. The kernel program 
runs on the processing elements, achieves an index range and is grouped 
into work groups. 

• Memory model 
There are four main types of memory. The global memory is 
readable/writable from every processing element. Every processing 
element can access it. The constant memory is readable from the 
processing elements, the host allocates it and fills it with values. The local 
memory is accessed from computing units. Every process element can 
read/write it within the computing unit. The host cannot access it. The 
private memory is assigned to the processing element and only the 
assigned process element can read/write it. 

Computing Device 

Computing Unit 

Processing Element 
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Figure 4. OpenCL memory model [12] 

• Program model 
The division of a kernel into work-items and work-groups supports data-
parallelism, but OpenCL supports another kind of parallelism as well, 
called task-parallelism. 

OpenCL includes a language for writing so-called kernels. OpenCL provides 
parallel computing using task-based and data-based parallelism. 
 
CUDA 

CUDA was developed by NVidia Inc. and its architecture has two main parts: one 
is the hardware which supports the CUDA programming and can be called the 
device and the programming language to be able to create programs using the 
device capacity. The programming language is based on industry standard C and 
adds a relatively small number of keywords in order to harness some of the special 
features of CUDA architecture. There is a public compiler for this language, 
CUDA C. For further information you can refer to the CUDA Programming Guide 
by NVidia [5]. 
As mentioned before, CUDA is an extension of C language and includes GPU 
relevant APIs and interfaces. There are three main tasks, which are the tasks of the 
developers, such as thread hierarchy, memory access and synchronisation [6]. 
 

Thread hierarchy 
To perform computation with CUDA, programmers have to define a special C 
function, the so-called kernel. This function can be run in a thread using a specified 
number of lightweight threads in GPU. The kernel is loaded to the device from the 

Computing Device k 
Computing Unit 1 Computing Unit n 
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host, where the normal code is running. Threads are grouped into blocks, and 
blocks form a grid. Threads can communicate through the memory area assigned to 
the block. The blocks run independently and their behaviour cannot be affected by 
the programmer. 

 
Figure 5. CUDA Thread Hierarchy [7] 

 
Memory hierarchy 
There are a great number of types of memory areas, such as global memory, shared 
memory, constant memory, registers and local memory. The differences between 
the memory types are the size, the accessing time and the caching property. For 
more details refer to [5] or to [6]. 

 
Figure 6. Basic organization of the GeForce 8800 [8] 
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Synchronisation 

Sometimes algorithm behaviour requires a consistent state of the threads within the 
same block. For example when the shared memory is used by the threads, it could 
be necessary to have a consistent state in case after writing a thread. The CUDA 
language provides a __synctrheads( ) method, which defines a waiting point in the 
kernel code. The processing of a thread will be continued only if each thread 
reaches this point. 

4. Single machine scheduling problems with  
objective function total weighted completion time 

Single machine models are very simple and well-known models in the literature [9] 
[10]. Only the definition of this model is given here. 

There are two main types of objects, the machine and the job. The machine (M) is 
the processing unit, which is capable of completing the jobs (J). The machine can 
process only one job at one time and job execution cannot be interrupted. Each job 
has a processing time (p) on the machine. Each job can have weight (w), which is a 
priority factor, denoting the importance of the job related to other jobs. Each job 
can have a completion time (C), which describes the point when the job has been 
finished. Processing time, weight and completion time will be indexed with j (pj, 
wj, Cj). 

Each model can have one or more objective functions, which are used to compare 
feasible schedulings. This model uses the total weighted completion time as an 
objective function. This is the summary of the completion time weighted by the 
priority of a job. 

 �
=

=
n

j
jjcwTWCT

1
 (4.1) 

If there are two feasible schedules, the schedule with the lower TWCT has to be 
used. 

5. First example of implementation 

There is a proven theorem for this model [11]: The Weighted Shortest Processing 
Time First (WSPT) rule is optimal for single machine models, where the objective 
function is the total weighted completion time. This paper aims at comparing the 
following implementations for this problem: 
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• CPU 
• GPU with CUDA 

Each implementation is based on the following object model. This model is used 
and generalized later for other problem types. 

