
IS I Production Systems and Information Engineering 
Ü M * Volume 3 (2006), pp. 57-70 

5 7 

FUZZY BASED LOAD BALANCING FOR J2EE 
APPLICATIONS 

PÉTER MILEFF 
University of Miskolc, Hungary 

Department of Information Engineering 
m i l e f f @ a i t . i i t . u n i - m i s k o l c . h u 

K Á R O L Y N E H É Z 

University of Miskolc, Hungary 
Department of Information Engineering 
n e h e z O a i t . i i t . u n i - m i s k o l c . h u 

[Received November 2005 and accepted January 2006] 

Abstract. The growth of Internet services during the past few years has 
increased the demand for scalable distributed computing systems. E-
commerce systems concurrently serve many clients that transmit a large, 
number of requests. An increasingly popular and cost effective technique to 
improve server performance is load balancing, where hardware and/or 
software mechanisms decide which server will execute the client request. 
Load balancing mechanisms distribute client workload among server nodes 
to improve overall system responsiveness. Load balancers have emerged as a 
powerful new technology to solve this. 

This paper focuses on a new generation of adaptive/intelligent dynamic load 
balancing technique, which based on J2EE technology and can be practical in 
J2EE application servers. The paper discusses in detail both the theoretical 
model of load balancing and its practical realization. The effectiveness of the 
new balancing method will be demonstrated through exact measurement 
results compared with former traditional non-adaptive methods. 

Keywords: Distributed systems, Adaptive Load Balancing, J2EE Application 
server, JBoss 

As the number of concurrent requests is increased on a standalone server, so the 
application exceeds the pre-estimated respond time, because the work load is too 
much on the server machine. At this time, there are two options to solve this 
problem: using faster machines or using multiple machines parallel. The first 
solution can be expensive and limited by the speed of a standalone machine. The 
second choice is more straightforward: deploy the same application on several 

1. Introduction 

mailto:mileff@ait.iit.uni-miskolc.hu


5 8 P. MILEFF, K . NEHÉZ 

machines and redirect client requests to those machines. The system is transparent 
from outside, which means that client applications perceive a standalone very-fast 
server with one accessible IP address (see Figure 1). To achieve the performance 
and transparency, load balancing algorithms must be utilized. 

Load balancing can improve system performance by providing better utilization of 
all resources in the whole system, which consists of computers connected by local 
area networks. The main objective of load balancing is to reduce the mean response 
time of requests by distributing the workload [5], 

1.1. Theoretical possibilities of realizing load balancing on OSI Layers 

The OSI model was developed as a framework for developing protocols and 
applications that could interact seamlessly. The OSI model consists of seven layers 
and is referred to as the 7-Layer Networking Model [2]. Each layer represents a 
separate abstraction layer and interacts only with its adjoining layers. Load 
balancing mechanism can be realized on the Layer 3 - 7 . OSI levels 3 and 4 can be 
supported balancing mechanisms via network router devices. On layers 5 and 7, 
'URL Load Balancing' can be achieved. A lively example of 'URL Load 
Balancing' can be the following: the URL may be static (such as 
http://www.xxx.net/home) or may be a cookie embedded into a user session. An 
example of URL load balancing is directing traffic to 
http://www.xxx.net/documents through one group of servers, while sending 
http://www.xxx.net/images to another group. URL load balancing can also set 
persistence based on the "cookie" negotiated between the client and the server. 

