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Abstract. The Tensor Product (TP) based models have been applied 
widely in approximation theory, and approximation techniques. Re-
cently, a controller design framework working on dynamic systems has 
also been established based on TP model transformation combined with 
Linear Matrix Inequalities (LMI) within Parallel Distributed Compen-
sation (PDC) framework. The effectiveness of the control design frame-
work strongly depends on two main properties of the TP model used. 
One of them is the approximation accuracy, and the other one is compu-
tational complexity. Therefore, the primary aim of this paper is to inves-
tigate the relation of the two contradictory goals, namely, the trade-off 
between the dynamic TP model's accuracy and complexity. The study 
is conducted through the example of Translational Oscillations with a 
Rotational Actuator (TORA) system. 

Keywords: Tensor Product model transformation, approximation accu-
racy, computational complexity, TORA System 

The demand for the decomposition of multivariate functions to univariate 
ones goes back to the very end of the 19th century. In 1900, in his memorable 
lecture at the Second International Congress of Mathematicians in Paris, D. 
Hilbert, the famous German mathematician, listed 23 conjectures, hypotheses 

1. Introduction 
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concerning unsolved problems which he considered would be the most impor-
tant ones to solve by the mathematicians of the 20th century [1, 2]. In the 
13th, he addressed the problem of multivariate continuous function decompo-
sition to finite superposition of continuous functions of fewer variables. The 
motivation is straightforward: one dimensional functions are much easier to 
calculate with, handle and visualize. Hilbert presumed that this problem can-
not be solved in general, i.e. there exist multivariate continuous function that 
cannot be decomposed to univariate continuous functions. This was disproved 
by Kolmogorov in 1957 [3] in his general representation theorem, when he 
provided a constructive proof. 

TP based approximation has reached modeling approaches of non-linear dy-
namic systems, and furthermore, there are now controller design frameworks 
based on TP model [4, 5]. Generally, TP model, in broad sense, is an approx-
imation technique where the approximating functions are in tensor product 
form, whereas a TP model form is a particular approximating function in a 
TP model. In this paper we consider TP model in a narrower sense, when a 
TP model is applied to dynamic system control. 

A large variety of LMI based control design techniques have been developed 
in the last decade [6, 7]. Powerful commercialized softwares have also been 
developed [8] for solving LMIs and related control problems. Recently, a num-
ber of LMI based controller designs have been carried out for TP models (also 
termed as polytopic or TS models in fuzzy theory) under PDC [9]. Further, a 
TP model transformation has been developed to transfer non-linear dynamic 
models to TP model whereupon PDC design frameworks can readily be ex-
ecuted [4, 5]. One can find a case study of T P model transformation in the 
control design of a prototypical aeroelastic wing section [10] that exhibits var-
ious control phenomena such as limit cycle oscillation and chaotic vibration. 
A crucial point of these control design frameworks is the modeling accuracy. 
If TP model does not appropriately describe the real system the resulting 
control may not ensure the required control performance. On the other hand, 
by increasing the modeling accuracy the model's complexity also drastically 
increases and makes difficult any further calculation. Therefore, an optimal 
trade-off has to be chosen between the modeling accuracy and computational 
complexity for efficient controller design. This paper is devoted to analyze the 
approximation capabilities and complexity issues of T P model forms when ap-
plied to a case study, the Translational Oscillations with a Rotational Actuator 
(TORA) system. 

The paper is organized as follows: Section 2 introduces the fundamentals of 
TP modeling. Section 3 discuss the TORA system and the properties of the 
resulting TP forms. Section 4 derives some conclusions. 
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2. Preliminaries 

2.1. Linear Parameter-Vary ing state-space model 

Consider the following parameter-varying state-space model: 

x(t) = A(p(í))x(í) + B(p(i))u(i), (2.1) 

y(í) = C(p(t))x(t)+D(p(í))u(í), 
with input u(i), output y(t) and state vector x(t). The system matrix 

S(Bit)) - ( A { p ( i ) ) P ROX/ ,, 2x S»(P(í)) - ^C(p(í)) D(p(t))J G E (2-2) 

is a parameter-varying object, where p(f) G f i i s time varying ./V-dimensional 
parameter vector, and is an element of the closed hypercube fí = [aj, b-[] x 
[02,^2] x x [cijv, fejv] C K N p(i) can also include some elements of x(i). 

