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Abstract. Bayesian networks give an efficient probabilistic model rep-
resentation scheme to encode both expert knowledge and information 
extracted from database. Although the probabilistic model representa-
tion and the storage space problem can be solved using Bayesian net-
works, the model evaluation (inference) operation become complicated. 
The practical solution of this problem is an optimum between the ac-
curacy of model and the complexity of the model evaluation task. This 
trade-off is more easily found if the knowledge engineers could receive an 
immediate feedback during the developing phase of the network about 
the computational resources required to evaluate the probabilistic model. 
This paper presents a Bayesian network modeling software tool focusing 
on its graphical user interfaces and data structures. 
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Probabilistic models [8, 6, 7] of real world phenomena are increasingly used in 
commercial applications, especially in decision support systems and in different 
type of fault or fraud detection tasks. Such applications have two essential, 
usually independently considered components: the knowledge base (abstract 
description of real world phenomena, i.e. a model) and the model evaluation 
engine. 

In the case of an uncertain problem domain, the model is often given as a 
joint probability distribution function (PDF) over a finite set of variables. 
For discrete variables, the joint probability function may be stored in a table. 
This may result simple inference engines at the price of huge required storing 
capacity which grows exponentially with the number of variables and their 
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possible values. In fact, the required storage capacity impedes the direct use 
of joint probability tables in real applications. 

Bayesian networks offer an efficient representation structure using conditional 
probability tables obtained from the factorization of the joint probability func-
tion. This factorization is implied by a set of independence relations which 
is represented by a directed acyclic graph (DAG). This graphical structure 
helps to integrate two vital knowledge sources when creating the probabilistic 
model: expert knowledge and information extracted from databases. How-
ever, the evaluation of these models is more complex. Prom a practical point 
of view, the main problem is to find an optimum between the model accuracy 
and the complexity of its evaluation. This trade-off should be more easily 
found if the knowledge engineers could receive an immediate feedback about 
the computational resources required to evaluate his or her actual probabilistic 
model. 

Our research has a twofold objective. First, we wish to revisit some existing 
algorithms used to evaluate Bayesian networks, and second, to develop a user 
friendly environment to design such networks providing information about the 
computational complexity of the model during its creation. This paper focuses 
on our second objective and presents a prototype software tool designed using 
MATLAB. 

The remaining part of the paper is organized as follows. The next section (2) 
gives an overview on the mathematical background of Bayesian networks and 
on the related probability inference problem. Section 3 summarizes the model 
creation methodology, the steps of model creation are described in Section 4. 
Section deals with the implemented Bayesian modeling software tool. The first 
part of the section is devoted to the main role of the user interface. This is 
followed by a short overview about the main concepts of system architecture. 
Section 6 ends with the description of the implemented functions. Section 7 
specifies the data structures used to maintain the DAG property during the 
editing process. Conclusions and some remarks about the future works close 
the paper. 

2. Bayesian networks 

The objective of the modeling is to find an abstract representation of the infor-
mation coded in the database and that of the human knowledge accumulated 
as experience. 

In probabilistic models all variables are aleatory variables and each record in 
the database is a realization of these variables. Then the model is given by 
the joint probability distribution function (PDF) over all variables as 
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P Vi x V2 x x V̂ i —> [0,1] (2.1) 

Bayesian networks [7] are widely used to represent efficiently a joint PDF, 
so it become one of the most popular uncertainty knowledge representations 
and reasoning technique in AI. The structure is able to code and to integrate 
expert knowledge and formerly measured values of problem domain variables 
(stored in databases). 
Defini t ion 1 (Bayesian networks). A Bayesian network over a set of variables 
U = {Vi , . . . , Vn} consists of a graphical and a quantifying component: 

1. Graphical component. Directed acyclic graph: Q. Each node in the 
graph represents a variable in U. The set of parents of a variable V is 
denoted by Ily • 

2. Quantifying component. Each variable V in U (i.e. each node in Q) is 
quantified with a conditional probability distribution (CPT) denoted by 
P(V\Uv). 

