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Abstract. The present paper proposes a model for intelligent image 
contour detection. The model is strongly based on the architecture and 
functionality of the mammalian visual cortex. A pixel-to-feature trans-
formation is performed on the input image as the afferent visual infor-
mation. The result of the transformation is a three-dimensional array of 
data representing abstract image features (contour objects), instead of 
another array of pixels. The contour feature recognition is performed by 
a vast and complex network of simple units of computation that work 
together in a parallel way. The use of a large number of such simple units 
allows a clear structure that can be implemented on a special hardware 
to allow fast, constant time feature recognition. 

Keywords: Visual Feature Array, negative filtering, contour detection 

The main goal of this paper is to present a neurobiological and cognitive 
psychological analogy based cognitive framework. The framework is based 
on the biological architecture and cognitive functionalities of the mammalian 
visual cortex, which is able to perform image contouring in an intelligent way. 

1. Introduction 
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Besides the possibilities of practical applications of the framework, it also aims 
to extend the limits of classical computation. 
In order to show why cognitive models can give the necessary boost, consider 
the example where a test person has to determine whether there is a cat or 
something else in the shown image, and press a button according to the deci-
sion. Such a task is impossible for a computer to perform today, yet a human 
can do it reliably in half a second or less. This result becomes more shocking if 
we know that the "processing time" of the basic processing unit of the brain (a 
typical neuron) is in the range of milliseconds, while the basic processing unit 
(a logic gate) of a modern silicon-based computer is 5 million times faster. The 
answer for how the "slow" brain can solve this task lies in its special architec-
ture and particular information representation and processing. It is thus our 
belief that in order to step beyond the borders of today's computer systems' 
architectures the basic way of information representation and processing has 
to be changed. For new ideas we turn to existing cognitive systems in biolog-
ical architectures to study them, because they already bear the solutions that 
we are seeking for. A cognitive system is implemented in a biological neural 
network, where simple units of computation are connected in a very complex 
structure. Our research goal is to turn the cognitive information processing 
system into engineering models which can later be organized into a cogni-
tive psychology inspired model running on a biology related computational 
architecture. 

Our work has received inspiration from research about biological visual sys-
tems, [1, 2]. This is not to say that the model presented in this paper are 
necessarily identical with biological visual systems. The ultimate criterion of 
our work is performance from a technical point of view. 

A cognitive process is an abstract concept which can be considered as an infor-
mation processing function. A cognitive system is composed of many cognitive 
processes each responsible for a different task. By the complex structure of 
mutual interaction of the cognitive processes the cognitive system becomes 
very sophisticated with new limits of computation. A cognitive process only 
describes a functionality, but it does not say anything about the way of im-
plementation, thus it can be implemented in many ways. One existing imple-
mentation of cognitive processes is the cerebral cortex of mammalian animals, 
where a very complex biological computational architecture provides the com-
putational power for cognitive processes. 

Such an architecture is built up by numerous, simple computational elements 
that can perform only primitive functions like addition, subtraction in a rather 
short time. These computational elements are connected to each other in a 
very complex network, like the neurons in the brain. The neural architecture 
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can be much more efficient in certain tasks than the complex, classical algo-
rithms, by virtue of the decomposition of the problem into thousands of simple 
independent operations which can be done simultaneously. The elaboration of 
such simple operations require simple hardware units that can be implemented 
in a chip with a clear and simple architecture. The resulting architecture is 
able to perform the computation in a fully parallel way, thus tremendously 
reducing the computational time. It seems thus to be promising to base the 
cognitive models on parallel architectures to achieve an efficient operation. 
This paper introduces a model strongly based on the cognitive functions of 
the visual cortex for extracting image features of contour line segments. The 
model is based on the analogy of the mammalian visual system. Each phase 
from the retina to the visual cortex is represented in the model by imitating the 
biological structures and cognitive functions in order to perform similar image 
transformations and operations. In classical image processing algorithms, such 
as edge detection using a Sobel filter, both the input and the output are 
pixels arranged in a matrix. These algorithms thus represent a pixel-to-pixel 
transformation between two matrices. 