2.2. Convex state-space T P model 

S(p(i)) c a n be approximated for any parameter p(i) as the convex combination 
of LTI system matrices S r, r = 1,. , R. Matrices Sr are also called vertex 
systems. Therefore, one can define weighting functions wT(p(t)) G [0,1] C M 
such that matrix S(p(i)) can be expressed as convex combination of system 
matrices Sr. The explicit form of the T P model in terms of tensor product 
becomes: 

that is 

S(p(í)) -S ® wn(p„(t)) n=1 
< e. 

Here, e symbolizes the approximation error, row vector w n ( p n ) G Mín n = 
1 ,...,N contains the one variable weighting functions wn^n(pn). Function 
wn,j(Pn(t)) G [0,1] is the j-th one variable weighting function defined on 
the n-th dimension of Q, and pn{t) is the ra-th element of vector p(i). In 
(n = 1,. , N) is the number of the weighting functions used in the n-th di-
mension of the parameter vector p(i). The (N + 2)-dimensional tensor S G 
Rhxl2x-xiNxOxi i g constructed from LTI vertex systems S i l Í 2 . . . Í J N r G R ° x I 

For further details we refer to [10, 4, 11]. The convex combination of the LTI 
vertex systems is ensured by the conditions: 

Definition 1. The TP model (2.3) is convex if: 

Vn G [1, N],i,pn(t) : wn<i{pn{t)) G [0,1]; (2.4) 
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J, 
Vn G [l,iV],pn(í) $^u>„,i(p„(í)) = 1- (2.5) 

This simply means that S(p(í)) is within the convex hull of the LTI vertex 
systems Sili2.„iN for any p(í) € Í2. 
S(p(i)) has a finite element TP model representation in many cases (e = 0 
in (2.3)). However, exact finite element TP model representation does not 
exist in general (e > 0 in (2.3)), see Ref. [12]. In this case e n O , when the 
number of the LTI systems involved in the T P model goes to oo. However, 
these models also have a finite element TP model transformation, but it is not 
exact, there is some approximation error. As a result we have 

where a& are the discarded singular values. 

2.3. T P model transformation 

The TP model transformation starts with the given LPV model (2.1) and re-
sults in the TP model representation (2.3), where the trade-off between the 
number of LTI vertex systems and the e is optimized [4]. The TP model trans-
formation offers options to generate different types of the weighting functions 
w(-). For instance: 

Definition 2. SN - Sum Normalization Vector w(p), containing weighting 
functions Wi(p) is SN if the sum of the weighting functions is 1 for all p £ fi. 

Definition 3. NN - Non Negativeness Vector w(p), containing weighting 
functions Wi(p) is NN if the value of the weighting functions is not negative 
for all pECl. 

Definition 4. NO - Normality Vector w(p), containing weighting functions 
Wi(p) is NO if it is SN and NN type, and the maximum values of the weighting 
functions are one. We say W{ (p) is close to NO if it is SN and NN type, and 
the maximum values of the weighting functions are close to one. 

Definition 5. RNO - Relaxed Normality Vector w(p), containing weight-
ing functions Wi(p) is RNO if the maximum values of the weighting functions 
are the same. 

S ( p ( t ) ) « S ® wn(P n(f)) , 
7 n=l 

where the error 7 is bounded as: 

(2 .6) 
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F i g u r e 1. TORA system 

Definition 6. INO - Inverted Normality Vector w(p), containing weight-
ing functions Wi(p) is INO if the minimum values of the weighting functions 
are zero. 