P(E) e° e1 
P(B) b° b' 

0.995 0.005 0.99 0.01 

Figure 1. The classical [7] Alarm Bayesian network with CPTs 

These random variables can be either discrete or continuous depending on 
the nature of the problem domain. We will consider discrete variables in the 
sequel. The Bayesian network corresponds to a joint PDF over U: 

n 

P(U) = X l ^ ( v s i n v i ) . 
i=i 

(2.2) 
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The query of a variable Vq in a Bayesian network based on a set of evidences 
E c U (variables with known values or distributions) corresponds to an in-
ference procedure. The inference in a Bayesian network consists of fixing the 
values of a subset of the variables and to marginalize (2.2) w.r.t. Vq: 

This results a probability distribution over Vq which combines the knowledge 
encoded in the network (i.e. in P(U)) and in the collected evidence. The 
direct marginalization according to (2.3) is a computationally expensive op-
eration because it needs numerous evaluations of the joint PDF coded by 
the network. Therefore the marginalization takes place usually in a different 
secondary structure called tree of clusters using the so called Probability Prop-
agation in Tree of Clusters (PPTC) algorithm [4]. Roughly speaking, cluster 
trees are undirected, acyclic graphs whose nodes are clusters containing sets 
of the nodes from the original network. The rules of transformations leading 
from the original Bayesian network to a cluster tree ensure that both entities 
correspond to the same joint PDF 

There are several exact and approximate inference algorithms, whose com-
putational complexity is NP-hard [1, 2], The most popular exact inference 
algorithm is the so called clique-tree propagation algorithm [4], Our research 
places the emphasis on this approach [3]. 

3. A probabilistic model ing methodology using Bayesian networks 

The applied model creation methodology is meshing to the degree of observ-
ability of problem domain [5]. We pressume the full observability over many 
human experts and large datebases. According to our approach the model 
creation process consists of several overlapping steps, some of them being re-
peated in an iterative way. This section summarizes the main working phases 
of this process. 

Since Bayesian networks yield an effective way to represent factorizable joint 
PDFs, our methodology is especially customized to this approach. The fol-
lowing human collaborators intervene during the model creation process [9]: 

• Human Expert: he or she holds possession of practical and/or theoret-
ical knowledge about the problem domain. 

• Statistician: skilled in the classical statistical methods of data analysis. 
• Knowledge Engineer: proficient in the creation of knowledge based prob-

abilistic model. 

P (U) . (2.3) 
U\{V„E} 



A MATLAB GRAPHICAL TOOL TO SUPPORT KNOWLEDGE ENGINEERING 8 5 

The model creation process consists of the following steps. 

• Surveying knowledge sources: discovery of the appropriate knowledge 
sources. The probabilistic model is generally a theoretical (mathemat-
ical) abstraction, which depicts efficiently the behavior of the circum-
scribed real world domain. In our approach, the model integrates the 
knowledge hiding in measured data patterns (stored in databases) and 
the knowledge of Human Expert (collected using questionnaires and 
interviews). This phase is undertaken by the Knowledge Engineer in 
cooperation with the Human Expert. 

• Raw data preprocessing and determining the relevant probabilistic vari-
ables. This phase processes the raw data gathered about the problem 
domain. In the possession of reports made during the preceding phase 
with the Human Expert, the Knowledge Engineer determines a poten-
tial collection of probabilistic variables (including future evidence and 
query variables) in line with the Statistician, who analyzes the quality 
and relevance of raw databases w.r.t. the set of probabilistic variables. 

• Stipulating the structure of probabilistic network. The Statistician and 
the Knowledge Engineer divide the probabilistic network into partitions. 
Some of them will be trained using data from database, the rest will be 
appraised by the Human Experts. 

• Putting the pieces together. The Knowledge Engineer assembles the 
trained and appraised parts of model using again the Human Expert's 
knowledge. This results the first raw but complete probabilistic model. 

• Finalizing the qualitative and quantitative composition. The Knowl-
edge Engineer verifies the Bayesian network using test data. 

Recall that at each phase one may need to step back and reiterate previous 
phases if the actual results are not satisfying. 

4. Model creation steps 

The probabilistic model representation and the storage space problem of a 
joint PDF can be solved using Bayesian networks, but the model evaluation 
(inference) operation become complicated. 

Recall that the first objective aims to obtain quantitative information to create 
the graphical component and the second one helps to determine qualitatively 
the conditional PDFs associated to the nodes of the Bayesian network. This 
modeling procedure results an iteration of steps as illustrated in Figure 2. 

The transformation between the cluster tree and the Bayesian network (al-
ready mentioned in Section 2) is not a one-to-one relation, since several cluster 
tree may correspond to the same Bayesian network. A cluster tree is said to be 
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Control and result 

Figure 2. Iterative modeling with Bayesian network 

optimal if it is of minimal width. Roughly speaking, the width of the cluster 
tree is directly related to the computational cost of a query evaluation. The 
search for the optimal cluster tree is a complex task impeding the possibility 
to give the Knowledge Expert an exact complexity measure of the designed 
network at each step of the above methodology. 

