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Abstract. The computer visualization process, under continuous changes has 
reached a major milestone. Necessary modifications are required in the currently 
applied physical devices and technologies because the possibilities are nearly 
exhausted in the field of the programming model. This paper presents an 
overview of new performance improvement methods that today CPUs can 
provide utilizing their modern instruction sets and of how these methods can be 
applied in the specific field of computer graphics, called software rendering. 
Furthermore the paper focuses on GPGPU based parallel computing as a new 
technology for computer graphics where a TBR based software rasterization 
method is investigated in terms of performance and efficiency. 
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1. Introduction 

Computer graphics is an integral part of our life. Often unnoticed, it is almost 
everywhere in the world today. The area has evolved over many years in the past 
few decades, where an important milestone was the appearance of graphic 
processors. Because the graphical computations have different needs than the CPU 
requirements, a demand has appeared early for a fast and uniformly programmable 
graphical processor. This evolution has opened many new opportunities for 
developers, such as developing real-time, high quality computer simulations and 
analysis. 
The appearance of the first graphics accelerators radically changed everything and 
created a new basis for computer rendering. Although initially the graphics pipeline 
and the programmability of the cards followed a very simple model, the previously 
existing software rasterization quickly lost its importance because CPUs of that 
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time were not able to compete with the performance of the graphics hardware. 
From the perspective of manufacturers and industry, primarily speed came to the 
fore against programming flexibility and robustness. 
So in recent years the development of videocard technology focused primarily on 
improving the programmability of the fixed-function pipeline. As a result, today's 
GPUs have quite effectively programmable pipelines supporting the use of high-
level shader languages (GLSL, HLSL, CG).  
Nowadays, technological evolution is proceeding in quite a new direction 
introducing a new generation of graphics processors, the general-purpose graphics 
processors (GPGPU). These units are no longer suitable only for speeding up the 
rendering, but tend the direction of general calculations similarly to the CPU. 
However, the problems of GPU-based rasterization should be emphasized. The 
applied model and the programming logic slowly reach their limits, the intensity of 
progress is apparently decreasing. Though there are fast hardware supported 
pipelines in current graphics cards, they do not provide the same level of flexibility 
for the programmer to manage the rendering process as CPU based rendering. The 
reason for this is that the pipeline is adapted to hardware limitations and there are 
many other limitations in utilization of shader languages. 
Although the existing pipeline and 3D APIs provide many features for developers, 
if we would like to deviate from conventional operation, we encounter many 
difficulties. The general purpose programming of the GPU unit is limited because 
of the memory model and the fixed-function blocks, which are responsible for 
performing parallel thread executions [7]. For example, the sequence of pixel 
processing is driven by rasterization and other dedicated scheduling logic. This is 
clearly demonstrated by the uniform and predictable look and attitude of today's 
computer games [1].  
Today's GPU architecture is questionable and needs to be reformed, as leading 
industrial partners strongly suggest [17,18]. What if developers could control every 
aspect of the rendering pipeline? The answer is practically a return to software 
rendering. A good basis is provided for this by the huge revolution in CPUs 
occuring in recent years. Processor manufacturers responded with extended 
instruction sets to market demands making faster and mainly vectorized (SIMD) 
processing possible also for central units. Almost every manufacturer has 
developed its own extension, like the MMX and SSE instruction family which are 
developed by Intel and supported by nearly every CPU. Initially, AMD tried to 
strengthen with its 3DNow instruction set, but nowadays the direction of 
development is the Vector Floating Point (VFP) technology and the SSE like 
NEON instruction set initially introduced at ARM Cortex-A8 architecture. 
Due to new technologies, software can reach about 2-10x speedup by exploiting 
properly the hardware instruction set. All this combined with the GPGPU 
technology, the question arises: Why could a full software implemented graphical 
pipeline not be developed where all parts are programmable? Although the 
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performance probably would not compete completely with a graphical unit, it 
would offer a more flexible solution than today’s only GPU-based solutions. 
The main aim of this paper is to examine how it is possible to develop a software 
renderer built on modern basis, which points forward, is fast enough and takes 
advantage of technological opportunities inherent in today's central units. 

