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Abstract. A novel method is proposed in this paper to handle the classification 
uncertainty using decision tree classifiers. The algorithm presented here extends 
the decision tree framework to give the ability of measuring the confidence of 
the classification. Using this algorithm a certain number of the input samples are 
rejected as "risky points" in order to obtain a smaller misclassification rate on 
the remaining points. The algorithm is being integrated into a Medical Decision 
Support System where a confmdence number to every classification is required. 
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1. Introduction and Inspiration 

Breast cancer is one of the most common form of cancer among women. Every 
12th woman suffers from this disease at least once in her lifetime [1]. Since the 
cause of breast cancer is unknown, early detection is very important. If detected 
early, the five-year survival rate exceeds 95% [1]. 

Currently mammography (X-ray examination of the breast) is the most efficient 
method for early detection. In a mammographic session usually two images are 
taken of both breasts. Craniocaudal (CC) is a top view, mediolateral (ML) is 
roughly a side view image of the breast. Radiologists typically notice suspicious-
looking structures in one view and then verify their suspicion by checking the 
corresponding area of the other view of the same breast. The most important 
mammographic symptoms of breast cancer can be divided into two main classes: 
microcalcifications (a group of small white calcium spots) and masses (usually 
approximately round object brighter than its surrounding tissue). 
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If a global screening were done, a huge number of mammograms (approximately 
one million images every year in Hungary) would require diagnostics. The main 
goal is to create a tool that can ease the work of radiologists by filtering out the true 
negative cases and draw attention to the suspicious ones. Such Medical Decision 
Support System for Mammography is being developed in cooperation with 
radiologists in the Budapest University of Technology [2]. 

In the system several detection algorithms are working parallel to each other, 
looking for different kinds of abnormalities (e.g. microcalfications, masses) or 
different kinds of features to detect the same type of abnormality. Since markings 
(spots that show the location of an abnormality) created by the detection algorithms 
cannot be 100% certain, a confidence value was introduced to the system. Each 
marking is accompanied by this value, showing the diagnoses certainty. The higher 
this value, the more possible is that the marking is a true abnormality. This value is 
also used by post-processing algorithms to filter out the most likely false positive 
markers (the ones with the lowest confidence value). Each algorithm is produces 
this confidence value, although in different ways. 

One of the methods uses decision trees to classify a certain number of features at a 
location of the image [3]. The result of this classification can be normal tissue or 
abnormality. If the features are classified as abnormal tissue a marking is 
generated. To generate the confidence value the original decision tree algorithm 
was modified to handle classification uncertainty. 

This paper discusses a novel extension to the original Classification and Regression 
Tree (CART) framework (proposed by Breiman et al, 1984) [4] to handle 
classification uncertainty. 

2. Extension of the Decision Trees 

2.1. Basis of the Current Work 

The origin of decision trees dates back to 1963, when the AID (Automatic 
Interaction Detection) program [5] was developed at the Institute for Social 
Research, University of Michigan, by Morgan and Sonquist. They proposed a 
method for fitting trees to predict a quantitative variable. The AID algorithm 
created regression trees. A modification to the AID was the THAID algorithm [6] 
in 1973 by Morgan and Messenger which handled nominal or categorical 
responses. The THAID program created classification trees. Now several decision 
tree approaches exist, e.g.: CART, ID3, C4.5 [7], C5, THAID CHAID, 
TREEDISC, etc. 

One the most widespread used decision tree framework is the Classification and 
Regression Trees (CART, 1984) [4] developed by Breiman et al. Their work is 
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based on the original ideas of the AID and the THAID algorithms. We used their 
work as basis for our enhancements to the decision tree methodology. 

2.2. Decision Tree Basics 

Decision trees can be used to predict values or classify cases. Because in our work 
(mammographic image analysis) classification is the main issue; therefore from 
now on we restrict our discussion to classification trees. Classification trees are 
used to predict membership of cases or objects in the classes of a categorical 
dependent variable from their measurements on one or more predictor variables. 