5. The modeling software tool 

It is clear from the methodology described in the previous section that the 
Knowledge Engineer has the occasion to trade-off between the accuracy of 
the probabilistic model and the complexity of the inference task during the 
creation of each direct connection between a pair of nodes. There are a lot 
of commercial Bayesian software tools integrated with ergonomic graphical 
interfaces to support this graph manipulation process. From the well dis-
tributed software packages we emphasize Netica, GeNIe, Hugin. [10, 11, 12]. 
Some of them have high level abstraction interfaces, which can be accessed for 
development using up-to-date programming languages (C+-1-, Java etc.). 

However, these environments are too closed for the optimization at low level of 
PPTC, so we have constructed a new framework using MATLAB, including a 
simple graphical but a more complex developer interface. In this environment 
several optimization approaches (testing different triangulation and complex-
ity information feedback heuristics) become realizable and examinable. In this 
section our framework is presented that supports the Knowledge Engineer to 
find the compromise between accuracy and computational complexity. 
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(a) Surface to edit the DAG component (b) Surface to edit the CPT component 

Figure 3. Graphical user interfaces 

5.1. G U I funct ional i ty a n d s t r u c t u r e 

The GUI has two distinct windows for supporting the modifications of the 
DAG (directed acyclic graph) structure and the numerical data of CPT (con-
ditional probability distribution). Figure 3 shows screenshots of both windows. 

There are two frames in each window, the right ones (larger) visualize the 
DAG or the CPT, the left ones (smaller) displays the modification commands. 

In the DAG manipulation view (Figure 3) some operations are just modifying 
the vista of the graph (scroll the graph or a node), the others are changing 
the structure of the DAG (add/remove edges). The main commands for the 
DAG view are the following: 

• Scrolling figure: the displayed graph is movable in the window. 
• Adding or removing a node. 
• Manipulating a node. After the selection of a node (the current node 

is marked using different color) the most important operations become 
executable: 

- modification of the position of the current node in the picture, 
- changing the name of the current node, 
- assigning new parent to the current node (add a new edge), 

removing a parent from the current node (delete an edge). 

It is important to pay more attention to operation where a new edge is added 
to the graph. We present this problem in detail in Section 6. 

The role of the left frame in CPT manipulation view (Figure 3) is the same as 
in DAG view, but the bigger right pane becomes two sided, because the tasks 
of displaying and manipulating probability values are executed in the same 
pane. 
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Recall that the changes in the DAG structure are not independent from the 
context of CPTs. For example if one edge is deleted, the CPT of the child 
node becomes simpler. This software tool is capable to handle such situations 
using some default strategies. 

6. D o c u m e n t / V i e w architecture 

The pilot system was implemented in Matlab 6.1, which is well optimized to 
carry out operations on matrices. The fundamental ideas behind this visual-
ization interface follows the well known and the widely used Document/View 
architecture. There are distinctly constructed matrices for the calculation-
storing process and the visualization proposition. These differences are demon-
strated with the two variants of data representation form of Bayesian Net-
works. 

Tables 1 and 2 enumerate the main components of data structure in which 
Bayesian networks are stored and used during the evaluation (inference) pro-
cess. 

Table 1. BNet data structure for storing Bayesian networks. 

Name Type Description of use 
adj Matrix 
nodeSize 
nodes 
edgeConstraints 
timeConstraints 

sparse 
int. vector 
structure 
sparse 
struct 

adjacency matrice 
each nodes values 
representing the nodes 
training strategy 
training strategy 

Table 2. Node of BNet data structure for storing Bayesian networks 

Name Type Description of use 
varName 
varStateNames 
selfVar 
selfVarSize 
CPD 

string 
string vector 
double 
integer 
matrice 

current node name 
name of the values 
identification the nodes 
values of current node 
conditional probability table 

The three types of data are the following: 

• Basic data: These components correspond to the mathematical defini-
tion of Bayesian networks. 
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• Sub data: It makes executable and balance able such procedures as 
training the network using database 

• Redundant data: Some pieces of information in the Basic data are repli-
cated in other structures in order to make efficient some operations 
during the inference algorithms. For example, the number of values of 
nodes (i.e. variables) are stored implicitly and explicitly in each node 
structure and this data also appears in a collection of BNet nodeSize 
(which is in turn useful in the triangulation process). 

Tables 3 and 4 contain the graph visualization structures. 

