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Abstract. Machine-part grouping problems arise in a production plant when 
forming a new production system or reorganizing an existing one. Application of 
Group Technology principles can help in finding the optimal layout and 
manufacturing system. In order to satisfy the basic principle similar things 
should be done similarly parts are assigned to different families based on their 
processing requirements and machines are separated into groups to process 
specific part families. The machine-part cell formation problem is a widely 
researched area and numerous algorithms have been developed to solve it. This 
paper provides a survey of the latest results related to clustering methods, 
artificial intelligence approaches and some mathematical techniques. In addition 
an abstract algebraic method based on the theory of concept lattices is also 
outlined. 

Keywords: group technology, cell formation problem, similarity coefficients, 
genetic algorithms, mathematical programming, concept lattices. 

The philosophy of group technology (GT) plays an important role in the design of 
manufactur ing cells. The basic concept of G T is to identify and exploit the 
similarity between parts, machines and manufactur ing processes. G T is a 
disciplined approach to grouping items by their attributes. Parts having similar 
processing requirements are arranged into part families, and the machines 
processing them are grouped into cells. The advantages of applying group 
technology principles are reduced setup time, queuing time and material handling 
t ime, shorter lead times, reduced tool requirements and improved product quality. 

1. Introduction 
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The adoption of G T concepts yields an efficient production system and a 
significant reduction can be expected in overall manufactur ing costs. 

Cellular manufactur ing ( C M ) can be regarded as one of the major applications of 
group technology. C M requires the identification of groups of similar parts and the 
associated machines which form cells. The determination of part famil ies and 
machine cells is called the cell formation (CF) problem. 

During the last three decades the CF problem has been widely researched and 
numerous methods have been developed for solving it. These methods are 
classified by several review papers: we fol low the taxonomy proposed by Shafer 
[16]. The main aspect of his classification is the methodology the cell formation 
procedures are based on. From studying these methodologies, cell formation 
techniques can be arranged into the fol lowing six groups: 

manual methods, 

classification and coding approaches, 

algorithms for sorting machine component matrix, 

statistical cluster analysis, 

artificial intelligence methods, 

mathematical techniques. 

In this paper we give a short survey of the latest results in solving C F problems. 
Some of these methods can be regarded as new approaches and others are 
improved versions of an older technique. We focus on the last three group of 
Shafer ' s taxonomy, and in the next three sections the main aspects and the latest 
results from these fields are reviewed. In Section 5 a new mathematical approach is 
described. This method is based on Formal Concept Analysis which is a prospering 
field of applied lattice theory. 

2. Statistical Cluster Analysis 

Application of a clustering technique requires the development of a measure 
quantifying the similarity or dissimilarity between two objects (parts or machines) . 
Using the appropriate similarity measure the necessary production data can be 
incorporated in the early stages of the machine-part grouping procedure. Some of 
these factors are operation sequences, within-cell machine sequences, processing 
requirements of parts, production volumes, unit operation t ime, alternative process 
routings, etc. A number of similarity coeff icients have been developed for taking 
into consideration the different production factors and goals during the CF process. 
The calculation of these coeff icients combined with a clustering algorithm is called 
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a similarity coeff ic ient based clustering method (SCM) and generally it consists of 
the fol lowing three steps: 

a) Form the initial machine-par t incidence matr ix [a (y], where an entry " 1 " 

("0") indicates that machine i is used (not used) to process part j. (Here / is 
the mach ine index ( /= l ,2 , . . . ,m) , and j is the part index (/=1,2, . . . ,«). 

b) Choose a similarity coeff ic ient and calculate for each pair of parts or 
machines the corresponding values. These numbers are stored in a 
similarity matrix whose e lements represent the sameness between two 
parts or machines. 

c) Based on the values of the similarity matrix a clustering algorithm expands 
the hierarchy of similarities a m o n g all pairs of parts (machines). Using the 
obtained tree or dendogram the part families (machine groups) can be 
identified. 

