

Production Systems and Information Engineering
Volume 6 (2013), pp. 41-56

41

DETAILED PRODUCTION SCHEDULING BASED ON
MULTI-OBJECTIVE SEARCH AND SIMULATION

GYULA KULCSÁR
University of Miskolc, Hungary

Department of Information Engineering
kulcsar@ait.iit.uni-miskolc.hu

MÓNIKA KULCSÁRNÉ FORRAI
University of Miskolc, Hungary

Department of Automation and Communication Technology
kulcsfm@mazsola.iit.uni-miskolc.hu

[Received January 2012 and accepted September 2012]

Abstract. This paper presents an advanced approach to solving fine scheduling
problems of production in practice. It focuses on creating near-optimal feasible
schedules considering detailed constraints and capabilities of the resource
environment. It is a very important and complicated task to make an efficient
schedule for the shop floor to include different types of facilities and operations.
The proposed model supports the flexible usage of production goals and
requirements simultaneously. The elaborated approach uses a special searching
technique with multiple neighbouring operators and problem space
transformation based on execution-driven simulation. Successful applications of
the methods in real manufacturing environments are also demonstrated.

Keywords: scheduling, simulation, multi-objective optimization, production

1. Introduction

In modern manufacturing/assembling production environments, a great number of
scheduling problems may occur. Production scheduling can be defined as the
allocation of available production resources over time to perform a collection of
tasks [1]. It is a very important decision making process at the operation level.
Most of the scheduling problems are highly complicated and hard to solve owing to
the complex nature of the applied model. Today, production engineering and
management utilize more and more computer integrated application systems to
support decision making.
This paper is primarily concerned with industrial scheduling problems, which
require advanced scheduling software to assign limited available resources to the
operation of jobs and to sequence the assigned operations on each resource over
time. It is mainly concerned with discrete manufacturing, in which typically series

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

42

of items are produced. The series (batch or lot) can include very different numbers
of pieces, from a single product (i.e. special part, complex or unique equipment) to
thousands or millions of the same product (simple parts). In discrete manufacturing
operations are executed on discrete, separate machines and workplaces. Depending
on the arrangement of machines, robots, buffers and material handling devices,
manufacturing systems may be characterized by different layouts (i.e. single
machine, parallel machines, line, flexible line, group, etc.). In essence the
execution of the operations requires the exact prior definition of the feasible
routing alternatives [4].

2. Scope of research

The paper focuses on the fine (or detailed) scheduling function of Manufacturing
Execution Systems. The main purpose of fine scheduling is to initiate a detailed
schedule so as to meet the master plan defined at the Enterprise Resource Planning
level. The scheduler is able to get the actual data of dependent production orders,
products, resource environment and other technological constraints (tools,
operations, buffers, material handling, etc.). The shop floor management configures
the actual production goals and their priorities. Obviously, the management may
declare various goals time by time. The scheduler has to provide a feasible
schedule which meets the management’s goals. The result of the scheduling
process is a detailed production program which declares the releasing sequence of
the jobs and the operations, assigns all the necessary resources to them and
proposes the starting time of activities. The execution of the production program
has to meet the predefined goals without breaking any of the hard constraints. The
computation time of the solving process is also an important issue, especially with
a large number of internal orders, jobs, operations, resources, technological
variants and constraints.
In the literature, different flexible scheduling functions with various models are
found. One of the main groups of these models is the flexible flow shop (FFS)
scheme. A detailed survey of the FFS problem is given by Quadt and Kuhn [7], and
Wang [10]. The FFS environment consists of stages that represent the fundamental
(operation-type) machine groups of the system. At each stage one or more identical
machines work in parallel. Each job has to be processed at each stage on any of the
parallel concurrent machines.
Considering the production performance, both the allocation of machines and the
sequence of jobs are of great importance. A great number of shop scheduling
models are known in the literature, but most of them use only one performance
measure. Usually the latest finishing time (make-span) of the released jobs appears
as a goal function of optimization for Make to Stock (MTS) manufacturing.
Frequently, one objective function related to due date plays the main role in
scheduling models for supporting Make to Order (MTO) manufacturing. Only a

