
OL Production Systems and Information Engineering
i ^ L Volume 2 (2004), pp. 37-51

3 7

APPROXIMATE NEAREST NEIGHBOR SEARCH FOR
LABELLED TREES

LÁSZLÓ K O V Á C S
Department of Information Technology, University of Miskolc

kovacs@iit.uni-miskolc.hu

TIBOR RÉPÁSI
Department of Information Technology, University of Miskolc

repasi@iit.uni-miskolc.hu

ERIKA B A K S A - V A R G A
Department of Information Technology, University of Miskolc

iitev@uni-miskolc.hu

[Received October 2004 and accepted January 2005]

Abstract. In many scientific areas there is a frequent need to extract a common
pattern from multiple data. In most cases, however, an approximate but low cost
solution is preferred to a high cost exact match. To establish a fast search engine
an efficient heuristic method should be implemented. Our investigation is
devoted to the approximate nearest neighbor search (ANN) for unordered
labeled trees. The proposed modified best-first algorithm provides a
0((Nq+Nb)-M + K-Nq-Nb/M) cost function with simple implementation details.
According to our test results, realized with smaller trees where the brute-force
algorithm could be tested, the yielded results are a good approximation of the
global optimum values.

Keywords: tree matching, approximate nearest neighbor search

In many scientific areas there is a frequent need to extract a common pattern from
multiple data. The most common structure of the data is the hierarchy or tree. The
task is to determine the set of sub-trees having the best matching with the pattern.
Some important application areas for sub-tree matching are

pattern recognition, where the objects (for example pictures) are described by
a tree structure.

1. INTRODUCTION

molecular biology, where the real topology of RNA and of other molecules is
a tree. From the topological similarities it is often possible to infer
similarities in the function of the molecules.

mailto:kovacs@iit.uni-miskolc.hu
mailto:repasi@iit.uni-miskolc.hu
mailto:iitev@uni-miskolc.hu

3 8 L . KOVÁCS, T . RÉPÁSI, E . B A K S A - V A R G A

natural language processing, computational linguistics where dictionary
definitions are stored in a lexical database. The definitions are represented
syntactically as trees.

programming languages, where one of the main metadata structures is the
tree structure. The parse trees, the operation trees or syntax trees are often
used in the algorithms.

information systems, where the most common new storage format is the
XML tree. The XML is seeing increased use and promises to fuel even more
applications in the future. An XML document can be modeled as a tree. Each
node in this tree corresponds to an element in the document. Each edge
represents inclusion of the element corresponding to the child node under the
element corresponding to the parent node in the XML file.

In the applications mentioned above the nodes of a tree are characterized by one or
more attributes. Such attributes can be the type of the molecule (a node
corresponds to a molecule) or the type of the operation (a node corresponds to an
operation). The description vector of the nodes is called the label of the nodes. In
some areas, not only the node types but also the order of nodes is important. In this
case, the children are assigned to an ordering number in the scope of the parent.
XML documents, for instance have an ordered and labeled tree structure. In our
investigation we are focusing on unordered labeled tree structures. A recent
workshop report from Yale suggested that more research should be undertaken to
improve the heuristic search using algorithms designed to meet the demand made
by increasingly large tree datasets [1],

2. RELATED WORKS

In this section we review the different researched approaches to comparing trees, as
well as the algorithms developed so far to solve these problems. P. Bille published
an extensive survey [2] on comparing trees with exact searching methods. As a
conclusion from his work it turned out that all of the unordered versions of the
problems in general are NP-hard. Indeed, the tree edit distance and alignment
distance problems are even MAX SNP-hard. However, using special constraints
polynomial time algorithms are available, just like for the ordered versions of the
problems. These are all based on the classic technique of dynamic programming.