2. Related work 

Computer graphics has always been a very crowded area over the years, but with 
the spread of tablet PCs and mobile devices it has come fore even more. It is 
common in almost all fields whether physical simulation, modeling, multimedia or 
the area of computer games. However, although the GPU based display has a 
detailed literature, the area of software rendering has only a small number of new 
publications since the release of GPUs. 
Software based image synthesis has been there since the first computers and it was 
focused even more with the appearance of personal computers until about 2003. 
Thereafter almost all visualization became GPU based. Among the software 
renderers born during the early years, the most significant results were the Quake I, 
Quake II renderers (1996), which are the first real three-dimensional engines [5]. 
These graphics subsystems were developed by the coordination of Michael Abrash,  
and were typically optimized for the Pentium processor family taking advantage of 
the great MMX instruction set. Among the later results, the Unreal engine (1998) 
can be highlighted, whose functionality was very rich at the time (colored 
lightning, shadowing, volumetric lighting, fog, pixel-accurate culling, etc) [13]. 
After the continuous headway of GPU rendering, software rasterization was 
increasingly losing ground. Despite this, some great results have been born, such as 
the Pixomatic 1, 2, 3 renderers [15] by Rad Game Tools and the Swiftshader by 
TrasGaming [2]. Both products are highly optimized utilizing the modern threading 
capabilities of today’s Multicore CPUs and have dynamically self-modifying pixel 
pipelines. In addition, Pixomatic 3 and Swiftshader are 100% DirectX 9 
compatible. 
Microsoft supported the spread of GPU technologies by the development of 
DirectX, but besides this, its own software rasterizer (WARP) has been 
implemented. Its renderer scales very well to multiple threads and it is even able to 
outperform low-end integrated graphics cards in some cases [3]. 
In 2008 based on problem and demand investigations, Intel aimed to develop its 
own software solution based videocard within the Larrabee project [7]. The card in 
a technological sense was a hybrid between the multi-core CPUs and GPUs. The 
objective was to develop a fully programmable software pipeline using many x86 
based cores [4]. 
Today, based on the GPGPU technology, a whole new direction is possible in 
software rendering. Loop and Eisenacher [2009] describe a GPU software renderer 
for parametric patches. Freepipe Software rasterizer [Liu et al. 2010] focuses on 
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multi-fragment effects, where each thread processes one input triangle, determines 
its pixel coverage and performs shading and blending sequentially for each pixel. 
Interestingly, recent work has also been done by NVidia to create a software 
pipeline which runs entirely on the GPU using the CUDA software platform [8]. 
The algorithm uses the popular tile-based rendering method for dispatching the 
rendering tasks to GPU. Like any software solution, this allows additional 
fexibility at the cost of speed. 
Today's leading computer game Battlefield 3 [14] introduced a new SPU (Cell 
Synergistic Processor Unit) based deferred rendering process, which makes it 
possible to handle and optimize a large number of light sources. 
In [1] the author outlined a modern, multi-thread tile based software rendering 
technique. The solution utilized only the CPU and had great performance results. 
Thus, recent findings clearly underline the fact that in order to increase power and 
flexibility CPU-based approaches come to the fore again. 

3. Software rendering 

The imaging process is called software rasterization when the entire image 
rasterization process is carried out by the CPU instead of a target hardware (e.g. 
GPU unit). The shape assembling geometric primitives are located in the main 
memory in the form of arrays, structures and other data. The logic of image 
synthesis is very simple: the central unit performs the required operations 
(coloring, texture mapping, color channel contention, rotating, stretching, 
translating, etc.) on data stored in the main memory, then the result is stored in the 
framebuffer (holding pixel data) and sends the completed image to the video 
controller. The following figure shows a general pipeline of a software renderer: 

 
Figure 1. General graphics software pipeline 

If we look at the pipeline stages, we can see that two dominant groups are formed 
during the image rasterization process. The first group includes mainly vertex 
transformation operations, which takes up to framebuffer operations. In these 
phases, the pixel level rasterization is prepared by several matrix and vector 
transformations (e.g. coordinate system, vertex, cameras, cutting). The second 
group includes per-pixel operations, such as triangle discretization and pixel 
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shading. For graphics engines from the perspective of rendering these two groups, 
but mainly the second, are the computationally intensive task. 
However, optimizing stages in both groups can result in significant speedup. In the 
following several modern performance improvement techniques are outlined. 

3.1 Benefits of software rasterization 
The software image synthesis has many advantages over the GPU-based 
technology. As the CPU performs the whole processing, there is less need to worry 
about compatibility issues because we do not have to adapt to any special 
hardware, or follow its versions. The image synthetis can be programmed 
uniformly using the same language as the application, so there is no restriction on 
the data (e.g. maximum texture size) and the processes compared to GPU language 
shader solutions. Every part of the entire graphics pipeline can be programmed 
individually. Preparing the software to several platforms causes fewer problems 
because displaying always goes through the operating system controller, there is no 
need for a special video card driver. 
In summary, software rendering allows  more flexible programmability for image 
synthesis than GPU technology. 

