
féÜÍ] Production Systems and Information Engineering
k Volume 4 (2006), pp. 65-79 65

CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE
LATTICES

LÁSZLÓ KOVÁCS
University of Miskolc, Hungary

Department of Information Technology
kovacsQiit.uni-miskolc.hu

[Received May 2005 and Acceped March 2006]

Abstract. There is an increasing interest on application of concept
lattices in the different information systems. The concept lattice may be
used for representation of the concept generalisation structure generated
from the underlying data set. The paper presents a modified lattice
building algorithm where the generated concept nodes may contain not
only the attributes of the children nodes but some other generalised
attributes, too. The generalisation structure of the attributes is called
attribute lattice. Using this kind of lattice building mechanism, the
generated lattice and cluster nodes are more natural and readable for
humans. The proposed lattice structure can be used in several kinds
of information system applications to improve the quality of the query
interface.

Keywords: concept lattice, lattice building

1. Standard Concept Lattice

Concept lattices are used in many application areas to represent conceptual
hierarchies among the objects in the underlying data. The field of Formal Con-
cept Analysis [1] introduced in the early 80ies has grown to a powerful theory
for data analysis, information retrieval and knowledge discovery. There is
nowadays an increasing interest in the application of concept lattices for data
mining, especially for generating association rules [3]. One of the main char-
acteristics of this application area is the large amount of structured data to be
analysed. A technical oriented application field of Formal Concept Analysis is
the area of production planing where the concept lattices are used to partition
the products into disjoint groups during the optimisation of the production
cost [6]. As the cost of building a concept lattice is a super-linear function of

6 6 CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

the corresponding context size, the efficient computing of concept lattices is a
very important issue, has been investigated over the last decades [5].

This section gives only a brief overview of the basic notations of the theory
for Formal Concept Analysis. For a more detailed description, it is referred to
[!]•

A K context is a triple K(G,M,I) where G and M are sets and I is a rela-
tion between G and M. The G is called the set of objects and M is the set
of attributes. The cross table T of a context K(G,M,I) is the matrix form
description of the relation I:

1 if glIa3
— \

where gi € G, a,j G M.

M I 0 otherwise

Two Galois connection operators are defined. For every A C G:

f(A) = A' = {ae M|V5 € A gla} (1.1)

and for every B C M

g(B) = B' = {ge G|Va e B gla} (1.2)

The Galois closure operator is defined by

h = f og

and
A" = h{A)

is the Galois closure of A. The pair C(A, B) is a closed itemset of the K
context if

AQG
BCM
A'= B
B' = A
A = h(A)

hold. In this case A is called the extent and B is the intent of the C closed
itemset. It can be shown that for every A{ C G,

(u IAIY = R\IA[

67 CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

and similarly for every B j C M ,

(U Í B Í) ' = HiB'i

holds.

Considering the <f> set of all concepts for the K context, an ordering relation
can be introduced for the set of closed itemsets in the following way:

Ci < C 2

if
Ai a 2

where C\ and C2 are arbitrary closed itemsets. It can be proved that for every
(Ci,C2) pair of closed itemsets, the following rules are valid:

C I A C2 e <f>

and
C I V C2 e <t>.

Based on these features (<J>, A) is a lattice, called closed itemset lattice. Ac-
cording to the Basic Theorem of closed itemset lattices, (<f>, A) is a complete
lattice, i.e. the infimum and supremum exist for every set of closed itemsets.
The following rules hold for every family (Ai, Bi), i G I of concepts:

Vi&I(Ai,Bi) = (ni&iAi, (UieiBi)")

A iei(Ai,Bi) = ((U ieIAi)" ,r\i£lBi)
The structure of a Galois lattice is usually represented with a Hasse diagram.
The Hasse diagram is a special directed graph. The nodes of the diagram are
the closed itemsets and the edges correspond to the neighbourhood relation-
ship among the itemsets. If C\,C2 are itemsets for which

Ci <C2

- 3 C 3 G (</>, <) Ci < C3 < C2

holds then there is a directed edge between C\, C2 in the Hasse diagram. In
this case, the Ci and C2 concepts are called neighbour concepts.