The general ordered tree edit distance, also called tree-to-tree correction problem
was also fully reviewed in Technical Report 95-372 [3], The problem was
introduced by Tai [4] as a generalization of the string edit distance problem. His
algorithm, which solved the problem without recursion, has its time and space
complexity in), where n and m are the maximum number of children
from any node in each of the trees, while d and d' are the maximum depth of the

APPROXIMATE NEAREST NEIGHBOR SEARCH FOR LABELLED TREES 3 9

trees. Zhang and Shasha [5] numbered the trees using postorder traversal instead
of preorder, so the algorithm's space complexity is 0(nm), while its time
complexity is O (nmdd') . Klein [6] solved the problem in O(n3logn) time and
0(nm) space. In his paper he proved that the algorithm can be extended to unrooted
ordered trees within the same time and space bounds. Chen [7] applied fast matrix
multiplication to solve the problem. The unordered version of the problem is NP-
complete even for binary trees with a label alphabet of size 2. It was shown in [8]
that under special restrictions polynomial time algorithms exist.

There are other variants of the edit distance problem as well. One of them is the
unit cost edit distance, where unit cost is defined as the number of edit operations
required. In [9] the ordered version of the problem is considered and an algorithm
with 0(u2min{n,m}min{l,l'}) time need is introduced, where I and / ' are the number
of leaves of the trees. The algorithm uses techniques from Ukkonen [10], and
Landau and Vishkin [11], The recursive solution of Selkow [12] used the basic
operations, but insertions and deletions were restricted to leaf nodes only, which
made the algorithm very simple and therefore its time complexity is O(nm). This is
therefore sometimes referred to as the 1-degree edit distance. Chawathe [13]
utilizes the same restrictions, but in cases when external memory is needed to
calculate the edit distance.

Tree inclusion, a special case of edit distance, is the problem to decide if tree Tt

can be included in T2. Tj is included in T2 if there is a sequence of delete operations
performed on T2 which make T2 isomorphic to Th For the ordered tree inclusion
problem Kilpelainen and Mannila [14] presented the first polynomial time
algorithm using 0(nm) time and space. A more space efficient version of this was
given in [15] using 0{nd") space. Later Richter [16] and Chen [17] developed
more complex algorithms. In [14], [18] it is shown that the unordered tree
inclusion problem is NP-complete. In spite of this an algorithm using O(mni22')
time exists.

Torsello and Hancock [19] prove, that a tree t' can be generated from a tree t with
a sequence of node removal operations if and only if t ' is an obtainable subtree of
the directed association graph. Consequently the minimum cost edited tree
isomorphism between two trees is a maximum common consistent subtree of the
two directed association graphs if the node removal cost is uniform, and this result
can also be extended to non-uniform cost. The background for this lies in [20],
where the relationship between graph edit distance and the size of the maximum
common subgraph is shown, and also their computational equivalence is
demonstrated. This is an important observation since it has been established by
Barrow and Burstall [21] that the maximum common subgraph problem may be
transformed into a maximum clique problem using a derived structure referred to
as the association graph. Pelillo et al. [22], for instance, transform the tree

4 0 L . KOVÁCS, T . RÉPÁSI, E . B A K S A - V A R G A

isomorphism problem into a single max clique problem, a technique already used
for the generic graph isomorphism problem. To obtain a maximal tree match, i.e. a
maximal solution to the max clique problem, they use relaxation labeling. Wang et
al. [23] considers the largest approximately common subtree problem for ordered,
labeled trees using the edit distance to measure the dissimilarity of two trees. They
present a dynamic programming algorithm, which runs as fast as the fastest known
algorithm for computing the edit distance of trees.

This problem was investigated for unordered trees by Khanna, Motwani and Yao
[24]. They created an algorithm for trees of bounded degree with performance ratio
O(nloglogn/log2 n) and then extended this to trees of unbounded degree with at
most poly-log labels, obtaining a ratio of 0(n(loglogn)2/log2n). Akutsu and
Halldórsson [25] also considers the approximation of the largest common subtree
(and its special variation, the largest common edge subgraph) and largest common
point set problems for unordered trees (and for ordered trees as a special case), and
a general search algorithm is presented which approximates both problems within a
factor of O(n/logn). For trees of bounded degree an improved algorithm is
developed which approximates the largest common subtree within a factor of
O(n/log2n). A large amount of work has been performed for comparing unordered
trees based on various distance measures, especially on edit distance as the most
commonly used distance measure. Shasha et al. [26], however, proposed a new
approach, called Atree-Grep. They addressed the approximate nearest neighbor
search problem for unordered labeled trees. Their algorithm, called 'pathfix',
consists of two phases. First, the paths of the trees are stored in a suffix array and
then the number of mismatching paths are counted between the query tree and the
data tree. To speedup the search, they use a hash-based technique to filter out
unqualified data trees at an early stage of the search. The algorithm has been
implemented into two special Web-based search engines and proved to be fast,
particularly when the dictionary size of node labels is large.