3.2 Disadvantages of software rasterization 
The main disadvantage of software visualization is that all data are stored in the 
main memory. Therefore in case of any changes of data, the CPU needs to contact 
this memory. These requests are limited mostly by the access time of the specific 
memory type. Frequent changes on segmented data in memory cause significant 
loss of speed. 
The second major problem, which originates also from the bus (PCIe) bandwidth, 
is the movement of large amounts of datasets between the main and the video 
memory. During one second the screen should be redrawn at least 50-60 times, 
which results in a significant amount of dataflow between the two memories. In 
case of a 1024x768 screen resolution, 32 bit color depth, one screen buffer holds 3 
MB data. 

4. General acceleration opportunities and difficulties 

Today’s modern processor architecture offers many opportunities to increase  the 
performance of the computationally intensive parts in the graphics pipeline. 
Naturally, to achieve really good results it is necessary to combine these methods, but 
due to space limitations this article focuses only on the most important techniques. 

4.1 SSE based pipeline optimization 
In recent years, the most important innovation was built around the SIMD processor 
instruction sets (Intel – SSE family, AMD – 3DNow, Apple – AltiVec, ARM – 
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NEON). These allow us to accelerate calculations in a vectorized way and can 
achieve multiple speed improvement in the pipeline. Besides, another important 
aspect is the question of programmability: How difficult is it to turn an existing code 
into an SSE code? Will the code be portable to other operating systems? 
Among desktop computers the SSE instruction set is widely accepted today and the 
instruction set based programming is well-supported by compilers (e.g. GCC, Intel). 
Modern compilers provide several options to build SSE codes. It is possible to 
implement the code in assembly language, which requires a deep programming 
knowledge and the code will not always be portable. Another option is to use the 
higher level Intrinsics library of the compiler. This approach makes the programming 
level high enough and comfortable (e.g. GCC: __m128 z = mm_setzero_ps(); - fills 
the vector with zero bytes), and does not limit portability either. 

4.1.1 SSE based vector optimization 
SSE (Streaming SIMD Extensions) is a SIMD instruction set family (currently SSE 
4.2) developed by Intel for x86 architectures. The main innovation is that SSE 
originally added eight new 128-bit registers, known as XMM0 through XMM7. 
The extended instruction set provides the opportunity for the processor to execute 
an operation (e.g. multiplication) on the data of two vectors in parallel. 

 
Figure 2. Parallel computing with SSE vectors 

The first operation group of the pipeline typically consists of some kind of vector 
transformations performed on large datasets. In case of three-dimensional 
visualization, applying the SSE instruction set makes it possible to store four 
different 32 bit length floating point numbers (x,y,z,w) in a 128 bit length vector. 
This means that calculations can be made on these numbers at the same time, 
which results in significant speed improvements in the execution of the pipeline 
transformations. 

4.1.2 SSE based image processing 
The SSE instruction family can be also successfully applied in the rasterization 
stage of the pipeline or in any other graphical transformation because most of the 
pixel operations are independent of each other and can be executed in parallel. 
Today’s graphics engines use typically 32-bit (RGBA) color component 
framebuffers, where each component is 4 bytes long. This mapping fits well with 
the SSE approach because four pixels colors can be stored in a 128 bit length 
register and operations can be performed on it in parallel. 
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4.1.3 SSE test results 
In the following, the efficiency of the SSE solution is presented through two test 
cases. The first test demonstrates a general calculation, vector normalization, which 
is often used by graphics engines. The formula is compute intensive because it 
contains square roots and divisions. During the test process 50,000 vector 
normalizations are repeated 200,000 times. 
The second test demonstrates the strength of SSE in an everyday pixel-level image 
processing task. The test performs 1000 brightening transformations on a 32 bit, 
1024x768 resolution image. The test programs were written using SSE2 instruction 
set, C++ language and GCC 4.4.1 compiler was used and the measurements were 
performed by an Intel Core i7 870 2.93 GHz CPU. The following table shows the 
results of each test case. 

 
Figure 3. Comparison of the computing results 

Measurement results prove the strength of the SSE-based programming. The 
performance of the calculations in pipeline bottlenecks can be multiple improved 
with the appropriate SSE code. While in the first case the speed improvement is 
7.8x, the second test shows that SSE was 3.05 times faster compared to the 
conventional code. 