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION 43

few of the models deal with multi-objective cases which are very important in
flexible and agile manufacturing [2, 6, 8, 9].
The existing models in the operation research field often disregard the machine
processing abilities, limited availability time frames of the machines, limited buffer
capacities, and shared machine tools, that is why the improvement and extension of
flexible shop models is justified. In order to consider the aforementioned important
features of real scheduling problems we have focused on the simulation based
scheduling approach. This paper presents our approach in which an execution-
driven fast simulation is used to transform and reduce the problem spaces
preserving important details.

3. Practice-oriented fine scheduling approach

The starting point of the new research was the Extended Flexible Flow Shop model
(EFFS) developed by the first author of this paper [5]. The main goal of our new
research is the aforementioned model which will be improved in order that the
problem class EFFS can also represent the problems for smaller units. From the
execution point of view, the units inherit the schedule of the job concerned but are
moved along in the shop environment and have their own due date.
In this paper an integrated approach is proposed to solve this complex scheduling
problem class as a whole without decomposition. In the approach, all the issues
(batching, assigning, sequencing and timing) are answered simultaneously. For
solving production scheduling problems in practice, a knowledge intensive
searching algorithm has been developed based on execution-driven fast simulation,
overloaded relational operators and multiple neighbouring operators. The core of
the engine implemented explores iteratively the feasible solution space and creates
neighbour candidate solutions by modifying the actual resource allocations, job
sequences and other decision variables according to the problem space
characteristics. The objective functions concerning candidate schedules are
evaluated by producing a simulation which represents the real-world environment
with capacity and technological constraints. In this execution-driven simulation,
items, parts, units and jobs are passive and they are processed, moved, and stored
by active system resources such as machines, material handling devices, manpower
and buffers. The numerical tracking of the product units provides the time data of
the manufacturing steps. The simulation process extends the pre-defined schedule
to a fine schedule by calculating and assigning the time data. Consequently the
simulation is able to transform the original searching space into a reduced space by
solving the timing sub-problem. This is the part of the approach that encapsulates
the dependency of real-world scheduling problems. Successful adaptation of the
approach into practice is highly influenced by the efficiency of the simulation
algorithm.

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

44

4. Application of the approach in practice

4.1. Motivation
The scheduling problem, which will be outlined in this section, is inspired by a real
case study concerning only one of the plants of Electrolux-Lehel Ltd. specialized in
refrigerator products (Jászberény, Hungary). The firm produces different types of
refrigerators with variable series simultaneously. It is typical that the market
centres or other distributors require very hard delivery due dates. Another
important market trend is that the number of product variants is increasing. The
companies are forced more and more to customize products to market demands and
to important seasons. These requirements cause a tendency to decrease lot size, to
develop better forecast, make more flexible production plans, and to use
information technology, operation research and artificial intelligence methods for
more efficient shop floor scheduling.

4.2. Problem description

The discrete manufacturing process examined produces various refrigerators as
final products. The production planners create the actual production plan for the
next time interval (typically one or two weeks) by using ERP system. External
orders, forecasts, market trends, seasonal characteristics are considered in decision
making. The planning phase is concerned with balancing supply and demand. The
production plan generated defines the production program of the final products at
the finishing technological step of the manufacturing processes. In other words, the
production plan consists of internal production orders and each production order
specifies the final product needed, the required quantity, the destination and the due
date demanded. The destination means the finishing machine which is assigned to
the production order for processing. According to the process plan of the product
type, pre-defined technological steps must be executed on the component parts.

