

Production Systems and Information Engineering Volume 6 (2013), pp. 91-100

PARAMETER APPROXIMATION FOR TOOL LIFE EQUATIONS

SÁNDOR FEGYVERNEKI University of Miskolc, Hungary Department of Applied Mathematics matfs@uni-miskolc.hu

ATTILA KÖREI University of Miskolc, Hungary Department of Applied Mathematics matka@uni-miskolc.hu

JÁNOS KUNDRÁK University of Miskolc, Hungary Department of Production Engineering janos.kundrak@uni-miskolc.hu

[Received March 2012 and accepted September 2012]

Abstract. The aim of this research is to investigate a model for estimating tool life (Kundrák, 1996) during high speed hard turning based on the relationship between the wear progress (speed) and time. The tool life equation is valid in the whole cutting speed range for a given feed rate and depth of cut, and has two extreme values. Here the coefficients A, B and K of the equation are calculated under different cutting conditions and the results are in good agreement with experimental values. It is also shown that different feed rate and depth of cut values change the location of the two extreme values of the tool life curve. A Matlab model was developed to determine the parameters of the tool life equation. Furthermore the properties of estimated parameters were investigated by Statistica 9 program package.

Keywords: tool life equation, least squares, Levenberg-Marquardt

1. Introduction

The time spent cutting up to the allowed wear of the tool is considered tool life. Among the cutting data it is the cutting speed that has the most significant effect on the wear intensity. The famous formula for estimating tool life was established by Taylor [11] about one hundred years ago. It gave the tool lives belonging to different cutting speeds by v_c -T tool life curve ('Taylor relation'), which is still in use.

The prediction of tool deterioration is done even today by calculating the tool life based on experimental work, using the empirical tool life equations.

Although Taylor's equation gives a simple relationship between tool life and cutting speed, and it is easy to use, at the same time the information is limited only to one cutting datum. In addition, Taylor equations consume a lot of money and time since they give reliable results only in a relatively narrow range of cutting speed [4, 7, 11].

The results of a wide range of tool life experiments proved that the real tool life change depending on the cutting speed has a relative maximum and a relative minimum value.

This is caused first of all by the layers of different thicknesses and origins (for example metallic and non-metallic build-ups) which are created by the resultant of highly complicated mechanical, physical and chemical procedures.

In the last one hundred years a great number of suggestions have been made to describe the connection between the cutting parameters and tool life using simplified approximation curves (Safonov, Temchin, Wu, Kronenberg, Metchisen, Granovski, König-Depiéreaux etc) [2, 8].

Among the relationships found in technical literature only some are able to describe tool life in a wide range of cutting parameters.

A new tool life equation valid for the whole cutting speed range created by Kundrák [6] is suggested to be used for the description of tool life [5, 7, 8,9].

$$T = \frac{K}{V^3 + AV^2 + BV},$$
 (1.1)

(time T, speed V, parameters A, B and K).

This tool life equation is valid in the whole cutting speed range for a given feed rate and depth of cut, and has two extreme values. Here the coefficients A, B and K of the equation are calculated under different cutting conditions and the results are in good agreement with experimental values. It is also shown that different feed rate and depth of cut values change the location of the two extreme values of the tool life curve.

A Matlab simulink model was developed to simulate the tool life based on the flank wear rate [1].

In this paper a good iterative, numerical algorithm is given with starting values. Furthermore the properties of estimated parameters are investigated by Statistica 9 program package.

2. Mathematical description of tool life

Denote speed by x and tool life by f(x). From the former investigations we have the following conditions for the approximation of the tool life curve:

- F1 $f: (0, \infty) \to (0, \infty)$.
- F2 $\lim_{x \to 0+0} f(x) = +\infty.$
- F3 $\lim_{x \to +\infty} f(x) = 0.$
- F4 There exist 0 < a < b such that f'(a) = f'(b) = 0.
- F5 $\lim_{x \to 0+0} f'(x) = -\infty.$
- F6 $\lim_{x \to \pm\infty} f'(x) = 0.$