Decision tree methods use supervised learning to recursively divide the 
observations into subcategories in such a way that these subcategories differ from 
each other as much as possible while each subcategory is as homogenous as 
possible. The outcome of a decision tree building algorithm is a directional graph 
connecting nodes. Each node of the graph represents a set of observations. There 
are two kinds of nodes: "terminal" and "non terminal" Non terminal nodes are also 
referred as "internal" nodes. These nodes incorporate a "splitting rule", which is 
used to split the observations into subcategories. Terminal nodes are also referred 
as "leaf' nodes. These nodes represent the dependent variable - in our case - the 
predicted class of the observations (figure 1). 

Classif ication Tree 

X1 < 0 . 5 1 7 4 

X 2 < 0 . 3 5 5 8 5 

X1 < 0 . 5 5 8 2 5 
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class labels „ • _ • 

Figure 1. Sample classification tree with 3 splits and 2 classes. 

There are various ways to grow a decision tree. For example there are several 
options to implement the splitting rule or the selection of the right sized tree. For 

internal nodes & 
splitt ing rules 
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our work we implemented CART algorithm [4] and used it as a basis for further 
development. Properties of the tree growth algorithm: 

• Splitting rule 

A splitting rule deals with observations reaching that specific node. It is used to 
divide that group of observations into subgroups. We use 2-way binary 
(smaller / bigger) splits on one variable. At each node a single variable is tested 
if bigger or smaller than a certain threshold value. At each node impurity is 
defined to measure the homogeneousness of the node. The best split is the one 
that creates the purest nodes. Given a node t with estimated class probabilities 
P(/kXy=l ~Nc, where Nc is the number of classes, a measure of node impurity 
for given t 

/ (0=flp(l |0 , - ,p(^ |0] (2.2.1) 
is defined and an exhaustive search is made to find the split that most reduces 
tree impurity. This split maximizes the impurity gain 

Ai(t)=i(t)-pLi{tL)-pRi(tR\ (2.2.2) 

where pL and pR is portion of observations falling to left or right child node 
{tL, tR) according to split. To measure node impurity the Gini diversity index 
[4] was adopted, which has the form 

»'(0 = X P ( . / ' I 0 P ( Í | 0 (2.2.3) 
j*i 

and can be rewritten as 

m = ( I > ( . / I O ) 2 - I > 2 ( . / I O = I - I > 2 u i o • (2.2.4) 
j j J 

The Gini index ensure that for any split 5 the impurity can only decrease: 
Ai(s,i)>0. 

• Determining the right sized tree 

In general, bigger trees having more splits, give better classification rate on the 
training data. However they tend to overfit, giving worse classification rates on 
the test data. To determine the right sized tree - that gives the best error rate 
(R) on the test data and avoids overfitting - there are 2 options. The first is to 
stop splitting according to a certain criterion. According Breiman's [4] and our 
experiments as well this is not recommended. The better way to determine the 
right sized tree is to grow a tree that is much too large and than "prune" it 
upwards iteratively until we reach the root node. After this test sample error 



HANDLING CLASSIFICATION UNCERTAINTY USING DECISION TREES 2 5 

estimates (R) are used to select best subtree that has minimal error on the test 
data. We implemented the Minimal Cost Complexity (MCC) pruning 
algorithm [4], In MCC pruning a cost-complexity measure is introduced: 

Ra(Tt)=R(Tt)+a\Tt\, (2.2.5) 

where a is the cost-complexity parameter (real number), Tt is the subbranch 
starting at node t (if t= 1, than 77=7 the original tree) and \Tt\ is number of 
terminal nodes on the subbranch Tt. The higher the value of the a parameter the 
greater the cost of more complicated trees. In this sense the tree complexity is 
defined by the number of its terminal or leaf nodes. To get a series of pruned 
subtrees we start from the original tree and we perform a "weakest-1 ink 
cutting" This is done in the following way: 

set 

Ra({t})=R({t})+a. (2.2.6) 

and 

Ra(Tt)=R(Tt)+a\Tt\. (2.2.7) 

As long as Ra(Tt)< Ra({t}) the branch Tt has a smaller cost-complexity than 
the single node {/}. In other words it is "worth" to keep this node expanded. At 
a critical value of a the two cost-complexities become equal, than keeping only 
a single node {/} instead of an expanded branch Tt is preferable. To find this 
critical a, the following equation must be solved: 

a = (2.2.8) 
| T | -1 } 

This critical a value has to be calculated for all internal nodes of the tree, and 
than the smallest is the "weakest-link" This means that node is the one that - if 
we increase a - has to be "closed" to get better cost-complexity value for the 
entire tree T. Closing means to prune the tree at that location, to replace the 
branch Tt with the single node t. 