Other widely researched problems include tree pattern matching [27, 28, 29, 30,
31], maximum agreement subtree [32, 33] and smallest common supertree [34, 35].

3. DISTANCE MEASURES FOR TREE COMPARISON

As can be seen, most of the proposals in subtree matching are based on the edit
distance between trees. This distance metric is a natural extension of the edit
distance concept used for string comparisons. This metric provides an exact
distance measurement between the trees. The drawback of these algorithms is the
high cost of the computations. In the case of online applications with large tree
datasets, the execution time is a crucial factor. In these kinds of applications, an
approximate but low cost solution is preferred to a high cost exact solution. Our
investigation is devoted to the approximate nearest neighbor search (ANN) for
unordered labeled trees. Our goal is to construct an efficient heuristic method for

APPROXIMATE NEAREST NEIGHBOR SEARCH FOR LABELLED TREES 4 1

the ANN problem. Since the ANN problem for edit distance metric is an NP-
problem as is proven in [8], a modified distance definition is introduced.

Let D denote a domain set. This contains the node labels. The symbol T denotes an
unordered, labeled tree. The following denotations related to the tree structure are
used in the paper:

n a node of the tree
l(n) the label of node n, l(n) € D
Td set of unordered, labeled trees on D
V(T) vertices of T
E(T) edges of T
r(T) the root node of T

The goal of the investigation is to find the neighboring trees based on the similarity
values. The distance or similarity is usually measured by a metric function. A space
X is called metric space if a d(A,B) real non-negative function of two objects is
defined with the following properties:

For every A eX, B eX, and CeX

1. d(A, B) = 0 if and only if A = B (the distance is 0 if and only if the points
coincide),

2. d(A, B) = d(B, A) (the distance from A to B is the same as the distance from
B to A),

3. d(A,B) + d(B,C) > d(A,C) (the sum of two sides of a triangle is never less
than the third side).

The d(A,B) function is known as the distance between the two points.

In the case of edit distance, a set of elementary transformation functions is defined
on TD. This set is denoted as ED. The cost value of the elementary transformations
is a non-negative real number. The corresponding cost function is denoted by

c ED->R+

It is assumed that TD is closed to ED, i.e.

e Td ->Td Ve e Ed,

VTi, T2 e Td 3e,,e2,....em eED: e(TT) = emoem., o..e2oe,(T,) = T2.

Let us denote the set of chain of transformations from T, to 7} by E,r The cost of
chain e is defined as the sum of the single transformation steps:

c(e) = Zc(e i).

4 2 L . K O V Á C S , T . RÉPÁSI, E . B A K S A - V A R G A

T h e edit distance be tween 71, and 7} is de f ined as the min imal cost of
t ransformat ion chains f r o m Tt to 7}:

c,tJ - min{ c(e) / e e Ey }.

Usually, like in [36] the following elementary e operations are defined for tree
objects:

relabel: assigns a new node name to the root of the tree,
insert: inserting a new node into the children of the root node,
delete: deleting a node from the children of the root node,
insert tree: inserting a tree under the root node,
delete tree: deleting a tree from the children of the node.