1.2. Network-based load balancing 

This type of load balancing is provided by network router devices and domain 
name servers (DNS) that service a cluster of host machines. For example, when a 
client resolves a hostname, the DNS can assign a different IP address to each 
request dynamically based on current load conditions. The client then contacts the 
designated server. Next time a different server could be selected for its next DNS 
resolution. Routers can also be used to bind a TCP flow to any back-end server 
based on the current load conditions and then use that binding for the duration of 
the flow. High volume Web sites often use network-based load balancing at the 
network layer (layer 3) and transport layer (layer 4). Layer 3 and 4 load balancing 
(referred to as "switching" [1]), use the IP address/hostname and port, respectively, 
to determine where to forward packets. Load balancing at these layers is limited, 
however, by the fact that they do not take into account the content of client 
requests. Higher-layer mechanisms such as the so-called layer 5 switching 
described above perform load balancing in accordance with the content of 
requests, such as pathname information within a URL. 

http://www.xxx.net/home
http://www.xxx.net/documents
http://www.xxx.net/images


FUZZY BASED L O A D BALANCING FOR J 2 E E APPLICATIONS 5 9 

1.3. Operating System - based load balancing 

This type of load balancing is provided by distributed operating systems via 
clustering, load sharing, or process migration mechanisms. For instance Microsoft 
provides a new clustering possibility: Microsoft Cluster Server (MSCS) This 
special Microsoft software provides services such as failure detection, recovery, 
and the ability to manage the servers as a single system. Clustering is a cost 
effective way to achieve high-availability and high-performance by combining 
many commodity computers to improve overall system processing power. 
Processes can then be distributed transparently among computers in the cluster. 
Clusters generally employ load sharing and process migration. Balancing load 
across processors - or more generally across network nodes - can be achieved via 
process migration mechanisms, where the state of a process is transferred between 
nodes. Transferring process state requires significant platform infrastructure 
support to handle platform differences between nodes. It may also limit 
applicability to programming languages based on virtual machines, such as Java. 

1.4. Middleware-based load balancing 

This type of load balancing is performed in middleware products, often on a per-
session or per-request basis. For example, layer 5 switching has become a popular 
technique to determine which Web server should receive a client request for a 
particular URL. This strategy also allows the detection of "hot spots," i.e., 
frequently accessed URLs, so that additional resources can be allocated to handle 
the large number of requests for such URLs. 

Middleware-based load balancing can be used in conjunction with the specialized 
network-based and OS-based load balancing mechanisms outlined above. It can 
also be applied on top of consumer level (COTS) networks and operating systems, 
which helps reduce cost. In addition, middleware-based load balancing can provide 

Figure 1. Horizontal load balancing 



6 0 P. MILEFF, K . NEHÉZ 

semantically rich customization possibilities to perform load balancing based on a 
wide range of application-specific load balancing conditions, such as run-time I/O 
vs. CPU overhead conditions. 

2. The practical approach of balancing problems 
After we have surveyed the theoretical bases of load balancing, we direct our 
attention to a more practical scope of the problem. 

A dynamic load balancing can be either preemptive or non-preemptive. A non-
preemptive mechanism transfers only jobs that have just arrived, while a 
preemptive mechanism transfers jobs at any time, even when the jobs are in 
execution. Because preemptive mechanism are more costly than non-preemptive 
one and most of the benefit that can potentially be achieved through dynamic load 
balancing can be achieved using non-preemptive transfer only, non-preemptive 
transfers are usually used. Various proposed dynamic balancing methods are based 
on several policies. Three important ones among them are the transfer policy, the 
location policy and the selection policy, which decide when, where and what jobs 
should be transferred respectively. Much work [2][4] has been published on the 
design of transfer and location policy but very few on the selection policy. 

Balancing policy: When designing a load balancing service it is important to select 
an appropriate algorithm that decides which server node will process each 
incoming request. For example, applications where all requests generate nearly 
identical amounts of load can use a simple Round-Robin algorithm, while 
applications where load generated by each request cannot be predicted in advance 
may require more advanced algorithms. In general, load balancing policies can be 
classified into the following categories: 

• Non-adaptive - A load balancer can use non-adaptive policies, such as a 
simple Round-Robin algorithm or a randomized algorithm, to select which 
node will handle a particular request. 

• Adaptive - A load balancer can use adaptive policies that utilize run-time 
information, such as CPU and disk I/O utilization, network loading. 

This paper presents a new adaptive load balancing method, which efficiency are 
verified with help of many simulations. 