The shop contains different machine groups connected to each other in a given
configuration (Figure 1). Each machine group contains a pre-defined number of
machines. In essence, refrigerator manufacturing includes two fields that can be
distinguished: the cabinet and door manufacturing processes. These sub-processes
can be modelled and analysed separately. In the system, refrigerators are assembled
on two finishing assembly lines (AL 1, AL 2). In this finishing step the cabinet and
the door meet with many other component parts to become one final product. Both
of them are very important from the viewpoint of overall stability. All the
necessary components have to be available at a given time at the destination pre-
defined. In order that this requirement should be satisfied, a detailed schedule for
all the predecessors are created efficiently to synchronize all the manufacturing
steps and sub-processes.

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

45

Inner liner
VFM 1

Inner liner
VFM 2

Inner liner
VFM 3

Inner liner
VFM 4

Cabinet
PAL 1

Cabinet
PAL 2

Cabinet
PAL 3

Cabinet
FM 1

Cabinet
FM 2

Cabinet
FM 3

Cabinet
Buffer

 1

Cabinet
Buffer

2

Door
FM 1

Door
FM 2

Door
FM 3

Door
FM 4 Fridge

AL 1

Foamed
Door

Buffer 1

Fridge
AL 2

Door
PAL 1

Door
PAL 2

Door
PAL 3

Door
PAL 4

1
Door liner

VFM 1

Door liner
VFM 2

2

3

4

Fine Scheduling 1

Fine Scheduling 2

VFM: Vacuum Forming Machine; PAL: Pre-Assembly Line; FM: Foaming Machine; AL: Assembly Line

Figure 1. Scheme of refrigerator manufacturing

Based on the results of process analyses, it was clear that the scheduling of the
inner liner vacuum forming and the door foaming play key roles. These sub-
problems of the shop scheduling problem are denoted by Fine Scheduling 1 and
Fine Scheduling 2 in Figure 1. The remaining part of this paper describes the
applied model and solution method for detailed scheduling of door foaming.
The main purpose of the second R&D project was to develop a fine scheduler
software in order to initiate detailed schedule for door foaming machines to realize
the production plan and to synchronize the events on the finishing assembly lines
of the manufacturing system.

4.3. Modelling the problem

4.3.1. Resource environment
In the problem labelled Fine Scheduling 2 in Figure 1, z machines Mm (m = 1, …,z)
have to process n jobs Jj (j = 1, …, n). A job Jj consists of b operations Oj1, …,Ojb.
The execution sequence is defined by the following precedence relations between
the operations: Ojl � Oj,l+1, for l=1, …, b-1. Operation Ojl is not specified by a pre-
defined processing requirement pjl, because processing time depends on the

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

46

assigned resources. Each operation Ojl is associated with a set of machines �jl �
{M1, ...,Mz}. Ojl may be processed on any of the machines in �jl. Usually, �jl is not
one element set and �jl is not equal to the set of all machines.
Focusing on the door foaming scheduling, we have two operations: the first one is
door foaming (FM) and the second one is final assembly (AL). The machine is
dedicated to processing the AL of jobs because the input production plan
determines the destination. For processing the door FM, the suitable machines are
parallel. The foaming process of different types of doors can be executed on
different foaming machines with various production intensities by using suitable
tools. The pre-defined assignments and combinations mean hard constraints. In
general, the number of available tools and machines is more than one for each door
type. So the tools and machines belong to independent resource groups and can be
used as shared resources. The foaming machine and the tools which are assigned to
a given foaming operation Oj1, have to be available simultaneously for Oj1 during
the whole processing period. Scheduling problems of this type are called multi-
processor task scheduling problems. A schedule is feasible if no two time intervals
overlap on the same machine or the same tool, and if it meets a number of
additional problem-specific characteristics.
The machines can work only within the time frames pre-defined. These machine
availability intervals (shifts) have constant lengths (i.e. eight hours). Each machine
has its own shift distribution. In order to minimize the cost, it is very important for
shop floor control management that all the planned and started shifts are utilized as
much as possible.
The capacity of the buffer shared among foaming machines and final assembly
lines is strongly limited. As in the system different products are manufactured, we
have to take into consideration the buffer capacity, which depends on the product
types, because the volume of the buffer is constant but the sizes of the products are
different. Consequently, in the calculation we use the relative utilization of the
buffer.