Using this method we get a series of smaller and smaller subtrees according to 
the increasing value of a. To select the best tree we can use test sample or 
cross-validation error estimates. We used 10-fold cross-validation [4] to 
estimate the misclassification rate. In this sense the best tree is the smallest one 
that has minimal cross-validation (or test sample) error (figure 2). 
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Figure 2. The best tree is the one that has minimal cross-validation error. 
Resubstitution error means the error on the learning data. 

Decision trees produced by the CART algorithm have some favorable properties 
compared to other methods. They are easily interpretable and can be used to 
classify data very quickly. Another good property is that the decision boundary can 
be easily identified. In the next sections we will introduce an algorithm to provide a 
confidence value to the classification result of the tree. This algorithm makes use of 
the clear structure of the decision trees and the explicitly defined decision 
boundary. 

23. Dealing with Classification Uncertainty 

A classification tree divides the input space into a certain number of sections. 
These sections have their class label according to the leaf that defines the actual 
section. If the input vector of the predictor variables falls into a section, the 
corresponding class label is returned. Dealing with the classification uncertainty or 
classification confidence the main assumption is that the confidence of the 
classification is proportional to the distance from the closest decision boundary that 
splits between different class labels. 

According to the previous assumption, to get a classification certainty value we 
need to measure the shortest distance to the closest decision boundaiy that splits 
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between different classes, or equally the shortest distance to the closest section 
with different class label. 

The proposed algorithm to measure the shortest distance from the closest decision 
boundary that splits between different classes is the following: 

1) First the actual data is classified using the decision tree: a leaf node is 
reached, which defines a section in the input space and an output label. 

2) To get the distances to the other sections the input data point is projected to 
all of the decision boundaries. The projection rules are calculated only 
once (see 2.4 determining projection rules), right after the tree growth 
process and stored together with the tree structure. 

If the input space contains N variables than the decision boundaries of a 
section are maximum N-\ dimensional hyper planes (figure 3, 4). A 0 
dimensional boundary only exists if all variables in the input space exist in 
the path from the root node to the leaf node. 

2 d i m e n s i o n a l input s p a c e 
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1 d i m e n s i o n a l 
dec is ion b o u n d a r i e s 

( l ine) p r o j e c t e d p o i n t s 
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XI 

Figure 3. Sample decision boundaries in 2 dimensional input space and the 
projected points of the input data point. 
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Figure 4. Sample decision boundaries in 3 dimensional input space. 

3) The distance between the projected points and the input point is calculated. 

4) Take out the projected point that has minimal distance from the input 
point. 

5) Check if that projected point is on a decision plane that splits between 
different classes (see 2.5 checking projected points). 

6) If yes, the output certainty value is the distance between the projected point 
and the input data. If no, take out the next projected point with minimal 
distance and repeat steps 5 and 6. 

The algorithm described above returns the shortest distance to the closest decision 
boundary that splits between different classes. 

2.4. Determining the Projection Rules 

A set of critical points that we call "projection rules" has to be determined for each 
leaf node. These critical points will be the closest points on the boundary of the 
actual input space section. We call these "projection rules" because most of these 
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points are not fully defined, they are maximum N-1 dimensional hyper planes (the 
input space is N dimensional). 