Before applying some clustering technique we have to select a similarity 
coefficient which indicates the degree of similarity be tween object pairs. The mos t 
frequently employed coeff icient is the Jaccard similarity coefficient which is 
defined for parts / and k in the fo l lowing way: 

J N'k 
,k Nl+Nk-Nlk' 

where Njk is the number of machines that parts i and k have in common in their 
production, and N,, Nk mean the number of machines processing part i and k 
respectively. Besides the Jaccard similarity coefficient numerous other similarity 
coefficients have been proposed in the literature. One of the most comprehensive 
reviews of the topic is given by Yin and Yasuda [21], w h o developed a new 
taxonomy to c lass i fy the various similarity and dissimilarity coefficients. Bes ides 
this classification they at tempted to explain why similarity coefficient based 
methods are m o r e flexible than other approaches. First, similarity coeff ic ient 
methods apply cluster analysis to C F procedures. Clustering techniques are 
fundamental methods in group technology, being a basic approach for est imating 
similarities. Fi t t ing well to the main idea of GT, a similarity coefficient based 
method can be a more effect ive way to solve CF problems. Another reason for the 
preference of S C M methods is that they are more suitable for certain principles 
which are generally accepted in solving complex problems: 

(i) decomposi t ion of the problem into small conquerable problems and 
(ii) decomposit ion of the solution into small t ractable stages. 

These principles are satisfied by a clustering method because it consists of three 
steps as ment ioned in the beginning of this section. These steps are independent of 
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each other, which makes it possible to reselect the similarity coeff icients when 
extending the problem to incorporate additional production factors. 

It is worth mentioning that the use of similarity coefficients is of ten combined with 
other techniques, most ly artificial intelligence methods for solving machine-part 
grouping problems. For example Tóth and Molnár [17] have developed two 
algori thms for forming part-groups and inserting new parts in existing groups. 
Starting from the similarity matrix of the parts they used fuzzy classification to 
solve the problems. In [10], Jeon and Leep proposed a new similarity coefficient, 
which considers alternative routes, and based on these coeff icients the part families 
are identified by using genetic algorithm. Adenso-Diaz et al. in [1] suggested 
weighted similarity coeff ic ients and Tabu search for determining machine cells. 

3. Artificial Intelligence Methods 

With the increasing speed and capacity of today ' s computers, researchers 
frequently apply artificial intelligence methods to solve the C F problem. The most 
commonly used techniques are pattern recognition, fuzzy reasoning, neural 
networks and genetic algorithms. Another reason for successful application of 
these methods is the NP-completeness of the cell formation problem, i.e. there is no 
algorithm of polynomial complexity to solve it. This means that methods using 
heuristics can be more suitable to solve the CF problem than other exact 
approaches. 

In this section we focus on the methods us ing genetic algorithms. The basic ideas 
of these methods are discussed and some recent results are referred to. 

Genetic algorithm (GA) is a heuristic search technique which was introduced by 
Holland in 1975 [9], It is based on an analogy to natural selection and Darwin ' s 
evolution concepts. First a chromosome structure is to be def ined to represent the 
solutions of the optimisation problem. Af te r generating an initial solution 
population (which is done mostly randomly) some members of the population are 
selected to be parents to produce offspring. The selection is based on the so-called 
fitness function: the higher an individual 's fitness value the more likely that 
individual is to be selected, satisfying the principle of survival of the fittest. The 
less fit members are replaced by new ones, w h o are produced by the parents using 
genetic operators: crossover and mutation. Crossover combines the best parts of 
parent chromosomes in order to exploit promising areas of the search place. 
Mutat ion is a small random modification of the chromosome that increases the 
diversity of the population and explores new regions of the search place. The 
process is repeated until a termination criterion is reached. 

The main questions before implementing genetic algorithm are the fol lowing: 
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how to encode the structure of the chromosomes for representing solutions, 
how to generate the initial populat ion, 
how to choose a good fitness funct ion, 
how to def ine the genetic operators, 
how to choose the parameters according to the crossover and mutation 
operator, the population size, rate of individuals to be selected, and 
maximum n u m b e r of iterations. 

There are several possibilities for encoding chromosomes. M o s t of the studies use 
an integer codif icat ion to represent solutions. For example in a machine cell 
formation problem the following chain 

W; in 2 mi m4 m5 

1 2 1 2 1 

represents a solution where two cells are fo rmed, the first conta ins the machines 
mi, m3, m5 while mach ines m2, m4 belong to the second cell. T h e main drawback 
of this representation that it induces redundancy since the cell indices can be 
permuted, so the ch romosome 

mi m2 m} m4 m5 

2 1 2 1 2 

represents the same solution as the previous one. The redundancy grows very 
quickly with the n u m b e r of cells, making the search for good solutions even more 
difficult . Boulif and At i f [2] avoided this diff iculty by choosing binary coding for 
the chromosomes Th i s method is based on the graph theory model of the CF 
problem, where the nodes represent mach ines and an edge of the graph indicates 
whether there is inter-machine traffic be tween the two vert ices of this edge. An 
edge is encoded by 0 if the traff ic be tween its two vert ices is intracellular 
(expressing that the machines corresponding to the two vert ices are in the same 
cell). The intercellular edges are denoted by 1. Using this reduced alphabet the G A 
algorithm can be implemented in an eff ic ient way, and the search for good 
solutions becomes easier . 