4.3.2. Job characteristics
In order to create a final product, given components are taken through pre-defined
processes. A job includes work-pieces and their operations. A job as a series of
work-pieces must be scheduled in the manufacturing system. The actual work-
piece depends on the operation to be performed. The operation is an elementary
process of the manufacturing and changes one or more significant characteristics of
the work-piece. A given sequence of operations must be executed on work-pieces
to create final products. A sequence of operations means a technological step
which can be performed on a single machine; similarly, a sequence of
technological steps fulfilled by an integrated production or assembly line is an
execution step.

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

47

Pre-emption of operations, technological steps or execution steps on a work-piece
is not allowed in a classical sense, but a job execution on a machine can be
suspended if the output buffer of the machine is full or the machine is unavailable
for processing. Precedence relations between complete jobs are not specified, but
restricted precedence chains of jobs (last operations) on finishing machines are
given by the input production plan.
In the scheduling problem considered the set I of all jobs is partitioned into disjoint
sets I1, ..., Iw, where I = I1 � I2 � ... � Iw and If � Ig = 0 for f, g � {1, ..., w}, f�g. For
any two jobs Jx � If and Jy � Ig to be processed on the same machine Mm, job Jy
cannot be started before settmfg time units after the finishing time of job Jx.
Similarly, job Jx cannot be started before settmgf time units after the finishing time
of job Jy. The groups correspond to different types of products and settmfg may be
interpreted as a machine dependent changeover (or set-up) time. During the
changeover period, the machine cannot process another job. If f = g, then settmfg =
0 for all f, g � {1, ... , w}, m � {1, ...,z}, and most of cases, if f � g, then settmfg �
settmgf.
Generating a schedule for the following time horizon, it has to be considered that
the machines can be loaded with unfinished tasks. So the input data set has to
include the actual state variables of the system. It means that the effect of the last
confirmed schedule must be considered when creating a new schedule.

4.3.3. Objective functions
In order to express the shop floor management’s goals as criteria of a multi-
objective optimization problem, we use seven objective functions to be
minimalized. These are as follows:
- the number of tardy jobs,
- the sum of tardiness,
- the maximum tardiness,
- the number of set-up activities,
- the sum of set-up times,
- the average waiting rate of machines, and
- the average flow time of jobs.

4.4. Solving the problem

4.4.1. Decision variables
In the approach applied the job plays the role of the basic scheduling item. In order
to create the fine schedule of the foaming machines, it is necessary for each job:
- to be assigned it to one of the suitable foaming machines,
- to fix its execution position in the queue for the assigned machine,
- to be assigned it to one of the suitable tools for use on the assigned machine, and

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

48

- to pre-set its starting time on the assigned machine.
To make decisions on these issues is very complicated. We developed a new
approach in order to answer these questions. The main idea of this approach is a
problem space transformation based on simulation. We use the following sets of
independent decision variables to represent a candidate schedule as a solution:
- the sequence of job-machine assignments on each foaming machine,
- the specification of the availability time frames (shifts) of each foaming machine.
The availability time intervals of a given machine Mm are expressed by a pre-
defined calendar (CALm). CALm is a list which stores the availability time frames
specified by means of start time and end time values. The calendar elements of the
foaming machines are decision variables, where the availability time frames of the
final assembly machines belong to the set of constraints.
The decision variables of this reduced problem space form a simple schedule which
will be extended to a fine schedule (detailed production program) by using
simulation. The simulation, which is a fast execution-driven simulation of the
simple schedule, answers the remaining issues concerning the tools needed and the
starting time data of the execution steps. Consequently, the simple schedule
determines the fine schedule. Sizes of production batches are formed dynamically
by scheduling the jobs and executing the production units on machines.
To accelerate the simulation we use indexed data structures as attributes of the
model objects. This memory model is based on indexes which are non-negative
integer values assigned to the entities, to point to the position in the target object.
The data model developed supports the association of two or more different type
objects (i.e. machines and jobs). Before scheduling a builder method creates the
full indexed data model which includes the valid technological and resource
constraints and possible alternatives (i.e. job dependent sets �jl of machines).