There are several approaches in the literature to provide an efficiency lattice
management. Each of the proposals provides a mechanism to reduce the num-
ber of attributes. These methods are usually based on some kind of statistical
calculations. The method presented in [11] uses the principal component anal-
ysis to eliminate the redundant attributes from the documents. This method
is based on the consideration that the occurrences of some attributes may
be correlated. According to the principal component analysis, the original m

6 8 CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

correlated random variables can be replaced by another set of n un-correlated
variables where n is smaller than m. The resulting variables are the linear com-
bination of the original variables. The principal components depend solely on
the covariance matrix of the original variables.

Another kind of statistical computation is required if the reduction is based on
the relevance values of the attributes. The relevance value of an attribute de-
notes how important the attribute is in the given object. This relevance value
is calculated usually by the 'tf5idf' weighting method. This method defines
the relevance value in proportion to the number of occurrences of the attribute
in the document / y , and in inverse proportion to the number of documents in
the collection for which the term occurs at least once (n^):

N
relij = fij log(-)

Til
The attributes having smaller relevance value than a threshold are eliminated
from the object descriptor set. This kind of reduction method is used for ex-
ample in [19].

Although the mentioned algorithms can reduce the number of attributes, pro-
viding better efficiency and interpretation, the resulted lattice can not be
treated as the optimal one. According to our considerations, this solution
may yield in some kind of information lost. This reasoning is based on two
elements. First, the information lost is caused by the fact that the parent con-
cepts will contain only some selected attributes of the children and the selected
attributes are not always the best to describe the object. Second, during the
attribute reduction phase, the meaning of the eliminated attributes will be
lost, providing less information in the intersected concept.
To improve the quality and usability of the resulting lattice, a modified lattice
and concept description form was developed which is described in the next
section in details.

2. Concept Lattice with Attr ibute Lattice

It is assumed that there exists a lattice-like structure containing the attributes
from the objects. This lattice-like structure can be considered as a thesaurus
with the generalization relationship among the attributes. Taking the docu-
ments as objects and the words as attributes in our example, the attribute
lattice shows the specialization and generalization among the different words.
In special cases, the lattice may be a single hierarchy. It is also possible to

69 CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

take several disjoint lattices as they can be merged into a new common lattice.
Using this attribute lattice, the usual lattice-building operators are re-defined
to generate a more compact and semantically more powerful concept lattice.

The proposed lattice construction algorithm is intended for information sys-
tems with a relative narrow problem area. In this case, an attribute lattice
can be generated within ail acceptable time and effort. It is assumed that
the attribute lattice contains only those attributes that are relevant for the
problem area in question. In this case, the size of the attribute lattice and the
intent part of the concepts will be manageable. According to this assumption,
the first phase of the document processing is the attribute filtering when the
attributes not present in the attribute lattice are eliminated from the intent
parts.

The M' elementset of the attribute lattice is a subset of the M attribute set.
This lattice is denoted by the symbol Q(M', <). The role of the lattice is to
represent the generalization - specialization relationship among the attributes.
The ordering relation of the attribute lattice is defined in the following way.
For any m\ ,m2 attributes in M', mi is greater than m2 (mi > 7712) if mi is
a generalization of m2- Based upon the relationship in Q(M', <) a redefined
partial ordering relation is introduced to M as an extension of the < relation.
This new relation is denoted by < * and it is defined in the following way for
any m\,m,2 € M:

mi < *m2 ^ mi is an ancestor, a generalization of 7712 in Í1{M', <)

Taking the words as attributes, for example, the word 'animal' is a general-
ization of the word 'dog', so 'animal' < * 'dog' relation is met.