The notion of an image feature, or simply a feature, is defined as a visual object, 
which can range from a single pixel or edge element through an oriented line 
segment until a more complex corner or even a triangle. This suggests the 
introduction of a hierarchical organization of features along the abstraction 
dimension. So far, many work has dealt with the hierarchical organization 
of features according to scale factors [3, 4, 5, 6]. The abstraction hierarchy 
first introduced by Granlund [7] employs symmetry properties implemented 
by Gabor functions. 
Accordingly, the more complex a feature is, the higher level of abstraction it is 
classified. A one-pixel-size feature can be considered as a feature of the lowest 
level abstraction. Similarly to the neural networks in the cerebral cortex, the 
proposed model implements a pixel-to-feature transformation, which should 
more precisely be referred to as a low-level-feature to high-level-feature trans-
formation. The result of the transformation is thus a higher level feature ab-
straction of the input image. The abstract features can also be re-transformed 
into the lower level features they are composed of. In the case of a feature 
composed of pixels, this re-transformation will result in a pixel level repre-
sentation of the features of higher level abstraction. The re-transformation of 
features into lower level features excludes noise from the result, thus it can be 
used as a filtering technique, described later in this paper. 

The rest of the paper is organized as follows. Section 2 gives an introduction to 
the visual pathway, how the brain processes an image. Section 3 describes the 
proposed architecture of the model for high speed image processing. Section 4 
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is devoted to the model evaluation and experimental results. The fundamental 
ideas of the hardware realization of our model is discussed in Section 5. Finally, 
Section 6 concludes the paper. 

2. The Visual Pathway from t h e Retina to the Primary Visual 
Cortex 

The main goal of this paper is to present a cognitive model based on the visual 
pathway with a special respect on the primary visual cortex. The purpose of 
this section is to give an overview of the biological and cognitive aspects of 
early visual information processing, on which the model is based. 

Visual processing begins in the retina. The photoreceptors that include 120 
million rods and more than 5 million cones are located in the outer plexiform 
layer of the retina. The rods are sensitive to light intensity and are responsible 
for phototransduction [8], while cones are sensitive to the wavelength of the 
light [9]. These photoreceptors modulate the activity of the bipolar cells, which 
in turn connect with more than one million ganglion cells in each eye. The 
axons of the ganglion cells leave the eye at the optic disc and form the optic 
nerve, which carries information from the retina to the brain. 

The bipolar cells and the ganglion cells are organized in such a way that each 
cell responds to light falling on a small circular patch of the retina, which 
defines the cell's receptive field. Both bipolar cells and ganglion cells have 
two basic types of receptive fields: on-center/off-surround and off-center/on-
surround. The center and its surround are always antagonistic and tend to 
cancel each other's activity [10, 11]. On the other hand, the on/off or off/on 
arrangement of the receptive field makes ganglion cells more responsive to 
differences in the level of illumination between the center and surround of 
its receptive field. Uniform illumination of the visual field is less effective in 
activating a ganglion cell than is a well placed spot or line or edge passing 
through the center of the cell's receptive field. 

The main target of the axons of the ganglion cells are the lateral geniculate 
nucleus (LGN) of the thalamus, and the superior colliculus. The LGN is the 
main conduit to the primary visual cortex where conscious visual perception 
occurs. The superior colliculus is involved in guiding eye movements and 
other automatic visuo-motor responses. The primary visual cortex (which is 
also referred to as VI, the striate cortex, or area 17) populates approximately 
2 billion neurons in a two-dimensional sheet about 2-3 mm thick. Visual in-
formation processing totals up to a vast portion of cortical activity and is 
composed of more than a dozen separate areas. In macaque monkeys, the 
visual cortex constitutes about 50% of the surface area of the entire cerebral 
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Retina Lateral Geniculate 

Figure 1. The visual pathway from the retina through the lateral 
geniculate nucleus to the visual cortex. The shape of the correspond-
ing classical receptive fields varies from circular in the retina and 
LGN to elongated in the cortex. Orientation selectivity occurs only 
in cortical neurons. 

cortex, while in humans this fraction is about 20%. The primary visual cortex 
topographically maps the visual field, with neighboring neurons responding to 
neighboring parts of the visual field. 