2.1. Problem of real-time load balancing 

Client requests arrive over the network and start a new process in memory. Each 
process runs separated from one another and rivals in gaining available resources. 
The objective of load balancers is to distribute these processes among the 
individual server instances in such a way that response time of processes will be 
minimal. Because the characteristic of the running tasks can be very various, so it 



FUZZY BASED LOAD BALANCING FOR J 2 E E APPLICATIONS 6 1 

is essential to use an adaptive load balancing algorithm, which tries to distribute 
tasks in an intelligent way using load information of the nodes. This is a very 
difficult objective, because balancer must conform to the given job. If it could be 
known in advance what type of task will be arrive, then the scheduling algorithm 
could easily choose the most suitable server for the task. However, the type of tasks 
knows in general only the client. So the traditional algorithms like Round-Robin or 
Random access can be usable only with a certain type of tasks. 

Leland and Ott [4] analyzed 9.5 million UNIX processes and found that there are 
three type of processes: CPU intensive processes use great amount of CPU cycles 
but do a little I/O operations; I/O intensive processes do a great deal of I/O but use 
a little CPU cycles; canonical processes do a little I/O and use a little CPU cycles. 
The amount of processes using great amount of CPU cycles and doing a great deal 
of I/O is extremely small. 

Cabrera[5] analyzed 122 thousand processes running on VAX11/785 and found 
that mean lifetime of processes is 400 ms, the lifetime of 78% of processes is 
shorter than one second, 97% of processes terminate within 8 seconds. The author 
concluded that only long live jobs should be candidates for load balancing due to 
the overhead costs involved. If the running time of the job is rather short, then load 
balancing can loose its importance. 

3. Concept of an Intelligent Load Balancer 

Creating an efficient Load Balancer is a very difficult objective. Of course, there 
are many theoretical load balancing methods, but many times the practical model 
does not make these implementation and efficiency possible. Finding suitable and 
optimal method for balancing, it is essential to have the deepest knowledge of the 
specific system. Our aim was to develop a new load balancer for JBoss application 
servers, because only three types of load balancers are available in JBoss cluster: 
Round Robin, First Available, and Random balancer. 

Before we examine the theoretical model of the new Load Balancer, we make a 
short overview of JBoss cluster. 

3.1. The JBoss cluster 

JBoss is an extensible, dynamically configurable Java based application server 
which includes a set of J2EE compliant components. JBoss is an open source 
middleware, in the sense that users can extend middleware services by dynamically 
deploying new components into a running server. 

A cluster is a set of nodes. These nodes generally have a common goal. A node can 
be a computer or, more simply, a server instance (if it hosts several instances). In 
JBoss, nodes in a cluster have two common goals: achieving Fault Tolerance and 



6 2 P. MILEFF, K . NEHÉZ 

Load Balancing through replication. These concepts are often mixed. JBoss 
currently supports the following clustering features [9]: 

Automatic discovery. JBoss cluster nodes automatically discover each other 
when they boot up with no additional configuration. Nodes that join the 
cluster at a later time have their state automatically initialized and 
synchronized by the rest of the group. 

Fail-over and load-balancing features for: 

• JNDI, 

• RMI (can be used to implement your own clustered services), 

• Entity Beans, 

• Stateful Session Beans with in memoiy state replication, 

• Stateless Session Beans 

- HTTP Session replication with Tomcat (3.0) and Jetty (CVS HEAD) 

Dynamic JNDI discovery. With its JMX-based Microkernel architecture 
JNDI clients can automatically discover the JNDI context. 

- Cluster-wide replicated JNDI tree. It is replicated across the entire cluster. 
It requires no additional configuration and boots up with a cluster-enabled 
JBoss configuration. Remote JBoss JNDI clients can also implicitly use 
multicast to discover the JNDI tree. 

Farming. JBoss farming takes this hot-deployment feature cluster-wide. 
Copying a deployable component to just one node's deployment directory 
causes it to be deployed (or re-deployed) across the entire cluster. 
Removing a component from just one node's deployment directory causes 
it to be undeployed across the entire cluster. 