The list of elementary transformations with minimal cost is usually generated with
a dynamic programming method. According to [2, pp.7], the tree distance value
can be calculated using the following recursive formula:

d(0,0) = 0
d(F,0) = d(F-v,0) + c(v,0)
d(0,F) = d(0,F-v) + c(0,v)

r d(Frv,F2) +c(T(v),0)
d(F,,F2)=min J d(FhF2-v) + c(0,T(v))

I d(Fi-T(v),F2- T(w)) + c(T(v),T(w))

where F denotes a tree, T(v) denotes a tree with root element v, and c(x,y) denotes
the cost of transforming node x to node y. The computation cost of the basic
dynamic programming method for trees is 0(|T|4). This is a very high cost value for
an ANN problem, as the distance computation should be calculated for a large
number of pairs. It is proved in [26] that the ANN problem for edit distance metric
is an NP-complete problem. In spite of this difficulty, most of the proposals for
ANN searching for trees use the edit distance measure. There are very few
proposals that apply a simplified distance function to provide a lower cost solution.

A good example for this approach is [26], where the distance from 71/ to T2 is
measured with the total number of root-to-leaf paths in Tt that do not appear in T2.
The nodes in T2 that do not appear in Tj can be freely removed. As can be seen, this
definition introduces an asymmetric distance concept. In the definition Tj denotes
the query tree while T2 is the searched tree. In our approach, another simplified
distance function was selected.

APPROXIMATE NEAREST NEIGHBOR SEARCH FOR LABELLED TREES 4 3

4. MODIFIED BEST-FIRST ALGORITHM

Two trees are said to be similar if they have similar vertices with similar edges.
During the editing process every vertex of the query tree is either transformed into
a vertex of the base tree or it is deleted. Based on this transformation, every vertex
of the query tree can be mapped either to a target vertex or to the sink symbol.
Using this approach, a generalized mapping can be defined between the query and
the base tree. We define m() as a monomorphism from T, to T2 in the following
way:

1. m V(T,) V (T 2) u e
2. Vv, m(v) e V(T2) l(v) = l(m(v))
3. Vv, * v2, m(vi), m(v2) e V(T2) m(vi) * m(v2)
4. Vvi -t- v2, m(V]), m(v2) e V(T2): V[< v2 o m(vi) < m(v2)

According to the first property, every node in Ti is mapped either to a node in T2 or
is deleted, i.e. it is mapped to the e symbol. The second property says that a vertex
should be mapped only to nodes of the same label. Due to the third property, the
different query vertices can not be mapped to the same base vertex. The fourth
property is called ancestor condition, the ancestor-descendants relationship among
the query vertices must be preserved in the target tree, too.

Other types of relationships among the query vertices are neglected and not
preserved. In this approach, the sibling vertices may be mapped to parent-child
vertices, if the existing parent-child relationships are preserved. The parent-child
relationships are the only important information stored in the query tree. The
absence of an edge means in our approach a 'do not know' information. In this
case, we don not care about the existence of an edge between the mapped vertices
in the base tree. Figure 1 shows an example for this mapping.

a) b) c)
Figure 1: Distance mapping example

Figure la) and Figure lb) show valid mappings. The sibling nodes in the query tree
are mapped to sibling nodes in Figure la), and to parent-child nodes in Figure lb).
Figure lc) shows an invalid mapping as the parent-child relationship is not
preserved. This kind of similarity value differs from the usual edit distance in the
following aspects: 1) it does not take the re-labeling operation into account, and 2)
only one side of the operands can be deleted.

4 4 L . KOVÁCS, T . RÉPÁSI, E . B A K S A - V A R G A

Based on this mapping, a similarity value can be defined between two trees. The
cost of mapping m is defined as the sum of the vertex mappings related to the query
tree:

In this definition, a(n) denotes the nearest ancestor of n in the query tree which is
mapped to a non-f element. If the root of the query tree is mapped to f t h e n c(n) is
C2, otherwise the path from n to r(T) (excluding n and including r(T)) contains
minimum one vertex mapped to a non-f value. In this case both m(n) and m(a(n))
are non-f elements. The d() function denotes the length of path from m(a(n)) -
m(n) in the base tree. As mapping m preserves the parent-child relationship,
m(a(n)) is an ancestor of m(n). Thus d() yields a positive integer value. C/ and C2

are cost units. C/ corresponds to gap-lengths between two preserved vertices and
C2 denotes the cost for vertex deletion. In our approach, C2 is greater than C/ since
the absence of an element means a larger difference than the relocation of the
element.