According to the lattice features, there exists a set of nearest common up-
per neighbors for any arbitrary pairs of attributes. This set is denoted by
LCA{m\,m2) for the attribute pair mi ,m2.

LCA(m\,m2) -

{m G M\m < *mi Am < *rri2 A ->3 m! m' < *m2 A m! < *mi A m < *m'}
(2 .1)

The LCA denotes the least common ancestor of two nodes in the lattice. The
LCA set contains exactly the leaf elements of the common ancestor lattice for
mi and m^- Based on the partial ordering among the attributes, a similar
ordering can be defined among the attribute sets. For any B\,Ü2 C M, the
C * ordering relation is given as follows:

7 0 CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

B\ C *B2 ^ 3 / B\ —> B2 function so that x < *f{x) for every x E B\.

Having four sets of words Bl(Paris, tennis, cup), B2(capital, sport), B3(capital,
sport, car) and B4(sport) the B2 C *B\ relation is true as the / capital —>
Paris, sport —> tennis function is a good injection. On the other hand,
B3 C *B\ relation is false, as the word 'car' can not be mapped to any word
in B\.

It is easy to see that the normal subset relation is a special case of the C *
relation, i.e.:

In this case the / x —> x mapping can be used to show the correctness of the
C * relation.

Based on this kind of subset relation, a new intersection operation can be
defined. The definition of the new operator is:

The intersection operator results in a set containing the nearest common
generalizations of the attributes in the operand sets. If the parent node for
every normal attribute of the intent sets is the null attribute (which is equiva-
lent to the case when no attribute lattice is defined), the new fl* intersection
operator will yield in the same result as the standard fl intersection operator.
This is due to the fact that in this case

Using this kind of subset and intersection operators instead of the usual subset
and intersection operators during the concept set and concept lattice building
phases, the resulting lattice will be more compact, more readable and man-
ageable than the standard concept lattice. This effect will be achieved by
involving attributes into the concept description that would not be present if
the standard lattice building method was used.

The key operation in the proposed lattice management is the determination
of the LCA set for any arbitrary pair of nodes. This operation is performed
several times during the execution of the fl* intersection operations. As the

B\ C B2 BI C *B2

B = B1 n *B2 = U {LCA(mi,m2)\mi E B\,m2 E B2} (2.2)

3. Algorithms for the LCA operation

71 C O N C E P T LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

intersection is a frequent operation the efficiency of the LCA generation is a
key element in the efficiency of the whole lattice management.

The computation of the LCA set can be performed basically on two differ-
ent ways. In the first family of proposals, the common ancestor nodes are
located by traversing the paths connecting the two operand-nodes. To reduce
the number of candidate paths, the shortest path is determined first. The
shortest path is usually calculated by using matrix multiplication. The second
group of approaches for determining the LCA elements is based on the label-
ing concept. In the labeling approach, every vertex is assigned a description
string. This label is used not only for identifying the nodes but to represent
the ordering relationship among the nodes. In this case, the parents of an ar-
bitrary node can be determined from the labels without the edge descriptions.
Beside the problem of LCA generation, the labeling methods are used also to
determine the distance between two nodes. This kind of labeling is called a
distance labeling [14].

If the lattice is degenerated to a linear structure, the LCA contains only one
node and this LCA node can be determined with a linear processing cost.
Harel and Tarjan [15] showed first that the tree-LCA can be generated in a

0 (n)

linear preprocessing time. In the last decades, some new proposals were pub-
lished having the same 0(n) execution cost but using a much more simpler
algorithm. One of most recent ones among these proposals is the paper of
Bender, Colton and Pemmasani[15]. They present an extremely simple, opti-
mal tree-LCA algorithm. It is shown that the tree LCA problem is equivalent
to the RMP, the range minimum problem. In the paper, an 0(n) RMP algo-
rithm is presented first and then it is converted to a tree-LCA algorithm with
0(n) efficiency. An intensive investigated topic in this area is the identifying
the nearest common ancestors in dynamic trees. In [16], Alstup presents a
pointer machine algorithm which performs n link and m LCA operations in
time

0(n + m loglogn).