The relationship suitable to describe the complete tool life curve can be written in the following form using the symbols applied in cutting:

$$f(x) = \frac{K}{x^3 + Ax^2 + Bx}.$$
 (2.1)

Remark. The function f was given by investigating reciprocal polynomials. Conditon F4 implies that the degree of polynomials is at least 3 and the constant of polynomials is equal to 0 by condition F2.

$$f(x) = \frac{K}{x^3 + Ax^2 + Bx + C}$$
 (2.2)

$$f'(x) = \frac{-K(3x^2 + 2Ax + B)}{(x^3 + Ax^2 + Bx + C)^2}$$
(2.3)

The expansion of further constraints

1.
$$K > 0$$
.
2. $C = 0$.
3. $A^2 < 4B$
4. $A^2 > 3B$
5. $A < 0$ and $B > 0$.

Thus C = 0. The possible place of extrema are

$$x_1 = -\frac{1}{3}A - \frac{1}{3}\sqrt{A^2 - 3B}, \quad x_2 = -\frac{1}{3}A + \frac{1}{3}\sqrt{A^2 - 3B}.$$
 (2.4)

The second derivative

$$f'(x) = \frac{2K(3x^2 + 2Ax + B)^2}{(x^3 + Ax^2 + Bx)^3} - \frac{K(6x + 2A)}{(x^3 + Ax^2 + Bx)^2}$$
(2.5)

implies that there is a local minimum at x_1 and a local maximum at x_2 .

By the classical relation of roots and cofficients we have

$$x_1 + x_2 = -\frac{2A}{3}$$
 és $x_1 x_2 = \frac{B}{3}$. (2.6)

The optimization problem can be defined as follows: Given the measurements

$$(x_1y_1), (x_2y_2), \dots, (x_ny_n),$$
 (2.7)

determine the parameters K, A and B such that

$$\sum_{i=1}^{n} \left(y_i - \frac{K}{x_i^3 + Ax_i^2 + Bx_i} \right)^2 \to \min.$$
 (2.8)

Let

$$Q := \sum_{i=1}^{n} \left(y_i - \frac{K}{x_i^3 + Ax_i^2 + Bx_i} \right)^2.$$
(2.9)

Then

$$\frac{\partial Q}{\partial K} = \sum_{i=1}^{n} -2\left(y_i - \frac{K}{x_i^3 + Ax_i^2 + Bx_i}\right) \left(x_i^3 + Ax_i^2 + Bx_i\right)^{-1} = 0, \quad (2.10)$$

$$\frac{\partial Q}{\partial A} = \sum_{i=1}^{n} 2 \left(y_i - \frac{K}{x_i^3 + Ax_i^2 + Bx_i} \right) K x_i^2 \left(x_i^3 + Ax_i^2 + Bx_i \right)^{-2} = 0, \quad (2.11)$$

$$\frac{\partial Q}{\partial B} = \sum_{i=1}^{n} 2 \left(y_i - \frac{K}{x_i^3 + Ax_i^2 + Bx_i} \right) K x_i \left(x_i^3 + Ax_i^2 + Bx_i \right)^{-2} = 0.$$
(2.12)

This is a system of nonlinear equations where the order of magnitude of parameters is determined strictly by data. We can solve this system by an iterative method (Levenberg-Marquardt, trust region) [3, 4]. The starting values are obtained by the modified optimization problem

$$\sum_{i=1}^{n} \left(\frac{1}{y_i} - \frac{x_i^3 + Ax_i^2 + Bx_i}{K} \right)^2.$$
(2.13)

If we solve this modified least squares problem, then the system of equations is linear and its solution is a good starting value for the original least squares problem. By further investigations it was obtained that the solution of the problem

$$\sum_{i=1}^{n} \left(\frac{1}{y_i x_i} - \frac{x_i^2 + A x_i + B}{K} \right)^2$$
(2.14)

would be better for starting value.