Neurons in the primary visual cortex can be classified in two major classes 
according to their response characteristics: simple-cells and complex cells [2], 
Simple cells tend to receive afferent projections mostly from the LGN, while 
complex cells receive projections mostly from other cortical cells [12]. Both of 
these cells exhibit a property known as orientation selectivity, meaning that 
they do not respond simply to light or dark in the visual field, but more 
typically to bars or edges of light with a particular orientation [13]. 

The visual cortex has a columnar organization on the cellular level. In 1977, 
Hubel and Wiesel suggested that iso-orientation domains are packed in essen-
tially linear parallel stripes, which Hubel [1] subsequently referred to as the 
"ice-cube" model. The model of Hubel, and later VI models [14] suggest that 
cells in the visual cortex are organized in a 3D structure, where a location on 
the visual field and an input stimulus preference (e.g. orientation preference) 
can be assigned to each cell, as shown in Figure 2. 

While simple cells respond to an oriented edge at a particular position of the 
visual field, complex cells exhibit more robust functionalities. An example of 
cortical processing in primary visual cortex is length-tuning or end-inhibition. 
Hubel and Wiesel first described complex cells in which the response to a 
stimulus increases with the length of the stimulus up to some optimum value, 
after which further increases in length decreased the response [15]. 



Figure 2. Schematic map of the visual cortex at work. This amaz-
ingly orderly "mosaic" of the working brain is formed by three groups 
of neurons performing different tasks: 1) Black lines mark the bor-
ders between columns of neurons that receive signals from the left 
and right eye and are responsible for the binocular perception of 
depth. 2) White ovals represent groups of neurons responsible for 
color perception (blobs). 3) The 'pinwheels' are formed by neurons 
involved in the perception of shape, with each color marking neurons 
responsible for a particular orientation of the visual field. (Reprinted 
with permission from [16]) 

3. Cognitive mode l of the visual pathway 

A scene projected to the retina becomes a two-dimensional image, which has to 
be transferred to the brain for further processing. Such an image is composed 
of image features like regions of a certain color and texture, their boundaries 
as segments of different orientation and length. The image features make part 
of more abstract features like simple shapes, curves, circles. 

The work of Hubel and Wiesel states the existence of simple and complex neu-
rons in the visual cortex [2]. Tao goes further, and introduces the complexity 
of neurons as a quantitative descriptor [12]. The larger synaptic distance a 
neuron is from the input, the more complex it is. This suggests that neurons 
connected in a complex network can be hierarchically classified into different 
levels corresponding to the synaptical distance from the input. The neurons 
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Figure 3. The neural hierarchy 

in the n t h level may receive input from levels lt where k > n — 1. This means 
that a neuron in a certain level can receive input from one level bellow or 
from the same or higher levels. The first level consists of neurons that directly 
receive an input signal. In this paper we refer to such an organization as a 
neural hierarchy. Since each level is representing the abstraction of the level 
bellow, it can be supposed that the higher is the level of a neuron, the more 
abstract feature it can represent (Figure 3). 

The main goal of the authors is to propose a cognitive model, which is able to 
understand (i.e. represent at an abstract level) the basic primitives (features) 
of an image, analogically to the cerebral cortex. In neurobiology a feature 
is understood when it causes the intensive firing of a set of neurons. In the 
proposed model a feature is represented by the activation of a single neuron 
instead of a set. A feature is considered to be understood by the model when 
the neuron corresponding to the actual feature has a high output. The neurons 
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representing features can project their outputs to higher and lower levels in 
the neural hierarchy. Projecting the output further up allows the neurons in 
higher levels to understand more abstract features as the composition of lower 
level features. On the other hand, a neurons that project their outputs to 
lower levels in the neural hierarchy actually provide a top-down information 
flow. This information flow, as an expectation may influence the neurons in 
lower layers to represent different features from the case when only bottom-up 
information flow is present. 

This paper concentrates on how primitive image features (line segments) are 
understood by the model, and how they can provide an expectation for lower 
levels. The understanding of more abstract features in higher levels of the 
neural architecture is not treated in this paper, it will be the subject of further 
research. 