4.4.2. Internal due dates
From the execution point of view it is allowed that the job consists of smaller
production units (PU). These PUs inherit the schedule of the job concerned but are
moved along in the shop environment. The internal due date of a given job on a
given foaming machine is equal to the planned starting time of the same job on the
pre-defined final assembly line. Considering that the machines can only work in
accordance with pre-defined calendars, the internal due date of a given job refers to
the first unit of the job in the strict sense. The exact due date of the other units of
the job can be calculated by simulating the execution of the job on the final
assembly line assuming that all of the units arrive in time. Using this procedure, the
precise due date can be adjusted and assigned to each unit. These values are used as
indirect input data of the scheduling problem. In the simulation and the evaluation
of a candidate schedule, a given job will be delayed if either of its units is delayed.

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

49

4.4.3. Execution-driven simulation
An execution-driven simulation can be realized with a rule-based numerical
simulation of the production to calculate the time data of the execution steps. Input
data determine the production order, the jobs, the production units, the resources
and the schedule to be executed. The schedule specifies the assignment of jobs and
machines, and in addition defines the execution sequences of jobs on machines and
the shift arrangement of machines.
Every job is represented by an individual model object (Jj) in the simulation. A Jj
means a set of work-pieces of the same type. All of the work-pieces of a given Jj
are processed on the same technological route by the same machines using the
same tools. The route and the machines are chosen by the scheduler and defined in
the schedule to be executed. A Jj consists of units Ui (i=1, …, vj). Every Ui
represents one or more work-pieces (item series) to be moved as an individual
atomic unit among machines. An execution step of a given unit on a machine
means a processing task.
The main steps of the simulation are as follows:
- build and initialize the model objects,
- choose the next execution step (task) to be performed,
- simulate the execution of the active unit on the active machine.
The most important objects of the simulation model are the production orders, the
jobs, the tasks, the machines, the buffer, the tools, the input schedule, the output
fine schedule and the object of performance indicators. At the beginning of the
calculation these objects are initialized with the actual values of the system state
variables.
The execution-driven method calculates and stores the time data of the execution
steps. On each machine the execution sequence of the assigned jobs is pre-defined.
The main issue is how the limited resources (tools and buffer) affect the execution.
To answer this issue, the simulation must perform all of the activities in a suitable
sequence. This sequence cannot be pre-defined but it is part of the simulation. In an
intermediate situation, the next execution step must be chosen from the set of
candidate units. Each machine has a loading list and a pointer that shows the next
unit to be processed according to the schedule. The pair of a given machine and its
mentioned unit means a candidate execution step for processing if all the starting
requirements are satisfied. These are as follows:
- the machine is not blocked by the buffer,
- the machine has finished its previous unit,
- the unit execution has been completed successfully on its previous machine,
- one of the suitable tools is available for processing.
The method chooses the candidate execution step which can be started the earliest.
The machine and the unit associated with the chosen execution step become active

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

50

entities. The method calculates the time data (start time STmi, set-up time SetTmi,
processing time ProcTmti, and completion time CTmi) of the active unit on the active
machine. The processing time (ProcTmti) is determined by the work-piece quantity
(qi) of the unit, the tool and the unit (product type) dependent production rate (prmti)
of the machine. The start time STmi of a given unit Ui on an assigned machine Mm is
determined by the following values:
- the end time of the interval while the machine is blocked by the buffer (BTmi),
- the end time of the interval while the tool is unavailable or engaged (et),
- the earliest release time of the unit (ri),
- the completion time of the unit on the previous machine (ctpi),
- the moving time of the unit from the previous machine (mtipm),
- the completion time of the previous unit on the machine (ctmh),
- the unit-sequence dependent set-up time on the machine (settmhi),
- the availability time frames of the machine (CALm).
Focusing on the simulation of the execution step of unit Ui on the assigned machine
Mm, the simplified description of the calculation can be seen in Figure 2 assuming
that the set-up activity can be started on the machine before the unit arrives (ami).