- Pluggable RMI load-balance policies. We used this feature to develop our 
load balancer. 

JBoss uses an abstraction framework to isolate communication layers like 
JavaGroups. This was done so that other third-party group communication 
frameworks could be incorporated into JBoss seamlessly and easily. This 
framework also provides the tools and interfaces to write own clusterable services 
and components to plug into the JBoss JMX backbone. 
Utilizing these flexibilities of the JBoss system we developed a new load balancer, 
which will be presented in details. 



FUZZY BASED LOAD BALANCING FOR J 2 E E APPLICATIONS 6 3 

3.2. Architecture of the balancer 

Before going into the details, first we examine the theoretical model, which is 
shown in Figure 2: 

JBoss Computer Cluster 

Figure 2. JBoss Load Balancer Architecture 

The theoretical functionality of the balancer is the following: Standalone clients 
initiate requests over the network through HTTP protocol or RMI to the JBoss 
cluster. The JBoss cluster can be a complex of homogeneous or inhomogeneous 
computers [9]. JBoss application server runs on these in cluster mode. Of course, 
more clients can initiate a request at the same time to the cluster, so the cluster 
must fulfill more than one request parallel. Incoming requests are received and 
directed to the compliant node by the intelligent load balancer. So its objective is to 
choose the most ideal node, based on the collected load information by the 
Dispatcher MBean. To choose the ideal node is not an easy task. The main 
objective of the balancer is to realize a more effective task-division, which 
response time can be better than former algorithms. In the following, we show a 
detailed explanation of the practical realization. 



6 4 P. MILEFF, K. NEHÉZ 

3.3. Components of the Balancer 

The architecture of our Balancer essentially can be divided into three individual 
components: the Statistics Service, the Dispatcher, and the Scheduler as well. The 
individual units are in close communication with one another (within one JVM), 
none of them can operate without the others. At present, component connections 
work on the concept of Remote Method Invocation (RMI), but the further objective 
is to change the entire communication or part of it to a new TreeCache method of 
JBoss [7]. Utilizing TreeCache response time may be shorter because it uses 
multicasting. 

3.3.1. Statistics Service 

We can consider from the description above, that Statistics Service is responsible 
for load information. Naturally, this unit has to be started on each node. When a 
new node joins the cluster, Statistics Service starts immediately on it, because the 
JBoss cluster deploys this MBean [9][1] automatically. This service attempts to 
find the Dispatcher and provides data to it. Figure 3 shows the architecture of the 
Statistics Service and the Dispatcher: 

Statistics Service 

C P U Statistics 

Hashtable 

Figure 3. Elements of Statistics Service 

Figure 3 shows that Statistics Service consists of three subcomponents: CPU -, I/O 
Statistics and Fuzzy Engine. The functionality of these arises from those names: 
CPU Statistics provides CPU usage and I/O Statistics provides information about 
I/O usage of a specific node. CPU Statistics and Fuzzy Logic components are 
represented collectively an MBean (Managed Bean), however I/O Statistics is an 
another separate MBean. In JBoss system, each MBean can be considered as 
services. The sufficient node-information is essential to the compliant operating of 
the balancer. In fact, Java classes are running in a virtual machine on each host, 
therefore it does not make it possible to query the load information directly from 
the operating system. For this reason we had to evolve individual methods and had 



FUZZY BASED LOAD BALANCING FOR J 2 E E APPLICATIONS 6 5 

to utilize operating system specific resources. Nevertheless these resources are 
operating system dependent. 

The current version of the balancer works on MS Windows Systems, but further 
objective is to create Linux/Unix version too. Since Java 1.5 appeared on the 
market, it become possible to measure CPU average usage with Java Management 
Extension technology, using the built in OperatingSystemMXBean class. It has a 
function called getProcessCpuTimeQ, which can query the CPU time of the 
specific JVM in nanoseconds, from which the average CPU usage can be 
computed. The CPU usage can be query direct from the operating system as well, 
but in this case the efficiency of the balancer can degrade to a great extent. The 
reason of this is that: MS Windows operating system updates the data of the 
Performance Monitor every 1000 milliseconds (one second), which makes 
impossible to schedule short tasks. JBoss system can work with 50 ms sample time, 
but in this instance data acquisition is fulfilled in every 100 ms. 