Although genetic algori thm is one the mos t popular me thods for solving CF 
problems, we have to mention some disadvantages of this technique. The main 
problem with the s tandard GA approach is its weakness, wh ich means that it does 
not incorporate problem-specif ic knowledge . The other d rawback is related to the 
standard encoding scheme (both with integer and binary coding); which can cause 
unexpected effects w h e n applying G A operators . To overcome these problems De 
Lit, Falkenauer and Delchambre propose a grouping genetic algori thm (GGA) to 
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solve the cell formation problem [6]. GGAs are a special class of genetic 
algorithms introduced by Falkenauer in 1992 [7] modifying the standard GAs to 
better match the structure of grouping problems. There are two main differences 
between GGA and the classic genetic algorithm: GGA uses a group oriented 
encoding scheme and special genetic operators suitable for the chromosomes. For 
solving a machine-part cell formation problem the GGA applies the following 
chromosome representation: 

P\PiPi-Pp \™\™i™i-™m | g,g2g3...gc 

where p t is the group to which part / is assigned, rtij is the group to which 
machine j is assigned and gk is an existing group number. P denotes the number 
of parts, M denotes the number of machines in the problem and G is the number of 
groups in the solution. The main characteristic of the genetic operators of the GGA 
is that they work with the group part of the chromosomes rather than items [6]. In 
[3], Brown and Sumichrast compared the performance of a GGA against the 
performance of a standard GA approach in three different grouping problems. 
Their second problem was the machine-part cell formation problem and they used 
grouping efficacy to compare solution quality. Grouping efficacy can be computed 
by the following formula: 

e + ev 

where e is the total number of ones in the original machine-part incidence matrix, 
ev is the number of voids and e0 is the number of exceptional elements in the 
solution. (Voids occur when a part does not require one of the machines in its 
group and exceptional elements arise when a part requires a machine from another 
group.) Using this performance measure the authors tested both solution techniques 
and they concluded that GGA outperformed the standard genetic algorithm in 
solving the machine-part cell formation problem, and is indeed an efficient 
technique even for large-sized problems. 

4. Mathematical Techniques 

Mathematical techniques include methods related to graph theory, combinatorial 
analysis and mathematical programming. One of the widely researched exact 
methods is the integer programming approach. In group technology Kusiak was the 
first who adopted a linear programming method for part-family formation [12]. The 
suggested p-median model uses n2 decision variables as follows: 
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1, if part i be longs to part family j 

yu 
0, otherwise 

i=l,2,...,n, where n is the number of parts. Denote the desired number of part-
fami l ies by p and compute the similarity coeff ic ients sy between parts i and j in 

the fo l lowing way: 

Ap) 
"'J 

k=\ 

5<p)= 0 i=l,2,...,n. 

Here aki is the element o f the Mi row and ith column of the machine-part 

incidence matrix and 8 is the Kronecker funct ion: S(ak,,akj) = 1 if akl = akj, and 0 

otherwise. 

The object ive is to max imize the sum 

n n 

Z Z ' 
i=i j=l 

sat is fying the following condit ions: 

n 
a ) Y,y>j=1 f o r a 1 1 

j=i 

(2 )ttyM=P, 
7=1 

(3) yi} <y]} for all i = l,...,n, j = \,...,n 

Condi t ion (1) ensures that each part belongs to exactly one part fami ly , and (2) 
specif ies the required n u m b e r of part families. Constraint (3) ensures that part i is 
grouped into the part family represented by j , if this family exists. 

The part family formation method described here can be readily adapted to form 
mach ine cells first. In this case we have to compu te similarity coeff ic ients between 
machines , for example w e can use the definit ion suggested by Wei and Kern [19]: 
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r n-1 ifalk=ajk=\, 

n 
4 " } = H Y(a>k' ajk)'where r K . ajk) = -< 

k=1 

if % = = 0, 

0 if aik±ajk. 