ami = ctpi + mtipm;
SetTmi = settmhi;
ProcTmi = qi / prmti;
STmi = max(ami – SetTmi, ctmh, ri - SetTmi, BTmi, et);
CTmi = STmi + SetTmi + ProcTmi;
Load_STET_to_CAL(STmi, CTmi, Mm);

Figure 2. A simplified calculation of the time data of a given execution step

The function Load_STET_to_CAL loads the timeframe required by unit Ui on
machine Mm. This allocation method inserts the set length time window [STmi,
CTmi] into the first suitable time frame of machine Mm. While the full size of the
required time window does not fit in the candidate time interval, the time window
is moved right to the next candidate time interval. This version of the load function
represents that the execution step of the unit is not pre-empted in time.
Simulation of an execution step covers the handler of the tools and the buffer
involved. The work-piece(s) of a given unit must be taken out of the buffer prior to
the start of the execution on a final assembly line. If the execution step is finished
successfully on a foaming machine, the work-piece(s) of the unit are to be put in
the buffer. If the buffer is full, then the work-piece(s) stays on the foaming
machine, therefore the next unit cannot be started and the foaming machine will be
blocked. If the stock level in the buffer decreases below a given value, the blocked
machine or machines will be released.

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

51

One of the suitable tools is allocated by the first unit of the job before starting the
execution step. If more than one suitable tool is available at the same time, the
earliest released tool will be chosen. The exclusive reservation of the chosen tool
will be cleared by the last unit of the job.
The most important output data of the execution-driven simulation of the
production are coded in a data object MSTET which stores the evaluated time data
of all units. The simulation extends the pre-defined input schedule to a fine
schedule by calculating and assigning MSTET in a short time. The performance of
the fine schedule can be measured by calculating objective functions based on the
data of units, jobs, and machines. In this way the simulation is able to transform the
original searching space of the scheduling problem into a reduced space.

4.4.4. Search algorithm
For solving the scheduling problem in an integrated form addressed above, we
developed an advanced multi-operator and multi-objective search algorithm based
on overloaded relational operators, multiple neighbouring operators and a special
taboo list which stores schedules in coded form (MOMOTS). Our approach is
based on the taboo searching meta-heuristics that was first suggested by Glover [3]
and has been used frequently for different combinatorial optimization problems.

MOMOTS
{ s0 	 Generate an initial solution;
 s* 	 s0;
 Taboo_List 	 NULL;
 while (Stop criterion is not satisfied)
 { while (Extension criterion is satisfied)
 { Nc 	 Choose the actual neighbouring operator(priority_list);
 s 	 Generate a neighbour solution(s0 , Nc);
 if (Taboo_List does not include (s))
 { Insert new taboo into the first position of Taboo_List (s);
 if (Number of Taboos > Maximum number)
 Delete the taboo from the last position of Taboo_List;
 if (This is the first solution of the extension (s)) sk 	 s;
 else if (s < sk) sk 	 s;
 }
 }
 s0 	 sk;
 if (sk < s*) s* 	 sk;
 }
 return s*;
}

Figure 3. Multi-Operator and Multi-Objective Taboo Search (MOMOTS)