Acquiring I/O information is much harder task. Getting the required information 
we need to call operating system level methods via JNI (Java Native Interfaces) 
technology, which makes possible to merge the C/C++ and the Java programming 
language. However operating system is a limiting factor again, because data are 
only updated in every 1000 milliseconds. If client I/O requests are not so frequent, 
this limit is enough in practice. 

Before we change to the consideration of the Fuzzy Engine, it is necessary to make 
a mention of a relevant feature of the statistics collector MBeans. All the nodes 
send information to the Fuzzy Engine, when the average usage of these, is smaller 
than 100%. This is the most essential condition of the operating of the balancer that 
will be detailed below. 

The Fuzzy Engine is responsible for the part of adaptivity of the balancer. It is 
integrated in the Statistics Service and gathers information sent by I/O and CPU 
services and deducts a fuzzy value between 0 and 1 supported by a preset Fuzzy 
Engine. This fuzzy value will be sent to the Dispatcher that stores it in a hashtable. 
Current version of Balancer use three fuzzy linguistic variables: one for I/O and an 
other for CPU utilization and the third one indicates the service capability of a 
server node. First two variables are considered as input variables and third one as 
output variable. Both input variables are defined with three membership functions. 
Output server capability is defined with six membership functions. Further aim is 
to fine the shape of membership functions using a fuzzy-neuro engine. In Figure 4, 
all membership functions of fuzzy variables can be seen. 



6 6 P. MILEFF, K . NEHÉZ 

0.275 0.425 0.575 0.725 0.875 

Figure 4. The Linguistic Variables of the Fuzzy Engine 

3.3.2. The Dispatcher 

The Dispatcher is the second most important part of the Load Balancer. It is also 
realized by MBean. Its objective is to store status information sent by the nodes in 
hashtable structure. Figure 3 shows the architecture of the Dispatcher. The sent and 
forwarded information consist of two parts: fuzzy values and the IP address of the 
specific node. IP address is essential to identify the nodes. The information gets 
into a hashtable entry as a vector, together with the time of arrival (time stamp). As 
Figure 3 shows, the key of the hashtable is the IP address, because it is always 
individual. By the discussion of the Statistics Service we have mentioned, that 
there is a condition, whereas a node only send information to the Dispatcher, when 
its load is fewer than 100%. This effects in Dispatcher that, the belonging stored 
information of the hashtable entry will not be updated. The balancer will make a 
decision based on the timestamp value, which information is current and which is 

The Dispatcher is deployed only on one node in the cluster. It makes no difference 
on which one, but starting on the fastest node is the best. The connection between 
the Statistics Services and the Dispatcher is dynamic. At startup time, each node 
finds and stores the network address of the node, on which the Dispatcher runs. 



FUZZY BASED LOAD BALANCING FOR J 2 E E APPLICATIONS 6 7 

3.3.3. The Balancer 

After preparation of data, the work of the balancer is no more so difficult. However 
we have to pay attention at the optimal implementation, because the least mistake 
can also cause big response time decrease. The balancer is a java class 
implemented a CustomLoadBalancePolicy interface, which is functionally part of 
the JBoss base interfaces. 

Its theoretical workflow is the following: The balancer makes decision on the bases 
of the status information collected from the server nodes. It considers those 
information valid, which arrived within 150 ms. The highly loaded nodes do not 
send any information to the Dispatcher, so naturally the balancer does not give to 
one of them a new task. The balancer will choose the node with the best fuzzy 
engine value. However in case of a big loaded cluster it can often occur that all of 
the nodes are loaded fully and none of them makes a sign. Nevertheless, at this 
time the balancer have to choose one of them, but the question is which one. 