These coefficients are applied by Won and Lee [20], who suggested two modified 
versions of the /^-median model. They started from an extended /7-median model, 
where the decision variables are the following: 

1, if machine i is clustered into cell j 

0 otherwise, 
m m 

and the objective function is ^ ^ s ^ x y 

subject to m 
(4) J X = 1 for all j = l,...,m, 

vy max, 
i=l 7=1 

/=1 

(5 ) Y , x m = P > 

m 
(6) Y j x i j - L x M f o r a 1 1 / = 1 >-> w > 

j=i 

m 
(7) Y j x v ^ U x j j f o r a 1 1 ' = 

J=1 

Conditions (4) and (5), similarly to the original formulation, ensure that each 
machine is assigned exactly to one cell and the number of machine cells is 
prescribed. In constraints (6) and (7) the number of machines grouped in to cell i is 
limited: at least L machines should be assigned to cell i only if cell i is formed, and 
U is the maximum number of machines allowed in each cell. 

Since in most practical problems parts outnumber machines (n>m), the extended 
formulation with its m2 binary variables leads to a smaller linear integer 
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programming problem compared to Kus iak ' s model . In spite of this reduction the 
extended model needs further improvement because of the difficulties in its 
implementat ion. The problem is h o w to choose the optimal median number p. In 
order to avoid this problem the entire model is tested for p=2,...,m, and then the 
best solution is selected. This type of implementation can hardly be carried out, 
because running the entire mode l for varying values of p causes too much 
computat ion t ime even on a med ium sized CF problem. To overcome these 
difficult ies Won and Lee introduced a special set of machines that have a high 
probability of serving as medians or seed machines for clustering. They developed 
an algori thm for determining the candidate set of median machines and af te r this 
with the modif icat ion of constraints, speedier implementat ion was achieved by 
excluding a large amount of binary variables. 

In addition Won and Lee proposed another modif ied formulation of the model 
which makes further reduction of the number of variables possible and they 
presented remarkable test results, applying their method on large-sized C F 
problems. (The applications of integer programming approaches in C F problems 
containing 40 or more machines are rarely reported in the literature because these 
methods have so far required enormous computation t ime.) 

Another opportunity to mod i fy the original / (-median model is the linear 
assignment model proposed by W a n g [18]. The basic idea of the group format ion 
algorithm is the selection of the p most dissimilar parts or machines. These i tems 
probably will be assigned to d i f ferent groups since they have dissimilar des ign or 
manufactur ing features. These group representatives can be determined recursively 
by using the similarity coeff ic ients . With the knowledge of the group 
representatives the model can be formulated both for part family and machine cell 
formation and it contains far f ewer decision variables compared with the p -med ian 
model (pn instead of n2 or pm instead of m2). The reduction in n u m b e r of 
variables encouraged Wang to test his method on med ium sized CF problems (the 
maximal number of machines was 40) and it proved an efficient method in a 
comparat ive study [18]. 

5. Solving Cell Formation Problems with Concept Lattices 

In this section a new mathematical approach for solving machine-part cell 
formation problem is presented. The method has been developed at the Universi ty 
of Miskolc, in a collaborative project between the Depar tment of Informat ion 
Engineering and the Institute of Mathematics. This abstract algebraic me thod is 
related to Formal Concept Analysis , which can be regarded as a field of applied 
lattice theory. For the sake of completeness the basic e lements of Formal Concept 
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Analysis are briefly introduced: for details see the fundamental w o r k of Ganter and 
Wil le [8]. 

The theory of Formal Concept Analysis is based on the theory of complete lattices. 
An ordered set L = (L,<) is called a lattice if for any two e lements x and y the 
supremum xv y and the infimum x A y a lways exist. L is called a complete 
lattice if the supremum V S and the in f imum AS exist for any subset S of L. 
Every complete lattice has a largest (unit) e lement and a smallest (zero) element. 
The elements a and b are neighbours if a <b and there is no element c 
fulf i l l ing a < c <b This relation is denoted by a < b The neighbours of the zero 
elements are called the atoms of the lattice. A complete lattice in which every 
e lement is the supremum of atoms is called an atomistic lattice. 