The main problem of the algorithms based on path traversing is that the re-
lationship among the nodes of the lattice must be stored explicitly. These
relationships are usually described by matrixes or by pointers. In this case,
the tree is stored by representing explicitly all vertices and all edges. To save
the storage space and to improve the execution efficiency, labeling methods

7 2 C O N C E P T LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

are implemented.

In [17] a simple algorithm is presented that labels the nodes of a rooted tree
such that from the labels of two nodes alone one can compute in constant time
the label of their nearest common ancestor. The labels assigned to the nodes
are of size

0(logn)

and the labeling algorithm runs in

0(n)

time. A similar result for this problem can be found among others in [18].

In the case of a lattice or DAG (directed acyclic graph), the LCA problem
requires much more computation. In a lattice structure, two nodes may have
several LCA nodes. Although the DAG is a widely used structure, the DAG-
LCA generation is not so widely investigated as the tree-LCA problem. Based
on the work of Bender, Colton and Pemmasani[15], the main results can be
summarized as follows. For testing the existence of common ancestors, an
ancestor existence matrix is built. Two nodes x and y in lattice G have a
common ancestor if and only if (x', y) is in the transitive closure set of the
G" lattice. The G" lattice is generated by merging the sinks of G' with the
sources of G. The G' is the inverse lattice of G, i.e. it contains the same
number of nodes and edges but every edge has the inverse direction. The
ancestor existence matrix can be computed in

0(n w)

time, where w is about 2.376 [15] and 0(nw) is equal to the efficiency value of
the fastest matrix multiplication algorithm. The transitive closure of a lattice
can be generated within the 0(nw) efficiency class, too. The computation
of the LCA set is based on the consideration that the shortest path in the
G" DAG from node x' to node y goes through the LCA of the corresponding
nodes. The generation of LCA for a pair of nodes can be calculated in

0 (2 ^ - 0 . 5)

time.

There exist some proposals for finding the LCA nodes in graph by labeling
method, too. A k-step labeling method is presented in the paper [16] of Talamo
and Vocca. A k-step labeling consists of fi,--,fk functions where every fi is

73 CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

a partial function computable in one step and a composition between / j and
can be defined. The k-step labeling is a valid labeling if and only if

y £ adj{x) { f k ° fk-l° ° fl(x, y)) = y V (f k o fk_x o o h(y,x)) = x

is met. The paper presents a method for generating the labels where a vertex
x has a

0(6(x) • log2n)
bit long label and the labels can be computed in

0{0-n2)

time, where Ő denotes the degree of the vertex. The degree of a vertex is equal
to the number of adjacent nodes. A modified version of this adjacent labeling
can be found among others in [16]. An L(d, 1) labeling is a function / that
assigns to each vertex a non-negative integer such that if two vertices x and y
are adjacent then | f (x) — f(y)\ > d, and if x and y are not adjacent but there
is a two-edge path between them then \f(x) — f(y)\ > 1.

Considering our requirements, it can be seen, neither of the proposals meets
all of the requirements. The main problems in application of the presented
methods are the followings:

there is no detailed study on DAG-LCA problem
the path traversing method for DAG [15] retrieves only one
element from the LCA
the labeling methods can be used only to determine the
adjacent nodes and not all the descendant nodes

Based on these restrictions, it seems reasonable to develop a special DAG-LCA
generation algorithm for the lattice structure.

4. A modif ied D A G - L C A algori thm

The computation of the LCA set can be performed basically on two differ-
ent ways. In the first family of proposals, the common ancestor nodes are
located by traversing the paths connecting the two operand-nodes. To reduce
the number of candidate paths, the shortest path is determined first. The
shortest path is usually calculated by using matrix multiplication. The second
group of approaches for determining the LCA elements is based on the labeling
concept. In the labeling approach, every vertex is assigned a description string.