In this definition, a(n) denotes the nearest ancestor of n in the query tree which is
mapped to a non-e element. If the root of the query tree is mapped to e then c(n) is
C2, otherwise the path from n to r(T) (excluding n and including r(T)) contains
minimum one vertex mapped to a non-e value. In this case both m(n) and m(a(n))
are non-e elements. The d() function denotes the length of path from m(a(n)) -
m(n) in the base tree. As mapping m preserves the parent-child relationship,
m(a(n)) is an ancestor of m(n). Thus d() yields a positive integer value. Cj and C2

are cost units. C/ corresponds to gap-lengths between two preserved vertices and
C2 denotes the cost for vertex deletion. In our approach, C2 is greater than Cj since
the absence of an element means a larger difference than the relocation of the
element.

cost(m) = E„ e v(T) c(n),

where

c(n)

Figure 2: An example for mapping

As an example, let the calculation of the mapping cost for Figure 2 stay here. The
cost for root mapping is 0. The cost for white node is also 0 (there is no gap in the

APPROXIMATE NEAREST NEIGHBOR SEARCH FOR LABELLED TREES 45

mapped path). The cost for black node is 1 (one node length gap). The total cost is
0 + 0 + 1 = 1. We remark that in some applications it seems useful to introduce a
weight factor in the cost expression. In this case the different edges may have
different importance factors.

It can be seen that the distance measure based on this cost value does not meet the
requirements of a metric space. The metric distance function should be symmetric
while the given cost function is asymmetric. The roles of the query and base trees
are distinguished. This corresponds to our intention, as we try to find a best
matching sub-tree included in the base tree. The goal is to find a mapping with
minimal cost value.

Taking a query tree Tt with Nq nodes and a base tree T2 with Nb nodes, the number
of potential mappings is 0(Nb! / (Nb-Nq)!). Although the ancestor criteria restricts
the set of potential mappings, the number of possible enabled mappings is too high.
It would be very costly to test all of the possible mappings. Thus some kind of
heuristics should be applied to speed up the matching process. In our investigation
a variant of the best-first search method was selected.

The best first search method works on a state-tree. Each node of the tree is assigned
to a cost value. The goal is to find the path with the minimal cost value. The best-
first search divides the nodes into three distinct groups: the nodes tested (G/), the
nodes ready to be tested (G2), and the rest (G3). Initially, Gt is empty and G2
contains only the root element. In a loop, the node from the ready state with the
best (minimal) cost value is selected to be tested. During the test, the children of
the node are evaluated and moved from the G3 group into the G2 group. The loop
terminates if a leaf node is selected for testing.

In the applied variant, the nodes of the state-tree are assigned not to the vertices but
to the vertex mappings of the query tree. Thus each node represents a decision
about the mapping function. The state-tree is expanded and traversed in the
following way:

1. Generating a label vector for every node. The label vector contains the
counter values for the different labels related to the nodes in the descendant
set. This vector works similar to one-grams used in the string distance
problem. In the example shown in Figure 3a), the description vector for the
root node is /v(3,2,l,3), where the first dimension is assigned to the green
label, the second to the red label, the third to the blue label and the fourth
to the black label.

2. Calculation of the label vectors for the query tree.

3. Selecting maximum K nodes in the base tree with the same label as the root
of the query tree and with the first K best similarity values regarding the
label vectors. The similarity value for label vectors is defined by

46 L . KOVÁCS, T . RÉPÁSI, E . B A K S A - V A R G A

d(lq,lb) = Ej max(lqj-lhj,0)

where lq belongs to the query tree and 4 to the base tree.

4. Loop on the selected nodes. Let w denote the vertex actually tested. Map
the root of the query tree to w. Empty G2 and G,.

5. Insert the mapping of w into G2.

6. Take the element x from G2 with the lowest cost value. Move x from G2

into G]. Disable the other mappings in G2 from x or to m(x).