O n e of the basic not ions of formal concept analysis is the term o f fo rmal context. A 
formal context K=(G,M,I) consists of two sets G and M and a relation I between 
them. The elements of G are called the objects and the elements of M a r e called the 
attributes of the context (these traditional notat ions come f rom the German words 
Gegenstand and Merkmal). The binary relation / c G x M is def ined as follows: 
(g,m)El if and only if the object g e G has the attribute m e M A small context can 
be represented by a cross table. 

Observe that a machine-par t incidence matr ix can be considered as an analogous 
structure to the formal context. A given machine-part grouping problem 
corresponds to the fo rmal context ( G , M , I ) where G is the set o f machines, M 
contains the parts and I is determined by the incidence matrix wi th the following 
relation: (g,m)e I if the part m visits the machine g (Table 1). 

For a set A c G w e def ine the set of the common attributes for the objects 
belonging to A: A' - {m e M | ( g , w ) e / , V g e A}. Correspondingly for a set ficW 
w e define the set of the objects possessing all the attributes in B: 
B'={geG\{g,m)eI, VmeB). 

Let AcG be a set of objects and B ci M be a set of attributes. T h e pair C=(A,B) 
is called a formal concept of the context ( G , M , I ) if the conditions A' =B and B' =A 
hold true. In this case A is called the extent and B is called the intent of the concept 
C with the notation A =Ext(C) and B=Int(C). For example ({1,4,5,10}, {a,b,c,o,p}) 
is a concept of the context K represented in Table 1. 
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Table 1. A machine-part incidence matrix with 11 machines and 22 parts. It corresponds to 
the formal context K= (G, M, I), where G contains 11 objects, M contains 22 attributes and / 

is determined by the 1 -s in the table 

K P a r t s 

a b c d e f 8 h i j k 1 m n 0 r s t u V 

1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 
VI 3 1 1 1 1 

o 4 1 1 1 1 1 1 1 1 1 

s 5 1 1 1 1 1 1 1 1 1 

6 1 1 1 

JS 7 1 1 1 1 1 1 

8 1 1 1 1 1 1 1 1 1 
u 

9 1 1 1 1 1 
03 

10 1 1 1 1 1 1 1 1 1 1 
£ 11 1 1 1 1 1 

Denote by L(G,M,I) the set of all concepts of the context ( G , M , I ) and introduce a 
partial order between the elements of it: ( A x , 5 , ) < ( A 2 , B2) if and only if A{ c A2 

(then B2 C 5 , also holds true). It can be verif ied that the lattice ( L ( G , M J ) , is a 
complete lattice and it is called the concept lattice of the context (G,M,1)• The 
lattice L(G,M,I) can be represented by a Hasse diagram, using the notion of 
neighbourhood. The elements of the lattice are depicted by circles in the plane. If x 
and y are concepts with x<y, the circle corresponding to x and the circle 
representing y are jo ined by a line segment . >From such a diagram the order 
relation can be read o f f as follows: x < y if and only if the circle representing y can 
be reached by an ascending path f rom the circle representing x. The diagram of the 
concept lattice originating f rom the context K is presented in Fig. 1. The concept 
c, = { G , 0 } represents the unit e lement of the concept lattice, its extent is equal to 
the full set of the objects, while the zero e lement is c0 = { 0 , A / } . 
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Figure 1. The concept lattice of the context K 

A classification system S of the concept lattice L(G,M,1) can be defined as a system 
of concepts where the extents of the concepts give a partition of the objec t set G. 
Formulat ing this definition we obtain 

s = { ( 4 , 2 ? , ) | / € / } 

where (4., B,) e Lie, M,/), G = LU,, AiV[AJ= 0 if 1* j. 

For example the concepts ({2,3,6,8},{e,l,s}), ({l ,4,5,10},{a,b,c,o,p}), ({7,9,11}, 
{d,i,q,r}) form a classification system of the concept lattice in Fig. 1. 

The set of all classification systems of L(G,M,I) is denoted by Cls(L). W e define an 
order ing relation between classification systems: 5 , < S2 if the partition induced 
by 5, ref ines the partition induced by S2. It can be proved that the pair (Cls(L), <) 
is a complete lattice which is called the classification lattice of L(G,M,I)- The 0-
e lement of Cls{L) is denoted by S0, that is S0 - a{S: S e 

If the initial context consists of too many objects and attributes we obtain a large 
sized concept lattice and it is not simple to select those concepts f rom it that form a 
classif icat ion system. In this case using the results of Radeleczki [14] we can 
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determine the classification systems by means of a box lattice, which is a simpler 
structure than the original concept lattice. 