Many solution methods have sprung up, because this case needs more 
consideration. Such method is needed, which can efficiently distribute the work 
among the highly loaded nodes. The first solution is the random distribution. It can 
be good, or can be very bad because of the random distribution. For instance if 
random balancer gives the work to a node, which is slower than the others, and of 
course also loaded on 100%, the response time of the system will be very low. We 
implemented this method as Random Intelligent Balancer, the results can be seen 
in Table 1. The method is proved a little better, which gives the work to that node, 
which average non-response time is the least, if every node are out of time 
constraint (Average Intelligent Balancer). 

A very important element of the balancer is the following: in current version of the 
balancer a node can only get a work twice one after the other, if its CPU usage does 
not correspond to the stored value at the giving out of the previous work and also 
this value is more little, than the value of all the nodes. This condition came into 
the balancer therefore, because when almost more clients all at ones give their 
requests parallel, then without this condition the same node receive the request of 
more clients, because the requests are so close to one another, that the data of the 
balancer could not update so quickly. 

4. Test and results 

The testing process has been carried out on a JBoss cluster, consisting 7 
homogeneous PC-s. Each machine had Pentium III 733 MHz CPU with 256 MByte 
RAM. Machines were connected via 100Mbps Ethernet network. Utilized 
operation system was Windows 2000 SP5. Application server version was JBoss 
3.2.5 'WonderLand'. 



6 8 P. MILEFF, K . NEHÉZ 

Simulated client requests were carried out with a generic professional simulation 
environment: Apache JMeter [8]. During testing process, server machines where 
slowed-down randomly with a special Loader-MBean emulating I/O or CPU load. 
Loader-MBean is used for emulating other client requests and other applications 
that are parallel launching on the server nodes. 

We have started simulations with one client and then we increased the number of 
clients to seven. In the course of all simulation we have tested all algorithms three 
times then we represented these average results in Figure 5. The diagram shows 
properly that the results of the Round-Robin in every case fell short of the results 
of the Intelligent Balancer. 

350 

1. client 2. client 3. client 4. client 5. client 6. client 7 client 

Number of clients 

• Random Intelligent Balancer • Average Intelligent Balancer • Round Robin 

Figure 5. Test results 

If we examine the results, we can see that the value of the Throughput is raised 
with the increasing number of the clients, although it is not in direct ratio. The 
more clients initiate request to the cluster, the more clients share the CPU. Exactly, 
for this reason there is no point about increasing the number of clients like 
number of nodes in the course of simulations, because at this time scheduling 
loses its importance. 

Of course, it depends on the type of the tasks requested the clients and on that, in 
what extent they require the resources. In the course of seven homogeneous nodes 
the optimal distribution is, if all of them get one task. Artificial loads run in random 
time on the nodes independently from the client requests, which load the nodes for 
a period of time and to a certain extent. It is possible, if there are many client 
requests at the same time, then the cluster will be overloaded. At that time every 
node are at maximum load. Whereas at such time scheduling is impossible, 
therefore the best solution is that, if we distribute the tasks optimal among the 
nodes till then, while scheduling will be become possible. The Balancer does it in 



FUZZY BASED LOAD BALANCING FOR J 2 E E APPLICATIONS 6 9 

two ways: with random node-choosing (Random Intelligent Balancer) and with 
using average response time. One node could not get two tasks one after another. 

The Figure 5 shows the results both of the algorithms. It is easy to see that 
increasing the number of clients - which means that more task get into the system -
the response time of Round-Robin and the Intelligent Balancer approach better and 
better approximate the theoretical maximum. 

In case of inhomogeneous nodes certainly we can reach much better response time, 
but of course it depends on the inhomogenity of the nodes. The following table 
summarizes, how much speed increase can be achieved utilizing the new Balancer 
compared with Round-Robin algorithm. Results highly depend on the type of tasks: 
a task to what extend claims the capacity of a node. In our test environment, 
execution time of a task was 500 ms on a non-loaded server node. Client requests 
followed each other within 500ms time interval and plus-minus 200ms uniform 
random time. The aim of random interval is to simulate realistic non-predicted 
client requests. Based on the test results, it is clear that our intelligent balancer 
algorithm has better performance than Round-Robin algorithm. 