All the above definitions of the weighting functions determine different types 
of convex hulls of the given LPV model. The SN and NN types guarantee 
(2.4), namely, they guarantee the convex hull. The TP model transforma-
tion is capable of always resulting SN and NN type weighting functions. This 
means that one can focus on applying LMI's developed for convex decompo-
sitions only, which considerably relaxes the further LMI design. The NO type 
determines a tight convex hull where as many of the LTI systems as possible 
are equal to the S(p) over some p G fi and the rest of the LTI's are close to 
S(p(i)) (in the sense of L2 norm). The SN, NN and RNO type guarantee that 
those LTI vertex systems which are not identical to S(p) are in the same dis-
tance from S(p(i)). INO guarantees that different subsets of the LTI's define 
S(p(i)) over different regions of p G fi. 
These different types of convex hulls strongly effect the feasibility of the further 
LMI design. For instance paper [13] shows an example when determining NO 
is useful in the case of controller design while the observer design is more 
advantageous in the case of INO type weighting functions. 

3. Case study of the T O R A system 

The TYanslational Oscillations with a Rotational Actuator (TORA) system1 

was developed as a simplified model of a dual-spin spacecraft [13]. Later, 
Bernstein and his colleagues at the University of Michigan, Ann Arbor, turned 
it into a benchmark problem for nonlinear control [14, 15, 16]. 
The system shown in Figure 1 represents a translational oscillator with an 
eccentric rotational proof-mass actuator. The oscillator consists of a cart of 

1 Also referred to as the rotational/translational proof-mass actuator (RTAC) system. 
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mass M connected to a fixed wall by a linear spring of stiffness k. The cart is 
constrained to have one-dimensional travel. The proof-mass actuator attached 
to the cart has mass m and moment of inertia I about its center of mass, which 
is located at distance e from the point about which the proof mass rotates. 
The motion occurs in a horizontal plane, so that no gravitational forces need 
to be considered. In Figure 1, N denotes the control torque applied to the 
proof mass, and F is the disturbance force on the cart. 

Let q and q denote the translational position and velocity of the cart, and let 
9 and 9 denote the angular position and velocity of the rotational proof mass, 
where 9 = Odeg is perpendicular to the motion of the cart, and 9 = 90deg is 
aligned with the positive q direction. The equations of motion are given by 

(M + m)q + kq —me(9 cos 9 — 92 sin 9) + F 
(I -I- me2)9 -meq cos 9 + N 

With the normalization 

cA / M+m „ 

U k<J+me*)N' W 

± ! k f 
~ V M+m''' 
\\f M+to p 

I+me2 ' 

the equation of motion become 

9 

(é2 sin 9 — 9 cos 9^ +w 

cos 9 + u 

where £ is the normalized cart position, and w and u represent the dimension-
less disturbance and control torque, respectively. In the normalized equations, 
the symbol (•) represents differentiation with respect to the normalized time r 
The coupling between the translational and rotational motions is represented 
by the parameter e which is defined by 

me 

VV + me2)(M + m) 

Letting x = (xi X2 £3 — (£ £ 9 0)T , the dimensionless equations 
of motion in first-order form are given by 

x = f(x) + g(x)u + d(x)u;, (3.1) 
where 

I 

f(x) = 

0 
- 1 

1 0 0 

1 — el cos 13 1 —el coŝ  13 
\ 

e cos X3 
\ 1 —e2 cos2 X3 

0 0 
0 0 ex4 sin1X3 

T=e* / 
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Table 1. Parameters of the TORA system 

Description Parameter Value Units 
Cart mass 
Arm mass 
Arm eccentricity 
Arm inertia 
Spring stiffness 
Coupling parameter 

M 
m 
e 
I 
k 
£ 

1.3608 
0.096 
0.0592 
0.0002175 

186.3 
0.200 

kg 
kg 
m 

kg m2 

N/m 

/ 

g(x) = 

0 
— gcos J3  

1— e2 cos2 X3 
0 

\ 1 
\ 1—g2 COS2 X3 

\ 

/ 
d(x) = 

1 
1 — £2 COS'' X3 

0 
—g COS x3 

\ 1— £2 COS2 13 / 
Note that u, the control input, is the normalized torque N and w, the dis-
turbance, is the normalized force F In the fallowings consider the case of no 
disturbance. The parameters of the simulated system are given in Table 1. 