Table 3. "drawingnode" matrix for the visualization 

Name Type Description of use 
index integer numerical identification 
name strings verbal identification 
posx double horizontal location 
posy double vertical location 
markerhandler double accessing the graphical object 
texthandler double accessing the graphical object 

Table 4. " drawingedge" matrix for the visualization 

Name Type Description of use 
parlndex 
chlndex 
parposx 
parposy 
chposx 
chposy 
markerhandler 
arrowhandler 

integer 
integer 
double 
double 
double 
double 
double 
double 

start point identification 
end point identification 
horizontal location of parent node 
vertical location of parent node 
horizontal location of child node 
vertical location of child node 
to access the graphical object 
to access the graphical object 

The main data types in these tables are the following: 

• Basic data: the most important data from the Bnet basic data, like the 
node and adjacency information. 

• Localization data: horizontal and vertical positions of graphical com-
ponents. 

• Data to the graphical objects: these handlers ensure the modifications 
of graphical components accessing to a complex data structure. 
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The basic data of matrix drawingedge and drawingnode render a permeable 
way between the document and the view structure. Besides to the identi-
cal content, the adjacency matrix is mapped to the column of parlndex and 
chlndex. 

7. Incremental graph expansion 

Referring to Subsection 5.1, the problem of graph structure modification will 
be demonstrated focusing on the graph extension. There are two ways to 
modify the structure of a connected graph: adding or removing the directed 
connection between nodes. The edge removing operation is simpler: The 
Knowledge Engineer selects the current node, the GUI loads the name of the 
parents of the current node into the Remove parent menu. The user selects 
one parent node (the corresponding edge become marked) from this menu, 
and then using the Ok button the operation is executed. After then the 
corresponding field of adjacency matrix become zero and the CPT of current 
node will be changed. 

In contrast of the edge removing operation, the edge adding function more 
complex, because during the operation one needs to guarantee that the ex-
tended graph is still acyclic. The adding edge procedure is not too complex 
for the first sight, the operation is decomposed to the following steps. First 
a start node has to be assigned. Then the GUI loads to the Add child menu 
the names of potential children to the current node. The user selects one 
node from this list. After the approvement of actual operation, the adjacency 
matrix and the C P T of child node will be modified. 

The key momentum is the selection of potential children to the current node. 
In this step the GUI selects the nodes which may hurt the DAG property 
if considered as children. To support this operation, a special structure is 
maintained to represent the reachability of each node from the other nodes. 
This information is stored in the so called reachable_from matrix. This 
matrix has two columns, the first contains the identifier of a node, the second 
contains the list of nodes, from which the identified node is reachable along 
directed edges. We define the size of this matrix as the total number of all 
elements in the list of the second column. 

The algorithm operates according to an elimination scheme. Every node with-
out children node is processed in the while sequence, which is executed n 
times. The currently processed node is selected first. Then the reachability 
list of the selected node is actualized with the parent nodes using the union 
operation. Going further, one has to check the lists of the other nodes. If the 
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selected node is contained in some list of other node, this list must be actual-
ized with the list of selected node (taking the union of the two list). Then the 
current node is eliminated. 

Figure 4 shows a chain graph with 6 nodes. The reachable_from matrices 
for this graph reads 

1. 
2. 1 

3. 1, 2 
4. 1, 2, 3 
5. 1, 2, 3, 4 
6. 1, 2, 3, 4, 5 

This example represents the worst case size of the reachable_from matrix. 
For n nodes, it is not greater then: The proof of this statement uses 
the following three lemmas. Recall that the Q graph is ordered, if there is a 
bijection a such that: a V —> (1, 2 , . . n) 

Figure 4. Chain DAG with 6 nodes 

Lemma 1. There is an ordering of nodes for every Q(V, E) DAG, such that 
every edge directs from a lower numbered node to a higher numbered node 
(i < j for every pair of ( i , j ) G E j . 

Proof. The proof consists of giving the algorithm resulting the ordering. 

Input: £ (V ,E) DAG. 

Output: node ordering. 

Temporal variables: 

• Q': graph is the actual states of elimination sequence 
• R: contains the set of not eliminated nodes whose have not descendant 

node, but not parent node in Q' 
• V: the actually processed (eliminated node) 
• T: temporal node 
• P: set of nodes, which appears as the first element of (Vi, Vj) G E edge 

pairs 
• C: set of nodes, which appears as the second element of (Vi, Vj) G E 

edge pairs 

Initialize: creation of C and P, R = C \ P , G'=G, n = |V|, i = 1 
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while i ^ n 
V e n 
a(V) = i //numbering the 

/ / s e l e c t e d node 
i = i + 1 
P = p \ y / / e l i m i n a t i n g the 

/ / s e l e c t e d node 
C = C \ V / / e l i m i n a t i n g the 

/ / s e l e c t e d node 
R = c \ p / / g ' = g'(V\v,E\{v,.)) 

endwhile 

Lemma 2. A given graph Q is acyclic if there is an ordering a such that for 
every edge (Vi,Vj) we have a(Vi) < a(Vj). 