7 4 C O N C E P T LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

In the case of our search algorithm for finding the LCA nodes, a merging of
the path- oriented methods with the labeling methods is implemented. The
main idea is to assign a description set to every node in the lattice where this
description set has a similar role as the attr ibute set has in the normal concept
lattices. As it is known, there is a strong correlation between the position in
the lattice and the content of the intent part. For any pairs of concepts, the
concepts are in relation if and only if one of the intent parts is a subset of the
other intent part:

Ci < Ci & A2 C Ax

Based on this rule it can be seen that

A(LCA(mi,m2)) C A(mi) fl A(m2)
also holds where A{m) denotes the intent part of m. In this sense, the search
for the LCA nodes may be restricted to the nodes where the intent part is a
subset of the intersection of the corresponding Ai and Aj sets. This reduction
may increase the efficiency of finding the LCA elements. As a node in the
attribute lattice usually does not contain an intent part description, it is not
possible to apply this kind of reduction element in the usual lattice build-
ing. To include this optimization feature an appropriate intent part should be
added to every node of the attribute lattice.

Let B denote the set of binary lists having the same length and containing 0
and 1 elements. If there exists a

a M ^ B

function which meets the following requirements:

a(mi) = a(m2) m\ = m2

a{m\) C a(m2) mi > m2

then
a(LCA(m\,m2)) C a(mi) fi a(m2) (4.1)

holds also. In these expressions the C symbol denotes the sub-list operator
and the fl operator is the list intersection. The list-intersection is defined for
any l\, l2 lists as follows

(Zi nl2)j = l\j Ai2j
where the length of the result list is equal to the minimum of the operands
lengths. Thus, for example the intersection of 101100 and 111000 is equal to
101000.

This statement can be easily verified as according to (2.1)

LCA(mi,m,2) > m\ and LCA(m\,m2) > m2

75 CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

thus
a(LCA(mi,m2)) C a(mi) anda(LCA(m\,7712)) C 0(7712)

and so
a(LCA(mi, 7712)) C a(mi) fl 0(7712)

holds.

To provide an appropriate a() function, the following algorithm is used to
calculate the a(m) values. First, the nodes in the lattice are sorted by the
depth value. The nodes with low depth value are processed first. Thus before
processing of node m, every ancestor of m has been processed already. The
root node of the lattice is assigned to an empty list. This root element is the
only node with a zero depth value. If all the nodes with depth value less than
K are already processed, then the a() values for nodes at depth level K + 1
are calculated according to the following algorithm.

1. For every m at level K + 1:
a(m) = Um/ G Parent(m) 0,(m')

2. Nodes having the same a(m) value are extended with tail tags
to ensure the uniqueness of the a(m) values.

3. Testing every node at the processed levels. If node m' is not an
ancestor of m and a(m') C a(m) then 0(771') is extended with tail tag.

4. The descendants of m' are adjusted to the new m! value.

Lemma. The a() function generated by the given algorithm meets the (4.1)
conditions.

Proof. According to the step 2 in the algorithm, every node will have a unique
value. In the adjustment phase every processed node will be modified with an
unique tag, so the uniqueness of the a() values is ensured in this phase too.
According to this considerations, the

a(mi) = 0(7712) ^ "M = m2 (4-2)

condition holds.

If the m is a child of m ' then a(m') C o(m). This comes from the fact that
the a(m) is generated as the union of all its parents. If m! > m then exists a
list of parent-child relationship from m to m! Using the transitive property
of the relations, it follows that

a(m\) C 0(7712) •<= 1 > 7712 (4.3)

76 CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

is met. On the other hand if m! is not greater or equal to m then m' is not
an ancestor of m, then the a() value of m! is modified by adding new tags to
the list value. After this modification, the a(m') will not be a subset of a(m).
Thus

- I A (M I) C A (M 2) •<= I > M 2 (4 - 4)

According to the (4 . 2) , (4 . 3) , (4 . 4) formulas, the (4 . 1) property is met.