Figure 7. Application object model 

Application builds up the scheduling model from a txt file, where the jobs, the job 
processing time and the job weight are stored. The main flow is described in Figure 8. 

 
Figure 8. Application main flow 
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First the file is loaded from the file system and is mapped to the internal structures. 
In our implementation we always should have enough free memory to store our 
models. From this general model each algorithm should pre-fill its own data model. 
During performance measurements this is measured as well. After a running of the 
algorithms has been finished, the result and the performance result are stored in the 
file system.  

The CPU algorithm 

The CPU algorithm uses a vector where the element structure is: 

• job identifier 

• job processing time 

• job weight 

• job weight / job processing time calculation result. 

The values are calculated in a loop. During one loop phase only one item in the 
vector can be processed.  

 

 
Figure 9. Value calculation flow with CPU 
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The implementation algorithm is very simple. The data vector is pre-filled with pj 
and wj values of the jobs. There is a loop where an index is used.  

Step 1: Values from the index are accessed. 

Step 2: The result value is calculated. 

Step 3: The result is stored in the memory, the accessing index is increased and the 
next item will be processed (GoTo Step1) if there exists one.  

As can be seen in Figure 9, only one wj/pj value is calculated at one time. 

 

The GPU algorithm 

The GPU is capable of running the same kernel parallel in several GPU cores. The 
vector is split into the available blocks and the data are loaded from the host to the 
device. On the device each processing unit uses the same kernel function and 
accesses the same memory. 

In the single machine model the wj/pj values are independent of each other. That is 
why several independent processing units can be used. 

Because the algorithm runs on the GPU, first data have to be loaded from the host  
(CPU) to the device. Next, memory is allocated to the device, then data are copied 
from the host. Vectors are used and to each vector item a separated core is 
assigned. It works only if the number of vector elements is smaller than 65 535. If 
it is not true, the vector is split into several fragments and the GPU kernel is called 
more times. 

If data is loaded to the device, we start so many parallel kernels as possible to get 
the highest efficiency. Each processing unit uses the same kernel code. 

 

Step 1: During runtime each GPU core accesses one piece of the data. The indexes 
come from the CUDA platform and they are called block indexes. 

__global__ void gpuCalculateWSPT( int *a, int *b, float *c){ 
 int tid = blockIdx.x; 
 c[tid] = a[tid] / b[tid]; 
} 
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Step 2: The result value is calculated. 

Step 3: The result is stored in the device memory. 

After the calculations the data have to be copied from the device to the host. 

Figure 10. Value calculation flow with CPU 

Performance measurements 

In order to be able to run performance measurements, a test data set was generated. 
The main program loads the available test data file from the file system, starts the 
CPU and GPU solver, measures the processing time and stores the result file back 
to the file system.  

To execute the performance measurements, the following PC configuration was 
used: 

��CPU : Intel Core i3 – 2310M 

��GPU: NVIDIA GeForce  GT 520M 

��Memory: DDRIII 2GB 
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The test program was developed in C++. The GPU programming model uses the 
NVida CUDA version 1.1.  

The measurements are depicted in the following diagramme. 

Figure 11. Performance measurements 

 

The axis X shows the number of generated jobs (divided by 1000). The axis Y 
shows the processing time in microsecunds.  

The CPU line shows the processing time of the CPU algorithm.  

CUDA 1 line shows the GPU algorithm processing time when the internal data 
mapping, data copying and the calculation were measured. 

CUDA 2 line shows the GPU algorithm processing time when internal data 
mapping was not necessary. In this case only the processing time of the calculation 
result and the data copying from the host to the device and vica versa were 
measured. 



 USING GPU IN DETERMINISTIC SINGLE MACHINE SCHEDULING PROBLEMS 39 
 

 

Conclusion 

As can be seen from the performance results, the solution has O(n) complexity in 
each case. The CUDA 2 measurement contains the necessary mapping between the 
structures, the CUDA 1 measurement contains only the calculation of the wj/pj rate. 
As shown, the GPU algorithm has a better performance if the data are structured 
and stored as appropriate for the GPU. 
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