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

52

Our search algorithm variant (Figure 3) iteratively moves from an actual schedule
s0 to a candidate schedule s in the neighbourhood of s0 until the stop criterion is
satisfied. To reach and examine the unexplored regions of the search space, the
method modifies the neighbourhood structure of each schedule as the search
progresses. To escape local optimum, the method contains the schedules that have
been visited in the recent past (less than a given number of moves ago) in a taboo
list. Schedules in the taboo list are excluded from the neighbourhood of the actual
schedule. A certain number of neighbours of the current schedule are generated at
random successively by using priority controlled neighbouring operators. The
operator can only modify the first execution step (decision variables) of jobs in the
schedule (solution) because the second one is pre-defined by the input data
(constraints). The applied neighbouring operators are as follows:
- operator N1 moves a randomly chosen job elsewhere,
- operator N2 moves a randomly chosen tardy job elsewhere,
- operator N3 chooses a machine randomly and modifies the sequence of jobs on

the machine by using a random length permutation cycle,
- operator N4 exchanges two adjacent jobs on a machine which is chosen randomly,
- operator N5 chooses a tardy job and moves left one position in the sequence,
- operator N6 allows a denied calendar element randomly chosen on a machine,
- operator N7 denies an allowed calendar element randomly chosen on a machine.
The operators listed create new candidate schedules by modifying the values of the
decision variables of the initial schedule. The objective functions concerning
candidate schedules are evaluated by the execution-driven simulation. The
overloaded relational operator < is used to compare the generated schedules
according to multiple objective functions described in Section 4.3.3. These
objective functions are given so that:

f : S {0}, k {1, 2, ..., K}.k
+→ ℜ ∪ ∀ ∈ (4.1)

Coefficients wk (k=1, …, K) as input parameters support that the user may calibrate
the actual priority of each fk independently. Each wk is an integer value within a
pre-defined close range [0, 1, …, W] and expresses the importance of fk.
Let sx, sy ��S be two candidate solutions. Function F is defined by (4.2) to express
the relative quality of sy compared to sx as a real number.

K2F : S ,F(s , s) (w D(f (s), f (s))).x y x yk k kk 1
�→ ℜ = ⋅
=

. (4.2)

Function D defined by (4.3) means the comparison of sx and sy according to fk.

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

53

0,if max(a, b) 0
2D : , D(a, b) b a

, otherwise.
max(a, b)

=

ℜ → ℜ = −

�
�
�
��

 (4.3)

Using (4.2) the relational operators are overloaded by (4.4):

y(s ? s) : (F(s , s) ? 0).x x y= (4.4)

Any of the relational operators (i.e. in C++ programming language: <, >, <=, >=,
==, !=) can be used between two solutions to compare them as two real numbers.
For example: sy is a better solution than sx (sy < sx is true) if F(sx, sy) is less than
zero.
After comparing candidate solutions in an actual loop, the best schedule becomes
the initial solution of the next loop. When the scheduling process is finished or
stopped by the user, the currently best known schedule is returned, so the method
can be used in any-time working model.

4.5. Some numerical results
For testing the proposed multi-objective predictive scheduling method we have
used the data sets developed in Electrolux-Lehel Ltd. (Refrigerator Manufacturing
Plant, Jászberény, Hungary), which represent real industrial problems.
One of the case studies is summarized in Table 1. The main characteristics of the
problem are as follows: scheduling time horizon is one week, time unit is one
minute, number of jobs is 30, and number of production units is 16201.

Table 1. Sample Results of Multi-Objective Scheduling

Objective
function

priority (wk)

Objective function
(fk)

Initial
solution

(s0)

Best
solution

(s*)
5 f1: number of tardy jobs 18 0
5 f2: sum of tardiness [min] 16044.20 0

10 f3: maximum tardiness [min] 2289.68 0
5 f4: number of set-up activities 23 17
5 f5: sum of set-up times [min] 760 500
5 f6: average utilization rate of the

machines [%]
38.12 91.55

5 f7: average flow time of jobs [min] 1851.28 1419.48

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

54

f1: number of tardy jobs

f2: sum of tardiness [min]

f3: maximum tardiness [min]

f4: number of set-up activities

f5: sum of set-up times [min]

f6: average machine utilization rate [%]

f7: average flow time of jobs [min]

Figure 4. Actual values of the objective functions represented in the searching steps