Considering the proposed labeling algorithm, the generated labels are usually
not optimal from the viewpoint of the label length. In the tests, the labels
were generated for the normal concept nodes having a natural attribute string.
Depending on the number of nodes and on the depth of the lattice, the gen-
erated labels can be several times longer than the original attribute labels. In
the test runs, the proposed labeling algorithm provided always the same lat-
tice relationship among the nodes as the original attribute strings. The length
optimality of the generated labels is a topic for further investigations.

After generating the labels, the next step is the identification of the LCA set.
In the basic path oriented methods the LCA algorithm consists of the follow-
ing steps:

1. Generating the Ax ancestor set for x. The ancestors are selected
by traversing along the parent-child edges.

2. Generating the Ay ancestor set for y.
3. Calculating the Axy intersection of the two ancestor sets.
4. Selection of vertices in Axy having no descendants in Axy

The cost for the LCA algorithm can be given by

0(AX f • e + Ay f • e + Axy • w)

where
/ average degree of the vertices, i.e. the average number of parents
e cost for selection of an edge related to a given node. The cost may vary
depending on the storage method.
Ax size of the corresponding ancestor set

On the other hand, in the proposed algorithm the generation of the LCA for
(x,y) is performed in the following steps.

1. Processing the parents of x in a recursive way
2. If the current element is an ancestor of y, insert the current element

into list L and stop the ancestor lookup

77 CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

3. Selecting elements of L having no descendants in L

In step 2, the ancestor relationship is tested by comparison of the label values.
According to (4.3), if

a(mi) C a(m2)

then mi is an ancestor of mi- If the traversing reaches a y-ancestor, the lookup
can be stopped as the ancestors of this node can not be LCA nodes.

The main benefit of this algorithm is the reduced number of nodes to be
processed. The cost can be given by

0{A'X f (e + h)+r,A%)

where
A'x the number of vertices being the ancestor of x
but not being an ancestor of y.
T] the cost for comparing two labels
A'xy the number of selected border nodes in Axy.

Comparing the two cost expressions, we can see that the combined method is
more efficient than the basic method if

1. A'x is smaller than Ax and Ay

2. T] and e have the same magnitude
3. Axy is smaller than Axy

Based on these considerations, this bottom up traversing is advantageous if
the LCA elements are located near to the x and y nodes. On the other hand,
if the LCA elements are near to the root of the lattice, a top-down approach
provides a better solution. In this case, the algorithm is the following:

1. Selecting the root of the lattice
2. Testing the children of the current node
3. If the label is a subset of the intersection label
4. Selection of vertices in Axy having no descendants in Axy

This algorithm determines the parents for the intersection of x and y. The
label of the intersection node is equal to the intersection of the corresponding
labels. The cost value can be given by

0(Axy f (e + h))

78 CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

where / denotes the average number of children vertices.

An efficient implementation can involve all of the mentioned algorithms. The
LCA generation program should include a decision module that is responsible
for selecting an appropriate algorithm. As the number of 1 digits in the label is
correlated with the level of the node, an approximation of the LCA levels can
be given based on the value of the intersection label. The heuristic rule can be
summarized as follows: If the number of 1 digits is low in the intersection label,
then a top-down traversing method is used, otherwise a bottom-up traversing
is applied.