3.1. Convex state-space T P model forms of the T O R A system 

We execute the TP model transformation on the LPV model (3.1) of the 
TORA. As a first step of the TP model transformation we have to define 
the transformation space Í2. We define it as íí = [—a, a] x [—a, a] {x^(t) G 
[—a, a] and X4(t) £ [—a, a]), where a — ^ 7 r r a d (note that these intervals 
can be arbitrarily defined). The T P model transformation starts with the 
discretization over a rectangular grid. Let the density of the discretization 
grid be 101 x 101 on (23(t) G [—a, a] and X4(t) G [—a, a]). 

3.1.1. Exact finite TP model 

The result of the T P model transformation shows that the rank of S(p) in the 
dimension of £3 is 4, whilst in the dimension of X4 is 2. The singular values 
in each dimensions are the following: cr^i = 251.62,(7^2 5.7833,(71^ 
2.8396, <71,4 0.030969; and (71,2 = 251.63,(72,2 5.7833. Therefore the 
TORA system can be exactly given as the combination of 4 x 2 = 8 LTI 
systems: 

4 2 
S(P) = X I X I whi(x3)w2jM ( A í j x + B i j u ) . (3.2) 

i=i j=1 
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Figure 2. Close to NO type weighting functions of the exact TP model 

Let us define the tight convex hull of the LPV model via generating close 
to NO type weighting functions by the T P model transformation, and depict 
them in Figure 2. 

3.1.2. Approximation Trade-off of the TORA system 

Even if the exact finite T P model exists, like in the case of TORA, some 
other reasons, such as the number of the resulting LMIs for controller design 
is unmanageable, or the accuracy of the actuator is much worse than the 
modeling accuracy, etc., can invoke the necessity to reduce the number of LTI 
systems. 

The equation 2.6 gives a bound for the transformation error, but it is only a 
theoretical maximum and in most cases the resulting model has much better 
approximation properties. In case of the TORA system only the dimension of 
£3 can be reduced, as in the dimension of £4 if only one LTI system is kept, 
the Definition 1 cannot be satisfied. Thus, we repeated the T P model trans-
formation and now only the three and two biggest singular values kept in the 
dimension of 23. The result TP forms contained 3 x 2 = 6 and 2 x 2 = 4 LTI 
systems, respectively. During the transformation the theoretical maximum 
error is calculated by the equation (2.6), and also after the transformation 
the approximation error is measured over 10 000 sample points. Table 2 sum-
marizes the results of the trade-off. Figure 3 and 4 show the resulting basis 
functions of the models. 
The trade-off results showed that the size of T P model can be drastically re-
duced without causing unacceptable approximation error. However, it is worth 
noticing that the resulting reduced models might behave slightly differently 
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Table 2. Summary of approximation trade-off of the TORA system 

Number of Number of Reduction Theoretical Measured 
singular LTIs ratio maximal maximal 

values kept error error 
4 8 Ö% Ö ÜT17" 
3 6 25% 0.0309 0.0007 
2 4 50% 2.8699 0.3033 

Angular position: ^ (rad) Angular speed: x4 (rad/sec) 

Figure 3. Close to NO type weighting functions of the reduced, 6 
LTI TP model 

in c 0 
1 c ^ 
cn c 
£ 
a) § 

-C d> 

Angular position: x3 (rad) Angular speed: x4 (rad/sec) 

Figure 4. Close to NO type weighting functions of the reduced, 4 
LTI TP model 

u> c o 
Ü c 3 M— 
U) 
c. 
£ o) a) 

than the exact finite model e.g. in controller design. These further checks are 
necessary to guarantee the needed behavior. 
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4. Conclusion 

This paper shows how the TP model transformation is capable of solving the 
trade-off problem of the two contradictory goals, the dynamic T P model's 
accuracy and complexity through the case study of the TORA system. The 
T P model transformation gives a tool to define the theoretical maximal ap-
proximation error during the transformation. However, the case study shows 
that sometimes it overestimates the real error of the approximation and the 
model's complexity can be reduced with a large degree. 
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