7. Test the children vertices of x considering the query tree. For every vertex
generate the set of possible mappings. Evaluate these mappings and insert
them into G2.

8. If G2 is empty, the procedure terminates. The sum of cost values for the
selected mappings is the approximation of the best mapping cost value for
w, denoted by C(w). Go back to step 4.

9. Return min{C(w)} as the approximation of the optimal mapping cost.

The cost of generating the label vectors is 0((Nq+Nb)M) as every vertex should be
accessed only once. The label vector of a node can be built from the label vectors
of its children. In the cost expression M denotes the number of different label
values. M corresponds to the length of the label vectors. During the best-first
search NQ vertices are tested and expanded. A vertex from the query tree may be
mapped to 0(Nb/M) vertices in average. As the best-first search is repeated by K
times, the cost estimation for the algorithm is 0((Nq+Nb)-M + K-Nq-Nt/M). Thus
the cost is linear in both NQ and NB. This cost is a significant reduction compared
with the 0(M-Nb! / (Nb-Nq)!) value for the brute force search method.

5. RESULTS

The implementation tests show a similar linearity for the computation costs. The
test programs are implemented in the Scilab language. The next small example
illustrates the cost relations between the brute-force and the heuristic method. The
base tree has 10 vertices and is shown in Figure 3a). The query tree has 4 vertices
and is shown in Figure 3b). The number of labels is 4. The trees were generated
randomly.

APPROXIMATE NEAREST NEIGHBOR SEARCH FOR LABELLED TREES 4 7

a) base tree b) query tree
Figure 3: Mapping example

The elements of the best mapping are given in the Figure with blue arrows. The
cost value is only 1. Both methods can detect this optimal mapping but with a very
different cost value. Table 1 shows the execution cost values for the investigated
methods related to this example query.

Table 1: Comparing the costs of execution

Method Cost

Brute-force 69.48 sec

M. Best-first 00.08 sec

Selkow 02.46 sec

To test the cost values for examples of larger tree sizes, a test run was implemented
with values Nq = 12, Nb e [15..500]. The cost values are shown in Figure 4.

Figure 4: Cost values for larger trees

48 L . KOVÁCS, T . RÉPÁSI, E . B A K S A - V A R G A

The x-axis denotes the Nt value, while the y-axis shows the computation cost
(where the maximum value is 3.6 sec). The trees were generated randomly. In
Figure 4 the linearity of the cost function is well demonstrated.

6. COMPARISON WITH EDITING DISTANCE

Most of the works related to the comparison of unordered trees are based on their
editing distance or Levenshtein distance. The Levenshtein distance is defined as the
smallest number of insertions, deletions, and substitutions required to change one
string or tree into another [37],

Most of the related works in this field are based on Selkow's algorithm introduced
in [12] and summerized by P. Bille in [2]. Selkow's algorithm calculates the editing
distance between two forests of ordered trees. The measured editing distance is
very similar to the editing distance of strings. It is simplified to a one level
comparison, so edition is necessary each time the root nodes are not identical. As
an ordered tree is a special case of an unordered tree, Selkow's algorithm can be
used for unordered trees as well. It is a basic algorithm which needs a tremendous
computation power of 0(N2 M2), where N and M are the node numbers of the
trees, to find the editing order of the least cost. In case of unordered trees the
algorithm has to take each order of the tree in account, so the computation cost will
grow by 0(2N-2M) for the repetitions on each possible permutation of the trees. The
basic operations Selkow's algorithm makes use of node delete, node insert and
node substitution or relabeling. Each operation can have different cost functions.
The algorithm itself is recursive very much like above mentioned in section 3. It is
working in the following way:

1. searching for the roots of the source forests,
2. extracting each tree of the forests,
3.a computing the cost (by doing a recursion) of deleting the root-node for each

tree of one forest,
3.b computing the cost (by doing a recursion) of inserting a new root-node for

each tree of the other forest,
3.c computing the cost (by doing a recursion) of substituting the root node for

each tree of both forests,
4. selecting the minimum of all costs and returning it to the upper level of the

recursion.