4.1.4 Drawbacks of SSE programming 
Applying the SSE-based programming, certain compromises are required. 
Although this instruction set is well-supported by today's compilers (such as C++), 
an efficient, fast SSE-based code adaptation requires higher programming skills. 
SSE is not the Holy Grail, a poorly written code can be slower than the traditional 
approach.  
The only restriction of SSE is that the stored and used data must be 16 byte aligned 
(evenly divisible by 16) in memory. Without this, the arithmetic instructions cannot 
be used directly. The disadvantage of the aligned memories is that data storage 
probably does not require 16-byte alignment, so basically we are wasting memory. 
In return we can gain high performance. 
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4.2 Working with Alignment 
The graphics pipeline, thus rasterization speed can be even further improved if we 
store data properly aligned in memory. All data in memory have two properties: 
value and address. Data alignment means that the address of the data is divisible by 
one of the numbers (1,2,4,8) representing the byte length of the alignment. In other 
words, a data object can have 1-byte, 2-byte, 4-byte, 8-byte alignment or any 
power of 2. The CPU does not read from or write to memory one byte, instead 
accesses memory in 2, 4, 8, 16, or 32 byte chunks at a time. 
Therefore if the related datasets of the graphics pipeline are not properly aligned to 
4, 8, or 16 byte order, then these misaligned structures can cause serious 
performance losses, because CPU has to perform extra work (load 2 chunks, shift 
and combine) to access the data [12]. A simple case: 

CPU

Memory

Data

Load upper 
4 byte

Load lower
4 byte

Shift 
1 byte up

Shift 3 bytes
down

Combine 2 
4 byte chunks

 

Figure 4. Unaligned data usage by CPU 

The alignment problem of the pipeline structures is relatively easy to solve in 
lower-level languages (e.g. C, C++, D). The principle of member alignment is 
defined by the current compiler, but in most cases the rules are the same. The 
alignment should be always based on the most restrictive structure member, which 
is usually the largest intrinsic type. Therefore, members of a data storage structure 
should be ordered in descending order according to their size. Thus we get an 
aligned memory structure. In case of larger structure blocks this not only saves 
memory but the efficiency of rasterization can also be increased significantly. 

4.3 Minimize cache misses 
Today's processors have at least one first-level instruction and data caches on chip, 
and may have second-level cache memory. Memory access speeds are much faster 
from these storages. If the pipeline wants to access some kind of data during its 
running and these data are not in one of the caches, then a cache miss event is 
generated and the data will be loaded into the cache. This event is very costly. 

Load upper 
4 byte 

Load lower 
4 byte 

Shift 3 bytes
down 

Shift 
1 byte up 

Combine 2
4 byte chunks
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While a value of a variable can be loaded during some clock cycles from the cache, 
loading it from the main memory requires hundreds of clock cycles. Due to this 
rule an important goal is to reduce cache misses with the following proposals: 

• Frequently used data should be stored together and not segmented, 
• Avoid pointer indirection, store and access frequently used data in flat, 

sequential data structures, 
• Accessing data sequentially minimizes cache misses, because each cache 

miss will load n number of new data into the cache, 
• Group the functions which work on the same data. 

5. GPGPU accelerated software pipeline 

The GPU-based visualization technology is moving today towards to general 
purpose processing. This opens up new possibilities for computer visualization and 
engineering simulations because the graphics processors are no longer limited only 
to displaying graphics, but can be used for any calculations. The latest GPGPU 
cards are hiding huge computing power (~1 Tflops/s) because of the inherent 
growing number of streaming processors (e.g. NVidia GTX 480 has 480 CUDA 
cores), fast memory (GDDR5) and advanced technology. Since the traditional 
GPU-based pipeline is not flexible enough, why cannot we use the GPGPU 
solution of the graphics hardware to implement the pipeline entirely in software? 
Logically, the general purpose options of the GPU can be used for any stages of the 
graphics pipeline with certain restrictions. Since rasterization is a much more 
computing-intensive task, the computations should be divided between the CPU 
and GPU in the way that the GPU performs the tasks from the projection stage. The 
GPU, due to its design and purpose, is very good at parallel task execution. And the 
process of rasterization typically belongs among well-parallelizable calculations. 