3. Experimental results

Table 1 contains the data of six experiments and the results of our calculations. Having fixed the values of feedrate and depth of cut, tool life was measured depending on different cutting speeds. The bottom part of the table shows the calculated parameters of the six tool life curves and the coordinates of the extrema on them where E is the error of the approximation.

v _c [m/min]	T [min]					
X	Y1	Y2	Y3	Y4	Y5	Y6
11	450	300	260	400	310	290
20	310	220	210	270	240	210
29	260	210	190	260	220	210
35	260	220	200	250	220	210
40	260	230	210	260	230	220
50	270	210	160	270	230	220
59	270	170	110	260	200	180
68	270	110	60	220	150	130
80	230	60	30	150	90	70
92	160	40	30	90	50	40
105	100	20	10	60	30	20
120	60	10	6	30	20	10
150	20	4	2	10	7	5
f[mm/rev]	0.025	0.075	0.125	0.05	0.05	0.05
a _p [mm]	0.1	0.1	0.1	0.05	0.15	0.25
K	26.03x10 ⁶	7.67x10 ⁶	5.05x10 ⁶	16.12x10 ⁶	9.86x10 ⁶	8.06x10 ⁶
А	-146.61	-102.97	-90.44	-125.44	-112.03	-107.66
В	6772.17	3373.07	2647.84	4975.66	3959.55	3623.01
Е	145.30	152.51	450.12	255.94	104.11	95.93
minx	37.43	26.99	25.02	32.33	28.70	26.93
miny	258.94	215.06	199.69	253.72	219.15	206.57
maxx	60.31	41.66	35.27	51.30	45.98	44.85
maxy	275.35	225.00	204.03	268.12	232.46	223.01

Table 1. Data and results of calculations

In order to make the discussion of different tool life curves convenient, a user interface is developed with the help of Matlab GUI (Fig. 1). After loading the list of cutting speeds and the corresponding tool life values, the program calculates the parameters of the tool life equation, presents the graphs of v-T and v-L functions and displays the extrema on these functions.

Figure 1. Matlab user interface for the problem

4. Statistical results

Main results are given by *Statistica 9* software where (x11_Y1Y6) is the name of data file.

Model is: $Y2=K/(X^3+B*X^2+C*X)$; Dependent variable: Y2; Independent variables: 1; Loss function: least squares; Final value: 152,51007128; Proportion of variance accounted for: 0,99877281 R =0,99938622.

A common alternative to the least squares *loss function* is to maximize the likelihood or log-likelihood function (or to minimize the negative log-likelihood function; the term maximum likelihood was first used by Fisher, 1929).

	Model is: Y2=K/(X^3+B*X^2+C*X) (x11_Y1Y6)					
	Dep. Var. : Y2					
	Loss	K	В	С		
	Function					
1	612,0588	0	0,100	0,100		
2	603,7063	19131	0,100	0,100		
3	600,1535	22883	-1,904	-0,187		
4	592,9964	28799	-4,053	-1,180		
5	579,2200	36857	-5,794	-5,159		
6	546,9349	46742	-6,928	-17,346		
7	525,4859	58241	-7,394	-22,311		
8	523,4034	75313	-7,184	-19,546		
9	519,6936	108030	-6,796	-14,177		
10	513,7193	167372	-6,138	-4,121		
11	503,8548	285899	-4,974	17,179		
12	489,0267	520740	-3,234	64,050		
13	468,1469	971452	-1,915	171,837		
14	436,5744	1745041	-6,741	424,369		
15	355,1769	2638343	-36,759	972,743		
16	138,1249	4731877	-80,710	2119,442		
17	35,0382	7526846	-99,462	3173,117		
18	12,5452	7703253	-102,898	3370,423		
19	12,3495	7676002	-102,973	3373,188		
20	12,3495	7675579	-102,971	3373,075		

Table 2. Iteration history (Statistica 9 software)

 Table 3. Summary: parameter estimates (Statistica 9 software)

	Model is: Y2=K/(X^3+B*X^2+C*X) (x11_Y1Y6) Dep. Var. : Y2 Level of confidence: 95.0% (alpha=0.050)						
	Estimate Standard t-value p-value Lo. Conf Up. Conf						
	error df = 10 Limit Limit						
Κ	7675579	196731,1	39,016	0,000000	7237235	8113923	
В	-103	0,7	-140,242	0,000000	-105	-101	
С	3373	53,2	63,393	0,000000	3255	3492	

The estimated parameter values are rejected by t-test at arbitrary confidence level.