The generalization of the algorithm to forests is inevitable due to the fact, that the
algorithm is recursive and that deleting the root node of a tree will result in a forest.
We have tested an implementation of Selkow's algorithm on small trees. Running
our implementation of the algorithm with the trees shown on Figure 3 we got the
editing distance of 10 units, considering 1 as the cost of each edit operation. The

APPROXIMATE NEAREST NEIGHBOR SEARCH FOR LABELLED TREES 49

time needed to complete the calculation in the same environment was 2.463 sec as
is shown in Table 1. Running the algorithm with randomly generated trees will
show a very noisy cost function, however, the limits should show the 0 (N 2 M2)
characteristics.

7. CONCLUSION

The approximate sub-tree search for trees with edit distance metric is an NP-
complete problem. To establish a fast search engine an efficient heuristic method
should be implemented. The proposed modified best-first method provides a
0((Nq+Nb)-M + K-Nq-Nb/M) cost function with simple implementation details.
According to our test results, realized with smaller trees where the brute-force
algorithm could be tested, the yielded results are a good approximation of the
global optimum values.

REFERENCES

[1] CRACRAFT, J. DONOGHUE, M. : Assembling the tree of life: Research needs in
phylogenetics and phyloinformatics. Report from NSF Workshop, Yale University,
July 2000.

[2] BILLE, P.: Tree Edit Distance, Alignment Distance and Inclusion. IT University of
Copenhagen, Technical Report Series TR-2003-23, ISSN 1660-6100, March 2003.

[3] BARNARD, CLARKE, DUNCAN: Tree-to-Tree Correction for Document Trees.
Technical Report 9 5 - 3 7 2 , Queen's University Canada, January 1 9 9 5 .

[4] TAI: The Tree-to-Tree Correction Problem. Journal of the Association for Computing
Machinery (JACM), 26:422-433, 1979.

[5] ZHANG, SHASHA: Simple fast algorithms for the editing distance between trees and
related problems. SIAM Journal of Computing, 18:1245-1262, 1989.

[6] KLEIN: Computing the edit-distance between unrooted ordered trees. In Proceedings
of the 6th annual European Symposium on Algorithms (ESA) 1998, pp. 91-102.

[7] CHEN: New algorithm for ordered tree-to-tree correction problem. Journal of
Algorithms, 40:135-158, 2001.

[8] ZHANG, STATMAN, SHASHA: On the editing distance between unordered labeled trees.
Information Processing Letters, 42:133-139, 1992.

[9] SHASHA, ZHANG: Fast algorithms for the unit cost editing distance between trees.
Journal of Algorithms, 1 1 : 5 8 1 - 6 2 1 , 1 9 9 0 .

[1 0] UKKONEN: Finding approximate patterns in strings. Journal of Algorithms, 6 : 1 3 2 -

137 , 1 9 8 5 .

5 0 L . K O V Á C S , T . RÉPÁSI, E . B A K S A - V A R G A

[1 1] LANDAU, VISHKIN: Fast parallel and serial approximate string matching. Journal of
Algorithms, 10:157-169, 1989.

[12] SELKOW: The tree-to-tree editing problem. Information Processing Letters, 6(6):184-
186, 1977.

[1 3] CHAWATHE: Comparing hierarchical data in extended memory. In Proceedings of
VLDB, 1999, pp. 90-101.

[14] KILPELAINEN, MANNILA: Ordered and unordered tree inclusion. S I A M Journal of
Computing, 24:340-356, 1995.

[1 5] KJLPELÁINEN: Tree Matching Problems with Applications to Structured Text
Databases. PhD Thesis, University of Helsinki, Department of Computer Science,
1992.

[16] RICHTER: A new algorithm for the ordered tree inclusion problem. In Proceedings of
the 8lh Annual Symposium on Combinatorial pattern Matching (CPM), in Lecture
Notes of Computer Science (LNCS), vol. 1264, pp 150-166, Springer 1997.

[1 7] CHEN: More efficient algorithm for ordered tree inclusion. Journal of Algorithms,
26:370-385, 1998.