In the visual system a variety of neurons can be found from ganglion cells 
through LGN cells to cortical neurons, each responding to different preferred 
afferent stimulation. The preferred stimulation can be described by the prop-
erties of the receptive field of a neuron, as described in Section 2. 

The proposed model in this paper receives an image on its input, which is 
immediately subjected to an edge detection filter. This filter is based on the 
receptive field characteristics of the retinal ganglion cells. In the small region 
of the visual field which is centered around the position of the receptive field 
of the ganglion cell the afferent connections have a relatively high positive 
weight, while in the surrounding regions the synapse weights are inhibitory. 
The receptive field is modeled with a 3 x 3 matrix M\ with higher positive 
input weight values in the middle and small negative values in the surrounding 
regions. The sum of the values of the filter matrix have to be zero so that no 
constant component is added to the result. The matrix as a non-directional 
derivative filter should be symmetric along all the axes. These two constraints 
explain the choice of the filter matrix: 

Mi = 

\ 8 

1 
8 

1 \ 

- 1 - -
1 

" 8 

! 
! 

' 8 / 

(3.1) 

The output pattern of the cells with input weights of M\ will be an edge 
detected image of the original image. It is to note that at this level of neural 
processing the image features understood (or represented by neural activation) 
are pixels of an edge detected image, edge elements. 
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Biology Model 

Figure 4. The biological system and the components of the pro-
posed model that cover the biological functionalities. 

Going further on the visual pathway we find that the receptive fields of the 
neurons in LGN are also circular like those in the retina. It rather has an 
important role in modulating the input to the cortex by attention, but the 
exact functionality is still a subject of research. 

For the above reason we consider the retinal and LGN-neurons as primary edge 
detectors, and their overall functionality in the aspects of image processing is 
covered by the Mi matrix in the model. The input from the cells of such 
receptive fields project into the visual cortex, where further image processing 
takes place. The correspondence between the biological functionalities and the 
model components that cover them are shown in Figure 4. 

The image representation in the visual cortex is retinotopic, which means that 
neighboring regions of the visual field are projected to neighboring regions in 
the cortex. The neurons of such a region are tuned to respond to a variety of 
input stimuli described by different receptive fields characteristics, as explained 
in Section 2. This implies that a vast variety of receptive fields belong to one 
small region of the visual cortex, and thus to a small region of the visual field. 
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The variety of receptive fields representing different visual features (e.g. line 
orientations) can be organized along new dimensions. 
As a result of the edge detection an edge detected image is available in the 
matrix I where 

I <E R n x m , (3.2) 

n and m representing the image dimensions. The elements of the matrix I are 
bounded, such that 

h,j 6 [0,1], (3.3) 

where I i j represents the pixel in the i t h row and j t h column of the matrix I . 
Similarly to the visual cortex, several different features can be extracted from 
the edge detected image I . The extraction of the features begins with the 
longest line segments, those spanning through the largest angle in the visual 
field, and thus causing activation in the largest number of ganglion cells, or 
pixels in the context of a CCD imager. When the first feature is extracted from 
the edge detected image 7, the feature pixels are removed from I, resulting a 
new matrix that we refer to as After extracting and removing the fcth 

feature from the matrix remains. Using this notation the original 
edge detected image is denoted This step is necessary to ensure that only 
one of many possible similar features is extracted from the edge detected image 

The fcth feature is removed from j( fe_1) and added to a two-dimensional 
matrix Ft, such that 

ViJ,k (Fk)ij e {0; 1}, (3.4) 
and the value (F^)ij indicates if any pixel of the detected feature k is present 
in the edge detected image at the position 
It is important to note that the features to be extracted are ordered by the 
number of pixels they contain in order to ensure that 

(3.5) 

where is the set of pixels contained by the kth feature. Since there are 
several image features to be extracted from the image, there will be a matrix 
F for each of these features. We define the three-dimensional array with the 
F matrices overlapped along a third dimension as follows: 

V g (3.6) 