 Table 4. Correlation of parameters (Statistica 9 software)

	Model is: Y2=K/(X^3+B*X^2+C*X) (x11_Y1Y6					
	K	В	С			
Κ	1,000000	-0,736468	0,909304			
В	-0,736468	1,000000	-0,937510			
С	0,909304	-0,937510	1,000000			

The correlations are high in every case.

Table 5. Observed and predicted values (Statistica 9 software)

	Model is: Y2=K/(X^3+B*X^2+C*X) (x11_Y1Y6					
	Dep. Var. : Y2					
	Observed	Predicted	Residuals			
1	300,0000	295,4953	4,50468			
2	220,0000	223,9542	-3,95422			
3	210,0000	215,5498	-5,54976			
4	220,0000	220,6083	-0,60835			
5	230,0000	224,6363	5,36375			
6	210,0000	211,8833	-1,88328			
7	170,0000	167,0517	2,94834			
8	110,0000	113,4403	-3,44033			
9	60,0000	62,4896	-2,48961			
10	40,0000	35,2962	4,70379			
11	20,0000	20,3845	-0,38454			
12	10,0000	11,8089	-1,80890			
13	4,0000	4,9073	-0,90732			

The approximation function f of observed values is uniform in the whole interval.

5. Conclusions

With the appearance of superhard tools, the possibility of precision machining applications has significantly widened. The results reported in this paper should help us to promote the economical application of CBN tools. Application of a new tool life equation is suggested and its advantages have been shown, i.e. it is valid for the whole range of the cutting speed, it considers the joint influence of technological data elements, and it can be applied in practice with our Matlab user interface. This interface is simple, quick, accurate and user friendly.

Acknowledgements

This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010/0001 project with support by the European Union, co-financed by the European Social Fund.

REFERENCES

- ADESTA, E.Y.T., AL HAZZA, M., RIZA, M., AGUSMAN, D.: Tool Life Estimation Model Based on Simulated Flank Wear during High Speed Hard Turning. *European Journal of Scientific Research*, 39, 2010, pp. 265-278.
- [2] BENO, J.: Theory of metal cutting, (in Slovakian) Edition Vienala Kosice, 1999.
- [3] FORST, W., HOFFMANN, D.: *Optimization Theory and Practice*, Springer-Verlag, Berlin, 2010.
- [4] HORVÁTH, M.: Computer Aided Planning of Part Machining Processes, DSc thesis (In Hungarian), MTA SZTAKI Tanulmányok, Budapest, 169/1985.
- [5] KARPAT YIGIT; OEZEL TUGRUL: Multi-objective optimization or turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization *Int. J. Advance Manufacturing Technology*, 35, Issue: 3-4, 2007, pp. 234-247.
- [6] KUNDRÁK, J.: The scientific principles of increasing the effectiveness of inner surfaces' cutting with CBN Tools, DSc thesis (In Russian) Kharkov, 1996.
- [7] MAMALIS, A. G., KUNDRÁK, J., HORVÁTH, M.: Wear and Tool Life of CBN Cutting Tools. Int. J. Advance Manufacturing Technology, 20, pp. 475–479, 2002.
- [8] MAMALIS, A. G. KUNDRÁK, J. HORVÁTH, M.: On a novel tool life relation for precision cutting tools. J. Manuf. Sci. Eng., 127, 2005, pp. 328–332.
- ROY R.; MEHNEN J.: Dynamic multi-objective optimisation for machining gradient materials CIRP ANNALS-MANUFACTURING TECHNOLOGY, 57, Issue: 1, 2008, pp. 429-432.
- [10] TAYLOR, F. W.: On the art of metal cutting, Transaction of the ASME, V.28, (1901).
- [11] TÓTH, T.: Automated technical planning in production engineering, *DSc thesis (In Hungarian)*, Miskolc, 1988.