[18] MATOUSEK, THOMAS: On the complexity of finding iso- and other morphisms for
partial k-trees. Discrete Mathematics, 108:343-364, 1992.

[1 9] TORSELLO, HANCOCK: Computing approximate tree edit distance using relaxation
labeling. Pattern Recognition Letters 2 0 0 3 , PII: SO 1 6 7 - 8 6 5 5 (0 2) 0 0 2 5 5 - 6 , 2 0 0 2 .

[20] BUNKE, KANDEL: Mean and maximum common subgraph of two graphs. Pattern
Recognition Letters 21, 2000, pp. 163-168.

[21] BARROW, BURSTALL: Subgraph isomorphism, matching relational structures and
maximal cliques. Information Processing Letters 4, 1976, pp. 83-84.

[22] PELLILO et al.: Matching hierarchical structures using association graphs. IEEE
PAMI21, 1999, pp. 1105-1120.

[23] W A N G et al.: An Algorithm for Finding the Largest Approximately Common
Substructures of Two Trees.

[2 4] KHANNA, MOTWANI, YAO: Approximation algorithms for the largest common subtree
problem. Technical Report, Stanford University, 1995.

[2 5] AKUTSU, HALLDÓRSSON: On the Approximation of Largest Common Subtrees and
Largest Common Point Sets. Science Institute University of Iceland, October 1997.

[26] SHASHA et al.: AtreeGrep Approximate Searching in Unordered Trees. In
Proceedings of S S D B M 2002, Edinburgh, July 2002, pp. 89-98.

APPROXIMATE N E A R E S T NEIGHBOR SEARCH FOR LABELLED TREES 51

[27] KOSARAJU: Efficient tree pattern matching. In Proceedings of the 30th IEEE
Symposium on the Foundations of Computer Science (FOCS), 1989, pp. 178-183.

[28] DUBINER, GALIL, MAGEN: Faster tree pattern matching. In Proceedings of the 31ST

IEEE Symposium on the Foundations of Computer Science (FOCS), 1990, pp. 145-
150 .

[29] HOFFMANN, DONNELL: Pattern matching in trees. Journal of the Association for
Computing Machinery (JACM), 29(l):68-95, 1982.

[30] RAMESH, RAMAKRISHNAN: Nonlinear pattern matching in trees. Journal of the
Association for Computing Machinery (JACM), 39(2):295-316, 1992.

[31] ZHANG, SHASHA, WANG: Approximate tree matching in the presence of variable
length don't cares. Journal of Algorithms, 16(l):33-66, 1994.

[32] KESELMAN, AMIR: Maximum agreement subtree in a set of evolutionary trees -
metrics and efficient algorithms. In Proceedings of the 35th Annual Symposium on the
Foundations of Computer Science (FOCS), 1994, pp. 758-769.

[33] FARACH, THORUP: Fast comparison of evolutionary trees. In Proceedings of the 5LH

Annual ACM-SIAM Symposium on Discrete Algorithms, 1994, pp. 481-488.

[34] NISHIMURA, RAGDE, THILIKOS: Finding smallest supertrees under minor containment.
International Journal of the Foundations of Computer Science, 11(3):445-465, 2000.

[35] GUPTA, NISHIMURA: Finding largest subtrees and smallest supertrees. Algorithmica,
2 1 : 1 8 3 - 2 1 0 , 1998 .

[36] NIERMAN, JAGADISH: Evaluating Structural Similarity in XML Documents. University
of Michigan, IIS-0002356.

[37] LEVENSHTEIN, V. I.: Binary codes capable of correcting deletions, insertions, and
reversals. Doklady Akademii Nauk SSSR, 163(4):845-848, 1965 (Russian). English
translation in Soviet Physics Doklady, 10(8):707-710, 1966.

	 - 0040
	 - 0041
	 - 0042
	 - 0043
	 - 0044
	 - 0045
	 - 0046
	 - 0047
	 - 0048
	 - 0049
	 - 0050
	 - 0051
	 - 0052
	 - 0053
	 - 0054