The 0-element of L(G,M,I) and any elements of a classification system are called 
box elements of L(G,M,I). The set of the box elements are denoted briefly by B(L). 
Restricting the partial order given on L(G,M,I) to the set B(L) we obtain a lattice 
again, the box lattice of L(G,M,I)- It can be verified that (B(L), < ) is an atomistic 
complete lattice, and its a toms are the elements of the finest classification system 
SQ. The box lattice originating from context K is shown in Fig 2. 

The determination of the classification systems is carried out by means of box 
lattices in the fol lowing steps (more detailed discussion can be found in [11]). 

a) Having started f rom the given context we determine the atoms of the box 
lattice. 

b) We generate the further box elements using the observation that in a box 
lattice every element is a supremum of atoms. 

c) Choosing the maximal disjoint systems of the box lattice we get the 
required classification systems (a maximal disjoint system cannot be 
extended by further box elements saving the property that the intersection 
of any two elements is the zero element) . 

Note that the determination of the classification systems gives a basis for formation 
of machine cells. The elements of a machine cell are usually characterized by the 
common parts processed by them. This means, using the notion of formal concept 
analysis, that G ( " = G / for every i e l , where the sets G, give a partition of the 
machine set G. In this case every block G, is the extent of some concept of the 
concept lattice L{G,M,I), because the pairs ( G , , G, ' ) satisfy the equations def ining 
a concept . In other words the formation of machine cells can be solved by f inding 
the suitable classification systems of L(G,M,I). 

Fol lowing the steps described above we have determined all of the classification 
systems of the concept lattice represented in Fig. 1. Af ter applying step a) the 
fol lowing 7 atoms are obtained (the concepts are identified by their extents): 

a , = {1,4}, a2 = {5}, a 3 = {2,6}, 34 = {3,8}, a5 = {7,9}, aé = {10}, a7 = {11} 

The further box elements were determined by step b): 

d, = {1,4,5,10}, d2 = {7,9,11}, d3 = {2,3,6,8,10}, dA ={5,10}, d5 ={2,6,10}, 

dé = {1,4,10}, d7 = {2,3,6,8}, d8 ={1,4,5}. 



Figure 2. The box lattice of the context K. Atoms are represented by black circles, the 
further box elements are white. This lattice is much simpler than the concept lattice 

Using step c) all of the classification systems were generated. In order to avoid 
uninteresting partitions two restrictions are assumed: every machine cell has to 
consist of at least three elements and the maximum number of bottleneck machines 
(i.e. machines processing parts from more than one family) is one. With these 
constraints four classification systems are formed (Table 2). 

Table 2. Machine cells with the box lattice method 

Machine cells Bottleneck 
machine 

{7,9,11} {2,3,6,8} {1,4,5,10} 

{7,9,11} {2,3,6,8,10} {1,4,5} 

{7,9,11} {2,3,6,8} {1,4,5} {10} 

{7,9,11} {2,3,6,8} {1,4,10} {5} 1 
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The context in Table 1 is borrowed from Cheng's study [5], where 12 algorithms 
for forming machine groups were compared. At the end of the examination there 
were three methods left yielding satisfactory results. These algorithms are the 
following: average linkage clustering (ALC) based on similarity coefficients [15], 
ZODIAC algorithm developed by Chandrasekharan and Rajagopalan [4] and a 
branch and bound algorithm (B&B) by Kusiak, Boe and Cheng [13]. The resulting 
machine cells are listed in Table 3. 

Table 3. The results of three machine cell formation methods from Cheng's comparative 
study 

Method Machine cells Bottleneck machines 

ALC {7,9,11} {2,3,6,8} {1,4,5,10 

ZODIAC {7,8,9,11 {2,3,6}. {1,4,5,10 

B&B {7,9,11} {2,3,6} {1,4,5} {8} {10} 

It can be seen that these results are very similar to the decompositions obtained by 
the box lattice method, and our approach offers several opportunities to form the 
machine cells. The next step in improving the box lattice method is to solve the 
problem of constraints, namely how to build reasonable restrictions into the 
algorithm in order not to determine uninteresting classification systems. 
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