For the tensor V we introduce the notion of Visual Feature Array or VFA, 
where r represents the total number of visual features extracted from the 
image. By construction, the element Vijtk of the VFA represents if an edge 
pixel belongs to the fcth visual feature. 
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In the VFA each element corresponds to the response of a cortical neuron 
tuned to a certain feature in a certain location. The representation shown in 
Figure 2 shows tha t the neurons tuned to different visual features in the visual 
cortex are organized in a rather sophisticated system. In the VFA the same 
features are organized along a third dimension, orthogonal to the other two 
dimensions. Such a system of visual features yields a 3-dimensional neural 
array model of the primary visual cortex. 
Let's take a closer look on the third dimension of the VFA. 

In the visual cortex there are neurons tuned to a whole variety of visual fea-
tures. The present model includes the orientation selective cortical cells with 
end-inhibition characteristics. There are other visual features in the brain, 
such as sensitivity to spatial frequency, eye preference or binocular depth cues, 
but these features are not included in our model yet. Each feature in the VFA 
can thus be described by an orientation angle and an optimal length. The pos-
sible orientations are equally distributed with a specified angular resolution. 
The angles represented in the VFA are defined with the angle a and angular 
resolution 6, such tha t 

a e [0. . .7r] ,a = k-0,k € N, (3.7) 

and thus the matrix elements (F Q = 7 r / 5 ) i J will be values of 1 where an edge line 
segment with an orientation close to 7r/5 is found in the edge detected image 
at I i j • 
The end-inhibition property of the neurons is also formalized in the model. 
An optimal length I of a neuron is a length to which it gives a maximal 
response. The different lengths are distributed between the shortest length 
and the longest length, and their number is h. Since the line lengths are 
measured in pixels, the shortest possible line segment is 3 pixel long. The 
maximal length can be chosen taking the requirements of the input image and 
the available computational capacity into consideration. Normally this value 
is between 20 and 30 pixels. 

Given an angular resolution of 6 and the number of different length values h, 
the number of possible visual features r can be assessed as follows: 

(3.8) 

A visual feature k is thus characterized by two values, an orientation a and 
length I. The matr ix elements (Fk) i j will thus have a value of 1 if the edge 
pixel on the edge detected image I i j belongs a feature with the characteristics 
of As. 
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m f f l f f l 

Figure 5. The matrices in the model that represent the receptive 
fields of cortical orientation tuned end-inhibited cells of 5-pixel-
length. 

In the visual cortex there are receptive field characteristics that actually define 
the visual feature the particular neuron is responsive to, as described in section 
1 and shown on the bottom of Figure 1. In order to extract the desired features 
from an edge detected image, for each feature k a mask matrix Rk obtained 
from a corresponding receptive field has to be defined. In the proposed model 
the visual features are extracted by a convolution of the edge detected image 
and a matrix R I n the present case the receptive fields are modeled by 
binary matrices instead of matrices with real values. These matrices contain 
the sought feature as it may appear on the binary edge detected image. We 
have chosen to use binary matrices to detect visual features because it is 
possible to well approximate the sought features, and binary operations are 
easier to implement in a hardware. A series of mask matrices for all the 
possible five-pixel-long lines are shown in Figure 5. 

Once the VFA is constructed from the edge detected image / , it can be sub-
jected to further transformations in order to extract more abstract features 
from it. As it was described above, one layer in the VFA contains the pixels 
that belong to a well-defined feature (i.e. a line of a certain length and orienta-
tion). A grouping transformation can be defined on the VFA, which unifies the 
layers and thus groups the features of the VFA according to different feature 
properties. 