Proof. The lemma is shown by indirection. Consider a graph Q, which have 
an ordering and a hypothesized cycle. Let g € V be the node with the lowest 
ordering of the assumed cycle. But, by the construction of the ordering, it 
is impossible to direct an edge into g from any other node of cycle, hence g 
cannot be a node of the hypothetical cycle. Therefore the Lemma follows. 

Lemma 3. Let £ ( V , E ) be a DAG. The Q contains a maximal number of 
edges, if E contains every branches (Vi,Vj) such that a(Vj) < a{Vj), i 
1. n, j = 1... n for a given ordering a of V 

Proof. From Lemmas 1 and 2, it follows that such a graph exists. It follows 
also from the construction that there is an edge between any two nodes. Hence 
any new edge one can put in the graph is such that the ordering of its starting 
node is grater that the ordering of its ending node. But such an edge creates a 
cycle with the already existing edge between the same nodes, hence the graph 
is maximal. 

Proposition 1. The maximal size o/reachable_f rom matrices isn(n —1)/2. 

Proof. By construction, the size of the maximal DAG as defined in Lemma 
3 is n(n — l)/2. Since the set of edges of all DAGs is a subset of the edges of 
the maximal DAG (choosing the right ordering) the proposition follows. 

This proposition gives in fact the worst case for the number of operations 
needed to check weather the introduction of a new node hurts the DAG prop-
erty. 
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8. Conclusion 

In this paper Bayesian network based modeling techniques, and a network 
editor tool and its GUI have been presented. The Matlab environment was 
suitable for implementing incremental model generation methods. The open 
environment makes it possible to extend and improve the application; this way 
several optimization approaches (testing different triangulation and complex-
ity information feedback heuristics) become realizable and examinable. 

R E F E R E N C E S 

[1] G.F. Cooper, The computational complexity of probabilistic inference using 
bayesian belief networks, Artificial Intelligence (1990), no. 42, 393-405. 

[2] P. Dagum and M. Luby, Approximating probabilistic inference in bayesian belief 
networks is np-hard, Artificial Intelligence 1 (1993), no. 60, 141-153. 

[3] C. Huang and A. Darwiche, Inference in belief networks: a procedural guide, Intl. 
J. Approximate Reasoning 3 (1996), no. 15, 225-263. 

[4] S.L. Lauritzen and D.J. Spiegelhalter, Local computations with probabilities on 
graphical structures and their applications to expert systems, Proc. of the Royal 
Statistical Society (1988), no. 50, 154-227. 

[5] K. Murphy, A Brief Introduction to Graphical Models and Bayesian Networks, 
Department of Computer Science at U. C. Berkeley, 2001 

[6] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible in-
ference, Morgan Kaufmann, San Mateo, Calif., 1988. 

[7] P. Norvig and S.J. Russel, Mesterses intelligencia modern megkelben (artificial 
intelligence, a modern approach.), Panem-Prentice Hall, Budapest, 2000. 

[8] D.E. Heckerman and M. Henrion E.J. Horowitz H.P. Lehmann G.F. Cooper 
M.A. Shwe, B. Middletown, Probabilistic diagnosis using a reformulation of the 
internist- 1/qmr knowledge base, Meth. Inform. Med. (1991), no. 30, 241-255. 

[9] G. Vámos and A. Nagy and B. Kiss, Bayesian network based modelling for flaw 
detection in metallic fusion welds using x-ray images, Proc. of 4th Workshop on 
European Scientific and Industrial Collaboration Promoting Advanced Technolo-
gies in Manufacturing, Wesic, Miskolc (2003), no. 4, 181-186. 

[10] Netica Application, http://www.norsys.com/netica.html 
[11] GeNIe Development Environment, http://genie.sis.pitt.edu/downloads.html 
[12] Hugin Expert Systems, http://www.hugin.com 

http://www.norsys.com/netica.html
http://genie.sis.pitt.edu/downloads.html
http://www.hugin.com

	 - 0084
	 - 0085
	 - 0086
	 - 0087
	 - 0088
	 - 0089
	 - 0090
	 - 0091
	 - 0092
	 - 0093
	 - 0094
	 - 0095
	 - 0096