R E F E R E N C E S

[1] S. ABITEBOUL AND H . KAPLAN AND T . MILO: Compact labeling schemes for
ancestor queries, Technical report, I N R I A , 2001

[2] S. ALSTUP AND T . RAUHE: Improved labeling scheme for ancestor queries,
Technical report, University of Copenhagen, 2001

[3] S. ALSTUP AND C. GAVIOLLE AND H . KAPLAN AND T . RAUHE: Identifying
Nearest Common Ancestors in Distributed Enviroment, Technical report, Uni-
versity of Copenhagen, 2001

[4] M . BENDER AND M . COLTON AND G. PEMMASANI: Least Common Ancestors
in Trees and Directed Acyclic Graphs, Symposium on Discrete Algorithms, 2001,
pp. 845-854

[5] G. CHANG AND W K E AND D. KUO AND D. LIU AND R. YEH: On L(d,l)-
labelings of graphs, Discrete Mathematics, Volume 220, Issues 1-3, 6 June 2000,
pp. 57-66

[6] B . GANTER AND R . WILLE: Formal Concept Analysis, Mathematical Founda-
tions, Springer Verlag, 1999

[7] R . GODIN AND R . MISSAOUI AND H . ALAOUI: Incremental concept formation
algorithms based on Galois lattices, Computational Intelligence, 11(2), 1995, 246-
267

[8] K. Hu AND Y Lu AND C SHI: Incremental Discovering Association Rules: A
Concept Lattice Approach, Proceedings of PAKDD99, Beijing, 1999, 109-113

[9] M. KATZ AND N KATZ AND D. PELEG: Distance labeling schemes for well-
separated graph classes, STACS 2000, Lecture Notes In Computer Science,
Springer Verlag, 2000

[10] L. KOVACS: Efficiency Analysis of Building Concept Lattice, Proceedings of 2nd
ISHR on Computational Intelligence, B u d a p e s t , 2001

[11] L . KOVACS: A Fast Algorithm for Building Concept Set, Proceedings of Micro-
CAD2002, Miskolc, Hungary 2002

79 CONCEPT LATTICE STRUCTURE WITH ATTRIBUTE LATTICE

[12] C. LINDIG: Fast Concept Analysis, Proceedings of the 8th ICCS, Darmstadt,
2000

[13] L. NOURINE AND O . RAYNAUD: A Fast Algorithm for Building Lattices, In-
formation Processing Letters, 71, 1999, 197-210

[14] S. RADELECZKI AND T . TÓTH: Fogalomhálók alkalmazása a csoporttech-
nológiában, OTKA kutatási jelentés, Miskolc, Hungary, 2001.

[15] J. SILVA AND J. MEXIA AND A. COELHO AND G. LOPEZ: Document Clustering
and Cluster Topic Extraction in Multilingual Corpora, Proc. of the 2001 IEEE
Int. Conference on Data Mining, IEEE Computer Society, pp. 513-520

[16] G . STUMME AND R . TAOUIL AND Y BASTIDE AND N . PASQUIER AND
L. LAKHAL: Fast Computation of Concept Lattices Using Data Mining Tech-
niques, Proc. of 7th International Workshop on Knowlegde Representation meets
Databases (KRDB 2000), Berlin, 2000

[17] M. TALAMO AND P VOCCA: Representing graphs implicitly using almost
optimal space, Discrete Applied Mathematics, Elsevier Publ., 2001, pp. 193-210

[18] D . TIKK AND J . YANG AND S. BANG Text categorization using fuzzy rela-
tional thesauri, Technical report, Chonbuk National University, Chonju, Korea,
2001

[19] M . ZAKI AND M . OGIHARA: Theoretical Foundations of Association Rules,
Proceedings of 3 rd SIGMOD '98 Workshop on Research Issues in Data Mining
and Knowledge Discovery (DMKD'98), Seattle, Washington, USA, June 1998.

[20] U . ZWICK: All Pairs Shortest Path in weighted directed graphs- exact and
almost exact algorithms, IEEE Symposium on Foundation of Computer Science,
1998, pp . 310-319

	 - 0068
	 - 0069
	 - 0070
	 - 0071
	 - 0072
	 - 0073
	 - 0074
	 - 0075
	 - 0076
	 - 0077
	 - 0078
	 - 0079
	 - 0080
	 - 0081
	 - 0082