Parameters of the searching algorithm are as follows: the maximum number of
elements in taboo list is 150, the number of neighbour solutions in extension is 50,
and the priority of each neighbouring operator is 1. In this case the computational
time of the solution process is approximately 50 sec. The software was coded in
C++ language. Concerning the running test environment we have; IntelR CoreTM 2
Duo T9550 2.66GHz CPU, Windows Vista OS, 4GB RAM. The actual values of

 DETAILED PRODUCTION SCHEDULING BASED ON MULTI-OBJECTIVE SEARCH AND SIMULATION

55

the objective functions represented in the searching steps can be seen in Figure 4.
All applications of the objective functions occur simultaneously. The diagrams
(screen shots) are generated by our software (with a Hungarian user interface).
The proposed method can solve the examined problems effectively in a short time.
The software developed is used in daily practice at shop floor control level of the
plant.

5. Conclusions
The paper describes the proposition and application of a practice-oriented approach
for solving multi-objective scheduling problems. It is based on execution-driven
simulation and use of relational operators for comparing qualities of schedules in
search algorithms. After developing the software, the concept is successfully tested
on extended flexible shop problems considering multiple objectives and constraints
originating from an industrial environment. Scheduling based on simulation can
consider exactly what the actual manufacturing system should perform in the
planned time horizon. In this approach, each schedule created for the shop is a
feasible solution, because all of the hard constraints are considered. The results
obtained and the independent nature of the approach encourage the application of
the method in other multi-objective optimization problems.

Acknowledgements
This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-
0001 project with support by the European Union, co-financed by the European
Social Fund.

REFERENCES
[1] BAKER, K.: Introduction to Sequencing and Scheduling. 1st ed. Canada: John Wiley &

Sons, 1974.

[2] BAYKASO�LU, A., ÖZBAKIR, L., DERELI, T.: Multiple Dispatching Rule Based
Heuristic for Multi-Objective Scheduling of Job Shops Using Tabu Search. In
Proceedings of the 5th International Conference on Managing Innovations in
Manufacturing, pp. 396-402, Milwaukee, USA, 2002.

[3] GLOVER, F.: Tabu Search: a Tutorial. Interfaces, 20, 74-94, 1990.

[4] KULCSÁR, GY., ERDÉLYI, F.: A New Approach to Solve Multi-Objective Scheduling
and Rescheduling Tasks. International Journal of Computational Intelligence
Research, 3, (4), pp. 343-351, 2007.

[5] KULCSÁR, GY., KULCSÁRNÉ, F. M.: Solving Multi-Objective Production Scheduling
Problems Using a New Approach. Production Systems and Information Engineering,
A Publication of the University of Miskolc, 5, 81-94, 2009.

 GY. KULCSÁR AND M. KULCSÁRNÉ FORRAI

56

[6] LOUKIL, T., TEGHEM, J., TUYTTENS, D.: Solving Multi-Objective Production
Scheduling Problems Using Metaheuristics. European Journal of Operational
Research, 161, pp. 42-61, 2005.

[7] QUADT, D., KUHN, H.: A Taxonomy of Flexible Flow Line Scheduling Procedures,
European Journal of Operational Research, 178, pp. 686-698, 2007.

[8] SBALZARINI, L. F., MÜLLER, S., KOUMOUTSKOS, P.: Multiobjective Optimization
Using Evolutionary Algorithms. In Center of Turbulence Research, Proceedings of the
Summer Program 2000, pp. 63-74, 2000.

[9] SMITH, K. L., EVERSON, R. M., FIELDSEND, J. E.: Dominance Measures for Multi-
Objective Simulated Annealing. In Proceedings of Congress on Evolutionary
Computation, pp. 23-30, 2004.

[10] WANG, W.: Flexible Flow Shop Scheduling: Optimum, Heuristics, and Artificial
Intelligence Solutions, Expert Systems, 22, (2), pp. 78–85, 2005.

