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Abstract. Some difficulties emerging during the construction of fuzzy 
behaviour-based control structures are inherited from the type of the applied 
fuzzy reasoning. Classical fuzzy reasoning methods need a complete fuzzy rule 
base. In case of fetching fuzzy rules directly from expert knowledge e.g. for the 
behaviour coordination module, the way of building a complete rule base is not 
always straightforward. One simple solution for overcoming the necessity of the 
complete rule base is the application of interpolation-based fuzzy reasoning 
methods, since interpolation-based fuzzy reasoning methods can serve usable 
(interpolated) conclusion even if none of the existing rules is hit by the 
observation. These methods can save the expert from dealing with derivable 
rules and help to concentrate on cardinal actions only. For demonstrating the 
applicability of the interpolation-based fuzzy reasoning methods in behaviour-
based control structures a simple interpolation-based fuzzy reasoning method 
and its adaptation for behaviour-based control will be discussed briefly in this 
paper. 

Keywords: Interpolation-based Fuzzy reasoning, Behaviour-based Control 

1. INTRODUCTION 

In behaviour-based control systems (a good overview can be found in [3]), the 
actual behaviour of the system is formed as one of the existing behaviours (which 
fits best the actual situation), or as a kind of fusion of the known behaviours 
appeared to be the most appropriate to handle the actual situation. Beyond the 
construction of the behaviours, this structure has two other important tasks. The 
first is the decision, which behaviour is needed, or in case of behaviour fusion the 
determination of the necessity levels for each behaviour in solving the actual 
situation. The second is the way of the behaviour fusion. The first task, the 
behaviour coordination can be viewed as an actual system state approximation, 
where the actual system state is the set of the necessities of the known behaviours 
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needed for handling the actual situation. The second is the fusion of the known 
behaviours based on their necessities. In case of fuzzy behaviour based control 
structures both tasks are solved by fuzzy logic controllers. If the behaviours are 
also implemented on direct fuzzy logic controllers, the behaviours together with the 
behaviour fusion modules form a hierarchical fuzzy logic controller. Since the 
classical fuzzy reasoning methods (e.g. compositional rule of inference) demand 
complete rule base, all these rule bases have to be built taking care of filling all the 
possible rules. In case if there is some missing rule, there are observations may 
exist which hit no rule in the rule base and therefore no conclusion is obtained. 
Having no conclusion at any level of the fuzzy behaviour based control structure is 
hard to explain. E.g. one solution could be to keep the last real conclusion instead 
of the missing one, but applying historical data automatically to fill undeliberately 
missing rules could cause unpredictable side effects. Another solution for the same 
problem is the application of the interpolation-based fuzzy reasoning methods, 
where the derivable rules are deliberately missing. Since the rule base of a fuzzy 
interpolation-based controller, is not necessarily complete, it could contain the 
most significant fuzzy rules only without risking the chance of having no 
conclusion for some of the observations. In other words, during the construction of 
the fuzzy rule base, it is enough to concentrate on the cardinal actions; the "filling" 
rules (rules could be deduced from the others) can be deliberately omitted. 

In the followings, first an approximate fuzzy reasoning method based on 
interpolation in the vague environment of the fuzzy rule base [4], [5], [6] will be 
reviewed. The main benefit of the proposed method is its simplicity, as it could be 
implemented to be simple and quick enough to be applied in practical direct fuzzy 
logic control too. Then its adaptation to behaviour-based control structures together 
with two simple examples will be discussed briefly. 

2. INTERPOLATION-BASED FUZZY REASONING 

One way of interpolative fuzzy reasoning is based on the concept of vague 
environment [2], Applying the idea of the vague environment the linguistic terms 
of the fuzzy partitions can be described by scaling functions [2] and the fuzzy 
reasoning itself can be replaced by classical interpolation. The concept of vague 
environment is based on the similarity or indistinguishability of the elements. Two 
values in the vague environment are s-distinguishable if their distance is grater than 
e. The distances in vague environment are weighted distances. The weighting 
factor or function is called scaling function (factor) [2], Two values in the vague 
environment A'are e-distinguishable if 
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e>Ss(xl,x2) = (1) 

where S,(xy,x2) is the vague distance of the values xh x2 and s(x) is the scaling 

function on X. For finding connections between fuzzy sets and a vague 
environment the membership function can be introduced as a level of 
similarity a to x, as the degree to which x is indistinguishable to a [2], The a-cuts 
of the fuzzy set /ja(x) are the sets which contain the elements those are (1 -a ) -
indistinguishable from a (see Fig.l): 