5.1 Working together with GPU 
The objective of the rasterization stage is to map triangles of the models to screen 
pixels considering the impact of lights, materials and any other factors. In case of 
software rasterization the typical rendering process is that the CPU takes triangles 
sequentially from memory, maps their points to the two-dimensional plane and 
finally calculates their pixels. The color of pixels is stored in a memory array, 
adapted to the screen resolution, called the framebuffer, and after the rasterization 
the buffer is copied to the video memory. 
GPGPU support of the process can be achieved in several ways. For the ideal 
solution the characteristics and the programming language (OpenCL, CUDA)  
options of the GPU should be taken into account [9]. The smallest unit of their 
programming model is the work-item, which runs the implemented kernel code and 
is groupped into work-groups. Each work-group has a dedicated processor and runs 
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separately from the others. The group of work-items also runs inside the same 
computing unit. Therefore the proper rendering process should be chosen so that 
we could exploit the hardware features. For this, logically the Tile-Based 
Rendering [6] is the closest rasterization procedure. The following figure illustrates 
the TBR rendering solution from the perspective of the GPGPU. 

Work-
group 1

Work-
group 2

Work-
group n

Work-group i

Work item 
1

Work item 
2

Work item 
m

 
Figure 5. GPGPU model of Tile-Based Rendering 

Based on the central idea of TBR, the framebuffer should be divided into equal-
size areas, called bins. In order to exploit the parallel execution of the GPU, all 
areas should be assigned to a specific work-group, where work-items perform the 
computations. The rasterization logic is the following: all triangles of the pipeline 
are assigned to a tile (binning) based on their 2D mapping, whether the tiles 
overlap or not. All tiles are processed independently and parallelly on a separate 
processor, where the pixel level rasterization is performed by work-items. 
In frame buffer distribution, typically 16x16 or 32x32 size parts should be chosen. 
The resolution is then not too high to take advantage of the card parallelism (e.g. 
Card cache size, local memory size, maximum numbers of work items, etc.), and 
not too small to result in many unnecessary calculations. 
In a group, work-items are responsible for rasterizing the image of a tile. They take 
the list of triangles belonging to the group, calculate their boundaries and perform 
the pixel level rasterization. Within a group, work-items run also in parallel and 
share the same local memory. Each item is associated with a triangle, it is 
responsible for its rasterization. Because triangles can overlap according to their Z 
value, synchronization is required between the items, which is supported by the 
languages (OpenCL, CUDA). The whole image (framebuffer) is ready to display 
when each group has completed its own task. 

5.2 Constraints of GPGPU programming 
The GPU and the main memory are away from each other, so moving data between 
them is strongly limited by the PCIe bus transfer rate (~2.4 GB/s). It is therefore 
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appropriate to store all triangle data of the pipeline in a card’s memory and 
minimize data movement. As a short test, an empty, 1024x768 size, 32 bit 
framebuffer was shared with the GPU and performance was measured. No other 
calculations were performed, only data sharing and framebuffer displaying. The 
hardware used for the test was an ATI Radeon HD 5670 1 GB RAM. In the first 
test case an empty framebuffer was displayed on the screen and no GPU share was 
applied. The average rendering speed was 1100 FPS. In the second test, the 
software framebuffer was shared with the GPU in each rendering frame using 
OpenCL and the average performance dropped to 620 FPS without any GPU 
calculations. 
Another problem is that running a kernel (even an empty one) requires a specific 
preparation time in execution. In the third test it was investigated how this kernel 
initialization affects the rendering performance. During the test process an empty 
kernel was created and four float type variables were shared with the kernel. 
Rendering speed dropped to 580 FPS this time. 
Naturally, there are opportunities to improve the loss of speed arising from the 
communication. For example, if the entire framebuffer is stored as an OpenGL 
texture in the card’s memory and is shared for GPGPU computations. However, 
applying this method, we lose a part of the characteristics of software pipeline. 
We can say that the modern GPU is very efficient in parallel processing, but is not 
a wonder tool. Tests show that the technology can be applied in real-time 
applications, but it provides sufficient efficiency only in case of well-prepared and 
GPU uploaded data. 

Conclusion 

It can be said that the future is bright for a software rendering revolution. The 
techniques presented in this article highlight the fact that developing a really fast 
software renderer requires a lot of effort. It is essential to combine several 
technologies and to use lower-level languages for programming. The CPU has 
evolved over the past few years: utilizing its potential properly, the performance of 
the software rendering pipeline can be improved to a large extent. This paper has 
presented how the GPGPU technology can be applied as a new approach in the 
rasterization stage. Its parallel potentials are adaptable to the TBR rendering 
method but only within certain limits.  
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