Two basic grouping transformations are defined: 

Go V ^ V ( o ) , (3.9) 
and 

Qi V -» V(i) (3.10) 

The result of <50(V) is which contains iso-orientation layers, where all 
the features of the same orientation are present in one layer. This step was 



VISUAL FEATURE EXTRACTION 4 5 

inspired by the iso-orientation columns found in the primary visual cortex by 
Hubel and Wiesel, as described in the section 2. On the other hand such a 
grouping transformation is necessary to find the line crossings and vertices in 
the VFA. 
The result of ft(V) is which contains iso-length layers, where all the 
features of the same length are present in one layer. This transformation 
can be useful in segmenting short and long line segments from each other. 
Short line segments of arbitrary orientation are usually the components of 
textures of natural objects (trees or bushes). Longer, parallel and orthogonal 
line segments usually make part of artificial (man made) objects or scenes, 
such as an urban scene. 
The nodes of V, or V ^ can send their outputs to higher or lower levels 
of the neural hierarchy. Sending the inputs further up allows further trans-
formations and the recognition of more complex features or objects. Sending 
the output back in the neural hierarchy allows feedback and reinforcement in 
lower neural structures. 
For instance, line crossing and vertex detection can easily be done by sending 
the output of the neurons further up in the neural hierarchy. A layer of 
neurons organized in a two dimensional matrix C € R n X m receives input from 
V(o) and provides an output according to the function / as 

C i ^ f i V ^ V ^ , . . . ^ , (3.11) 

where o is the number of line orientations. A neuron in Cij will have a high 
output if it receives more than one active inputs, meaning that there is more 
than one differently oriented line at the same image location. Figure 6 shows 
an example, where the red circles are neurons in C indicating line crossings, 
while the blue circle indicates no line crossing. 

It is to note that the use of the original VFA V is not appropriate in finding 
the vertices, because two colinear line segments may overlap each other. If so, 
their overlap will be considered as a vertex, which is not desirable. If the V ^ 
is used, only one neuron from one position and one orientation will send input 
to C, and thus two overlapping collinear line segments will not activate C. 

One can consider a third type of grouping transformation on the VFA, which 
simply groups all the layers into one final layer containing all the extracted 
features. This transformation equals sending the output of the VFA neurons 
down in the neural hierarchy, and can be used to reconstruct an image by 
reactivating the pixels that belong to the detected visual features. This recon-
struction will include only the features that were extracted from the original 
image. This implies that the noise (pixels not considered as the part of any 
feature) will not be present in the reconstructed edge detected image. The 
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Figure 6. Detection of line segment crossing and vertices. Image 
(a) shows the edge detected image, images (b)-(e) show the results of 
four grouping transformations of the VFA (v{o), . . . ,v | o )) . Red 
circles indicate line crossings, the blue circle shows an example of no 
crossing. Red circles contain active neurons in the VFA in more than 
one group, while the blue circle contains active neurons only on (c). 

comparison or merging of the reconstructed and the original edge detected 
image actually adds information to the original image. 

We introduce the notion of negative filtering as the process of understanding 
image primitives and reconstructing the image from them. The notion arose 
from the fact that on contrary to a filtering process, the above defined process 
adds useful information to the image, instead of subtracting it. 

4. Model evaluation, results 

The proposed model has two important advantages compared to classical so-
lutions. By virtue of the simple but numerous computational units (neurons) 
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(a) (b) 

Figure 7. Original test image (a) and the result of the primary edge 
detection (b) 

that work parallel on the solution, the model can perform the proper activa-
tion of the VFA and the negative filtering in constant time. This, however 
requires a parallel hardware implementation of the model. 

In this paper only a computer based simulation of the model is presented, 
which allowed to evaluate its functionalities. The evaluation of the perfor-
mance was however not possible due to the lack of a hardware implementation. 
In the rest of this section the different sections of the information flow within 
the model will be presented. 
The input test image used to evaluate the model is shown in Figure 7a. This 
image is subjected to a primary edge detection as discussed in section 3. The 
result is a binary image of edge elements, with white dots representing high-
contrast points on the original image. This edge-detected image is shown in 
Figure 7b. 

The edge-detected image within the model corresponds to the image that is 
projected to the visual cortex. In the model, this image is used as the input to 
the neurons in the VFA. In the present implementation 5 different line lengths 
were used with the possible orientations to calculate the values of the VFA. 
These lengths were 3, 5, 9, 17, and 33 pixels. 

The VFA layers after the grouping transformations with 3, 9 and 33 pixel-long 
segments are shown in Figure 8. Using the grouping transformation Qi that 
yields the VFA V ^ , having 5 layers each of them containing the line segments 
of all the possible orientations of a certain length. Three out of these five 
layers are shown on Figure 8. 