J,(a,b) < 1 - a fiA(*) = 1 -min fö í a .b ) , ! ^ 1 - min 

K 

.1 

A A. B /\ 5,(a,b) 

/ \ 

(2) 

Figure 1: The a-cuts of /ja (x) contains the elements that are 
(l-a)-indistinguishable from a 

This case (Fig.l) the vague distance of points a and b (£ s(a,b)) is the 

Disconsistency Measure (SD) of the fuzzy sets A and B (where B is a singleton): 

SD = l - s u p ^ n a ( x ) = i,(a,b) if i,(a,b)e[0,l] , (3) 

where AnB is the min t-norm, = (4-"*(*)] V ^ s l . 

From the viewpoint of fuzzy reasoning and fuzzy rule bases, where an observation 
fuzzy set is needed to be compared to rule antecedents built up member fuzzy sets 
(linguistic terms) of the antecedent fuzzy partitions (2) and (3) means that the 
disconsistency measures between member fuzzy sets of a fuzzy partition and a 
singleton, can be calculated as vague distances of points in the vague environment 
of the fuzzy partition. The main difference between the disconsistency measure and 
the vague distance is, that the vague distance is a value in the range of [0,oo], while 
the disconsistency measure is limited to [0,1]. 
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Therefore if it is possible to describe all the fuzzy partitions of the primary fuzzy 
sets (the antecedent and consequent universes) of the fuzzy rule base by vague 
environments, and the observation is a singleton, the "extended" disconsistency 
measures of the antecedent primary fuzzy sets of the rule base, and the "extended" 
disconsistency measures of the consequent primary fuzzy sets and the consequence 
can be calculated as vague distances of points in the antecedent and consequent 
vague environments. 

The vague environment is described by its scaling function. For generating a vague 
environment of a fuzzy partition, an appropriate scaling function is needed to be 
find, which describes the shapes of all the terms in the fuzzy partition. A fuzzy 
partition can be characterised by a single vague environment if and only if the 
membership functions of the terms fulfil the following requirement [2]: 

i(*) = |y(*)| = 
dn existsif min {//,-(.*),//;(*)} > 0 => |//V (x)| = |/yV (x)| > V / J e / (4) 
dx 

where S(JC) is the vague environment. 

Generally the above condition is not fulfilling, so the question is how to describe 
all fuzzy sets of the fuzzy partition with one "universal" scaling function. For this 
task the concept of approximate scaling function, as an approximation of the 
scaling functions which describe the terms of the fuzzy partition separately [4], [5], 
[6] is proposed. If the vague environment of a fuzzy partition (the scaling function 
or the approximate scaling function) exists, the member sets of the fuzzy partition 
can be characterised by points in the vague environment. (These points are 
characterising the cores of the fuzzy terms, while the membership functions are 
described by the scaling function itself.) If all the vague environments of the 
antecedent and consequent universes of the fuzzy rule base exist, all the primary 
fuzzy sets (linguistic terms) used in the fuzzy rule base can be characterised by 
points in their vague environment. Therefore the fuzzy rules (build on the primary 
fuzzy sets) can be characterised by points in the vague environment of the fuzzy 
rule base too. In this case the approximate fuzzy reasoning can be handled as a 
classical interpolation task. Applying the concept of vague environment (the 
distances of points are weighted distances), any interpolation, extrapolation or 
regression method can be adapted very simply for approximate fuzzy reasoning [4], 

[5], [6]. 
Because of its simple multidimensional applicability, for interpolation-based fuzzy 
reasoning in this paper the adaptation of the Shepard operator based interpolation 
(first introduced in [16]) is suggested. Beside the existing deep application oriented 
investigation of the Shepard operator e.g. [17], it was also successfully applied in 
the Kóczy-Hirota fuzzy interpolation [15]. (The stability and the approximation rate 
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of the Shepard operator based Kóczy-Hirota fuzzy interpolation is deeply studied 
in [7] and [8].) The Shepard interpolation method for arbitrarily placed bivariate 
data was introduced as follows [16]: 

S0(f,x,y)= 
Á 

i A w M V i i i / d , 
V * = o \k= 0 

if (*, y) = (xk, yk) for some k, 

otherwise, (5) 

where measurement points JC*, yk(ke[O,«]) are irregularly spaced on the domain of 
/e5R2 A > 0, and dk = [(x-x*)2 + iy -y k f \ l 1 2 • This function can be typically used 
when a surface model is required to interpolate scattered spatial measurements. 