To determine the projection points for a certain leaf the following algorithm is 
proposed: 

Initialize a boundary matrix that will contain the boundary values for the actual 
input space section marked by the leaf node. This matrix has equal number of rows 
to the number of input variables in the decision tree. The matrix has 2 columns, 
because each variable can border the actual segment from above and from below. 
Initialize the border matrix with infs (abbreviation for infinite) as if no border was 
present to the actual segment to any direction. Than we go from the leaf node up to 
the root node taking out the splitting variables and split values. When we take out a 
split we also check if we came up from a smaller child or from a bigger child. 
When a split value is taken out we insert it into the boundary matrix into the row 
identified by the variable and into column 1 if it was a smaller child, and into 
column 2 if it was a bigger child. If we encounter a split that already in the 
boundary matrix we skip that because that is not a boundary to the section marked 
by the leaf node. 

Figure 5. Sample tree with an example node. 
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The boundary matrix for the example node (figure 5.): 

"0.504 0.370" 
BM = 

0.778 0.447 
(2.4.1) 

Now the boundary matrix is extended with a column containing infs (referring to 
infinites). The extended boundary matrix: 

BMe = 
0.504 

0.778 

0.370 

0.447 

inf 

inf 
(2.4.2) 

To get all the critical points we have to get all the permutations of the elements of 
the extended boundary matrix, keeping the order of the variables. The points from 
the matrix BMe: 

Pl={0.504, 0.778) 

P2=(0.504, 0.447) 

P3=(0.370, 0.778) 

P4=(0.370, 0.447) ( 2 4 3 ) 

P5=(inf, 0.778) 

P6={inf, 0.447) 

f7=(0.504, inf) 

PS=(0.370, inf). 

The first 4 critical points are fully defined, they are actual points (0 dimensional 
hyper planes). The rest of them are not fully defined they are (in this case) 1 
dimensional hyper planes: lines (figure 6). 

These projection rules depend only on the decision tree and independent from the 
input data. As a result they have to be calculated only once, which saves a 
considerable amount of time. 
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Figure 6. The 8 critical points (projection rules) for the example node. 

We use these critical points (projection rules) to project the input data point to 
section boundaries. The projection technically means to insert the coordinates of 
the input point into the projection rules replacing the infs. We have to project the 
input point with the rules from each leaf node. These projected points will be the 
closest boundary points to the input point. However it can not be known if a 
projected point on a section boundary that splits between different classes. This has 
to be determined individually for each projected point (see 2.5 checking projected 
points). 

2.5. Checking Projected Points 

A projected point is not necessarily on a boundary that splits between different 
classes. Checking each side of a decision boundary in the worst case requires 
2AJV-1 points to be classified by the tree if we checked all sections around the 
projected point. However we only have to determine the class of the section on the 
other side of the boundary in the direction of the projection. We do not have to 
check the surrounding points because those are not the closest border points to the 
corresponding area. Figure 7 shows a simplified illustration. 
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Figure 7. Checking projected points. The point marked does not have to be checked 
because p2 is in the same section and is closer to the input point (using the algorithm given 

in section 2.3 it is already checked by the time we get to checkingp\). 

Checking technically means to "push" the projected point further in the projection 
direction to an e distance into the corresponding section and than use the tree to 
classify the point (figure l,p\ and p2). 

3. Test Results and Conclusion 

3.1. Test Result on 2 Dimensional Data 

The algorithm is first demonstrated on a 2 dimensional dataset. The input data is 
shown in figure 8. The input points are marked with an 'x' or ' ' according to their 
class label. After the decision tree is grown (using cross-validation and MCC 
pruning), the input space is covered with a grid and the distance from the decision 
boundaries are calculated in the grid's points using the algorithm presented in 
section 2.3. Figure 9 displays the distance from the decision boundaries. 

There were N=1354 data points in the sample dataset, containing roughly equal 
number of class 1 and class 2 members. 1248 points were correctly and 106 were 
incorrectly classified by the tree. This gives 7.8% misclassification error rate. 