The union of the five layers of V ^ yields the top-down reconstruction of the 
edge detected image from the detected line segments. The reconstruction will 
exclude the edge elements detected as noise, which was not recognized as a 
visual feature (a line segment of certain length and orientation). The final, 



(a) (b) 

(c) (d) 

Figure 8. The reconstruction of the edge-detected image from line 
segments of 3 pixels (a), 9 pixels (b), 33 pixels (c) and the combina-
tion of all sub-VFAs (d) 

fully reconstructed, negative filtered image composed from the five layers of 
V ^ is shown in Figure 8d. 

5. Hardware realization 

One of the most advantageous properties of the proposed architecture is its 
native parallelism. A software implementation running on the fastest von Neu-
mann-based processor cannot provide fast, O(l ) time responses even if they 
are extended with Single Instruction Multiple Data (SIMD) instruction sets 
like Intel's Streaming SIMD Extensions (SSE). Parallel processing with multi-
ple simple computational elements, on the other hand, can provide tremendous 
speedups. The Field-Programmable Gate Array (FPGA) is such a microelec-
tronic device the programming logic of which can be set up according to the 
users' needs, and some models even allow to be reconfigured during operation 
time. Thus, the proposed architecture can be implemented in an FPGA, and 
then can be used as a coprocessor or accelerator card in a PC environment to 
solve dedicated tasks. Moreover, it can be a stand-alone image processing de-
vice that solves the task without the execution of any conventional algorithm. 

The proposed architecture requires about 10000 computational elements to 
perform the edge detection on a 100 x 100 pixel image. Then for each direction 
of each length another 10 000 computational elements are necessary, that is in 
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total 124 x 10000. The state of the art FPGA has about 6 000 000 logic cells 
that is sufficient for about 100-200 000 computational elements. This number 
copes with what is necessary, while the processed image is still relatively small. 
However, the famous Moore's Law also applies to FPGAs saying that in about 
every two years the number of transistors on a silicon chip doubles, thus the 
number of logical cells is expected to double, too. In addition, some of the 
modern FPGAs also have the capability of being reprogrammed in runtime. 
Applying this feature allows the use of only one chip for the processing that 
can be done by reprogramming the architecture for each task, sacrificing extra 
processing time. In conclusion, a primary visual cortex based image contour 
detector chip can be realized in near future by some compromises. 

A simple (low resolution) version of the model is being implemented in an 
FPGA. A serious bottleneck in this solution is the small number of parallel 
input/output data that can transmitted to and from the FPGA. Apart from 
this problem, the implementation will give ground to test and evaluate the 
model operating on a dedicated hardware. 

6. Conclusion 

A model for intelligent contour detection was presented in this paper. The 
basic structure and functionality of the model is based on the mammalian 
primary visual cortex, which can perform edge contour extraction on an edge 
detected image. The extracted contour pixels are clustered into a hierarchi-
cal classification of visual features. The features are organized into a three-
dimensional orthogonal array (the VFA) according to their properties. The 
extracted features are used in two ways: further abstraction or top-down im-
age reconstruction. This latest adds an augmented information space to the 
original edge detected image, which we refer to as negative filtering. 
It is important to note that the goal of this model was not to achieve a quali-
tative advance in image contour detection, but to make the first step towards 
a biology and cognitive science inspired vision system. The new approach is 
expected to lead to a cognitive system overpassing the performance of classi-
cal computational methods. Meanwhile, the quality of the contour detection 
achieved by the proposed model is comparable to classical edge detection al-
gorithms. 

The VFA containing different features can be submitted to grouping trans-
formations, that merge layers of the VFA according to certain rules, such as 
similar line length or orientation. The grouping transformations are necessary 
for further transformations, such as line crossing and vertex detection. 
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The model and especially the VFA has been designed to operate in a fully 
parallel manner. In the present system binary array values were used for the 
sake of easy hardware implementation. An FPGA or other parallel implemen-
tation of the model yields a constant time contour detection and visual feature 
extraction. 
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