Table 1. Balancing Algorithms comparison 

Balancer Type 
S peed Im provement / client 

Balancer Type 1. 
client 

2. 
client 

3. 
client 

4. 
client 

5. 
client 

6. 
client 

7. 
client 

Random Intelligent 
Balancer 

25% 23% 20% 16% 10% 10% 7% 

Average Intelligent 
Balancer 

30% 23% 21% 18% 14% 9% 4% 

During tests intelligent load balancer and only Round-Robin algorithm was 
compared, because we experienced that in our simulations Round-Robin algorithm 
was definitely better than other classic methods like: First Available and Random 
balancer algorithms. Thus our aim was to outstrip this traditional non-adaptive 
method. 

5. Conclusion 

An intelligent fuzzy-based Load Balancer Application and its test results have been 
presented in this paper. Continuing work will focus on further developing and 
implementing more flexible XML based configuration possibilities and redesign 
communication between server nodes and the dispatched session bean utilizing the 
new JBoss TreeCache introduced by the latest JBoss version 4.0. 



7 0 P. MILEFF, K. NEHÉZ 

Acknowledgements 

The research and development summarized in this paper has been carried out by 
the Production Information Engineering and Research Team (PIERT) established 
at the Department of Information Engineering and supported by the Hungarian 
Academy of Sciences. The financial support of the research by the afore-mentioned 
source is gratefully acknowledged. 

REFERENCES 

[ 1 ] LINDFORS, J. ,FLEURY, M . , THE JBOSS GROUP: J M X : Managing J2EE with Java 
Management Extensions. SAMS Publishing Inc., 2002. 

[ 2 ] BASNEY, J., LIVNY , M.: "Deploying a High Throughput Computing Cluster," High 
Performance Cluster Computing, vol. 1, May 1999. 

[ 3 ] O ' R Y A N , C., KUHNS , F., SCHMIDT , D. C., OTHMAN, O . , PARSONS, J.: "The Design and 
Performance of a Pluggable Protocols Framework for Real-time Distributed Object 
Computing Middleware", in Proceedings of the Middleware 2000 Conference, 
ACM/IFIP, Apr. 2000. 

[ 4 ] SCHMIDT, D . , STAL, M . , ROHNERT, H . BUSCHMANN, F. : Pattern-Oriented Software 
Architecture: Patterns for Concurrent and Networked Objects. Wiley, 2000. 

[5] CABRERA, L.M.: "The influence of workload on load balancing strategies", in Proc. 
Summer USENIX Conf., pp. 446-458, June 1986. 

[6] LELAND, W., OTT , T.: "Load balancing heuristics and process behavior", in Proc. 
ACMSIGMETRICS Conf. Measurement and Modeling of Computer Syst., May 1986. 

[7] SHIRAZI, J.: Java Performance Tuning, Second Edition, O'Relly, 2003. 

[8] JMETER GENERIC SIMULATION ENVIRONMENT , http://jakarta.apache.org/jmeter, 
2005. (Apache Jakarta JMeter) 

[ 9 ] JBoss - LEADING J2EE OPEN SOURCE APPLICATION SERVER , www.jboss.org, 2 0 0 5 . 

[ 1 0 ] FUZZY LOGIC SYSTEMS: 

http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html, 2 0 0 5 . 

[11] KOPPARAPU, C.: Load Balancing Servers, Firewalls, and Caches, Wiley, 2002. 

http://jakarta.apache.org/jmeter
http://www.jboss.org
http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html

	 - 0060
	 - 0061
	 - 0062
	 - 0063
	 - 0064
	 - 0065
	 - 0066
	 - 0067
	 - 0068
	 - 0069
	 - 0070
	 - 0071
	 - 0072
	 - 0073