Using the introduced algorithm we calculate the certainty value (the distance from 
the decision boundaries) for each input point. We determine a certainty threshold 
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such that if the certainty for a given input point is smaller than this threshold the 
tree rejects the classification. For this application the threshold is defined to keep 
76% of the correctly classified samples (figure 10). In this case 90% percent of the 
incorrectly classified cases are filtered out (96 points out of 106). 960 cases are 
classified out of the total 1354, which is around 71% of the total number of input 
points. 29% percent (394) of the input samples are considered as risky, meaning 
the calculated classification certainty value was under the threshold. From the 
classified ones 10 are misclassified, which means 0.1% misclassification rate. 
Visually this means the method filters out the risky cases inside a "safety lane" 
around the decision boundaries (figure 11). 
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- 0 . 2 
0 0.1 0 .2 0 .3 0.4 0.5 0 .6 0.7 0.8 0 .9 

X1 

Figure 8. A 2 dimensional sample dataset. The input points are marked with an 'x ' or ' . ' 
according to their class label. 
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Figure 10. Defining the threshold value to keep 76% of the correctly classified samples. 



HANDLING CLASSIFICATION UNCERTAINTY USING DECISION TREES 3 5 

1.4 r  

1.2 

1 

0 .8 

0 .6 

0.4 

0.2 

0 

-0.2 

x x x x x 
X XX XX 

X - X X Lj<xxxx ' x x x x x x x x x x 
X XX XX x x x x x 
X XX XX x x x x x * x x 
X X X . . - . x x x x x 
X X X X X 
X XX XX . x x x x x 
" X X X X X ggggg 
x: x; x: x: x x x x x x x x x x •xxxxx x x x x x x x x x x x x x x x x x x x x x x x x x 

l - K X X X X x x x x x 
X X X XX x x x x x 
X XX XX x x x x x •xxxxx x x x x x 
X. X X x :: x x x x x x x x x x x x x x x Lxxx -•xxx. . . . x: xx xx 
X X' X X X 
• : X x x: x 
x x x x x x x x x x 
1< XX XX 
X XX XX 
X X X X X 
x x x x x 

~ I -

x x x x 
X XX 
XX XX 
XX XX 
X X X X 
XX XX x x x x: 
' X X 

X X XX 
XX XX 
X X X X. 
X X X. X 
• X X X 

X X X 
XX XX 
x x x x x x X x: x: x X X. • 
XX XX 
X X X X 
XX XX 
X X x X x X X x 
X >• X X 

X : :: 
XX XX 
x x x x ;•: x • x x x x x :•: x x x 
• • X X X 

X XX 
XX XX 
:• > X x x x x x X x: X x x x x 
XX XX 
XX XX 
X • X ' :• x . x x: x. - XX 
X X X X 
XX XX 
XX X 
XX XX x x X X 
XX XX 

1  
X X X X X X X X X X X x x x x x x x x x x x xx xx xx xx x x: x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 
X X X X X X X X X X X x x x x x x x x x x x x x x x x x x x x x x 

x x x x x x x x x x x 
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 
X X X X X X XX X X X 
X X X X X X X X X X X 
X X X X X X X X X X X 
X X X X X X X X X X X X 
X X X X X X X X X X X X x x x x x x x x x x x x 
X X X X X X X X X X X X x x x x x x x x x x x 
x x x x x x x x x x x 

X X X X X X X X 
X X X X X X X X x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 

XX :: X X X X X X x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x: X x x: x x x x 
X X X X X X 

r~ 
X X X 
X XX 
:•:. ,: X 
X X X 
X X X 
X XX 
X X X 
X X X 
X XX XXX 
X XX 
X X X 
X X X 
X XX 
X X X 

X X X X X X 
X X X X X X 
X X X X X X 
X X X X X X 
X X X X X X 

X X X X " " 
XX XX I H i 
X X X X X X 
X X X X X X 
X X X X X X 
XX XX XX 
X X X X X X 

X 
X X X X X X 

* x x 

< XX XX XX 
< X X X X XX 

X X X 
x x x x x 
XX XX X 
x x x x x 

x x x 
X X X 
X X X 

X X X X X x x x x x 
X X X X X x x x x x 

X X X 
X X X 
X XX 
X X X 
X XX 
X XX 

X X X X X X 
x- XX x X 

X X X X X X 

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 
KX XX X X X X X X X x x x x x x x x x x x 

x X 
X X X 
X X X 
X X X 
X X X 
X XX 
X X X 
X XX 

X X X X X X 
X X X X X X 
X X X X X X 

sssssi 
X X X X X X 

figsgss 
X X X X X X 
X X X X XX 
X X X X X X 
X X X X X X 
X X X X X X 
X X X X X X 

—r~ 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X XX XX 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X XX XX 
X X X X X X X X 
X X X X XX XX 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X XX XX 
X X X X XX XX 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
" X X X X X X X 

. . x x x x x x x 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X XX XX xxxx 
X X X X X X X X 
X X X X X X X X 

—r-
. . X X X 
X X X X x x x 
X X X X 
x x x x 
X X X X 
X X X > x x x: x ' 
x x x x x x x x x ... X xxxx x x x x 
X X X X x x x x 
x x x x gggg 
x x x x 
" X X X 

X X X 
x x x x 
X x X X .•••: x X x xxxx 
X X X X x x x x x x x x 
X X X X x x: v X x x x x • • 
x x x x x x x x x x x x 
X X x X 
X X X X 
XX XX x x x x gggg 
x X x 

x x x x 
x x x x 
X X X X 
X X X X 
X X X X 
x x x x 

X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
XX X X X X XX 
X X X X X X X X 
X X X X X X X X 
X X X X x X X X 
XX XX XX XX 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 
X X X X X X X X 

•0.4'— 
-0 .2 0.2 

I  
0.4 

— I — 
0.6 

— I  
0 . 8 

—L_ 
1.2 

X1 

Figure 11. The "safety lane" around the decision boundary. 

3.2. Test Results on 9 Dimensional Data 

The algorithm is now demonstrated on a 9 dimensional data set This dataset is the 
"breast-cancer-wisconsin" dataset downloaded from the UCI Machine Learning 
Repository [8], 

2 experiments were made with different trees. The database contained N=699 data 
points. 

In the first experiment the tree misclassifies 33 points out of the 699, which gives 
4.9% misclassification rate. The certainty threshold is determined to keep 90% 
percent of the correctly classified samples (figure 12). This case the tree rejects 
12.7% of the input points but the misclassification rate on the remaining points 
reduces to 1.5%. 

In the second experiment the tree misclassifies 23 points out of the 699, which 
gives 3.3% misclassification rate. The certainty threshold is determined to keep 
93% percent of the correctly classified samples (figure 13). This case the tree 
rejects 8% of the input points and the misclassification rate on the remaining points 
reduces to 2%. 
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Figure 12. Defining the threshold value to keep 90% of the correctly classified 
samples. 72% of the misclassified samples are filtered out. 

percent of oo r rec t l y c lass i f ied samp les 

Figure 13. Defining the threshold value to keep 93% of the correctly classified 
samples. 43% of the misclassified samples are filtered out. 
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3.3. Conclusion and Future Work 

A method was presented in this paper to extend the decision tree framework. The 
proposed extension gives the possibility to determine classification certainty. 

The method proposed was tested on two sample datasets. A certainty threshold was 
determined to filter out the most "risky" classifications with low certainty values. 
Results indicate that the proposed algorithm can significantly reduce the 
misclassification error, in the cost of rejecting a portion of the input points, 
considering them as "risky" points. The algorithm takes advantage of the clear 
structure of the decision trees and the explicitly defined decision boundaries. The 
projection rules have to be determined only once after the tree growth process. 
Calculating the distance from the relevant decision boundaries involves projecting 
the input point, than measuring the distance to these projection points (section 2.4) 
and finally checking these points for class changes (section 2.5). This results in a 
reasonably fast algorithm and gives accurate distance information. 

The method is being integrated into the Medical Decision Support system that is 
under development in the Budapest University of Technology. Currently results on 
mammographic data are very preliminary and will be published during the next 
year. 

In the presented examples the key parameter when using the method is the value of 
the classification certainty threshold. This parameter controls the balance between 
the rejection rate and the classification certainty. In the demonstrative examples 
above this threshold was determined manually. Current research focuses on finding 
a method to automatically determine this threshold, which is optimal in certain 
means. 
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