The adaptation of the Shepard interpolation method for interpolation-based fuzzy 
reasoning in the vague environment of the fuzzy rule base is straightforward by 
substituting the Euclidian distances dk by scaled distances $ 

A.n = <5,(aA,x) = 

1/2 

(6) 

where sx is the i scaling function of the m dimensional antecedent universe, x is 

the m dimensional crisp observation and a* are the cores of the m dimensional 
fuzzy rule antecedents A . 

Thus in case of singleton rule consequents the fuzzy rules Rk has the following 
form: 

Ifxi=/ik , i And x2 = /*k,2And And xm = AKm Then y = ck (7) 
by substituting (6) to (5) the conclusion of the interpolative fuzzy reasoning can be 
obtained as: 

y(*)= Z^K \ I i M 

if x = a t for some k, 

otherwise. (8) 

The interpolative fuzzy reasoning (8) can simply extend to be able to handle fuzzy 
conclusions by introducing the vague environment (scaling function) of the 
consequence universe. This case the fuzzy rules Rk has the following form: 

Ifx]=y4k-i And x2=A ,2And And \ m =A k m Then y = 5k . (9) 

By introducing vague distances on the consequence universe: 
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-11/2 

<5,(b,.y)= 
1 

(10) 
VN 

where sY is the ith scaling function of the one dimensional consequent universe, b* 
are the cores of the one dimensional fuzzy rule consequents Bk. 

Introducing the first element of the one dimensional consequence universe bo the 
(Y: b0<y V yeY) , based on (8) and (10) the requested one dimensional conclusion 
y(x) can be obtained from the following formula: 

^(yto,b0) = 
if x = for some k, 

\ !í r ^ 

] [ I ^ ( V b 0 ) A t / jx/st 
V*=1 

otherwise. (11) 

A simple one-dimensional example for the approximate scaling function and the 
Shepard operator based interpolation (11) is introduced on Fig. 2 and on Fig. 3. 

< 
» . — , — 

R: < "J 1 ~ 

. i f 

\ 1 / Approx. 

X 

Figure 2: Interpolation of two fuzzy rules (Rj: A j -»Bj ) (see fig. 3 for notation) 

For comparing the crisp conclusions of the interpolation-based fiizzy reasoning and 
the classical methods, the conclusions generated by the max-min compositional 
rule of inference (CRI) and the centre of gravity defuzzification for the same rule 
base is also demonstrated on the example figures (Fig. 2, Fig. 3). More detailed 
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description of the proposed approximate fuzzy reasoning method can be found in 
[4], [5], [6], 

Figure 3: Interpolation of three fuzzy rules (R;: A;—>B() in the approximated vague 
environment of the fuzzy rule base. Using the Shepard operator based interpolation (p=l) 
(Approx.), and the min-max CRI with the centre of gravity defuzzification (CRI). Where |i 

is the membership grade and s is the scaling function. 

3. THE APPLIED FUZZY BEHAVIOUR-BASED STRUCTURE 

The main benefit of the interpolation-based fuzzy reasoning method, discussed in 
the previous chapter, is its simplicity. Applying look-up tables for pre-calculating 
the vague distances, it could be implemented to be simple and quick enough to fit 
the speed requirements of practical real-time direct fuzzy logic control systems, 
e.g. the requirements of fuzzy behaviour-based control too. The calculation efforts 
of many other interpolation-based fuzzy reasoning methods "wasted" for 
determining the exact membership shape of the interpolated fuzzy conclusion 
prohibits their practical application in real-time direct fuzzy logic control. The lack 
of the fuzziness in the conclusion is a disadvantage of the proposed method, but it 
has no influence in common applications where the next step after the fuzzy 
reasoning is the defuzzification. 

In the followings a pure fuzzy behaviour-based control structure and the adaptation 
of the proposed interpolation-based fuzzy reasoning method will be discussed more 
detailed. 
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In case of pure fuzzy behaviour-based control structures all the main tasks of the 
behaviour-based control - the behaviour coordination, the behaviour fusion, and 
the behaviours themselves - are implemented on fuzzy logic controllers. (Such a 
structure is introduced on Fig.4.) Any of these controllers can apply the proposed 
interpolation-based approximate fuzzy reasoning method. 

Figure 4: The suggested fuzzy behaviour-based control structure 

For demonstrating the main benefits of the interpolation-based fuzzy reasoning in 
behaviour-based control, this paper concentrates on the many cases most heuristic 
part of the structure, on the behaviour coordination. 

The task of behaviour coordination is to determine the necessities of the known 
behaviours needed for handling the actual situation. In the suggested behaviour-
based control structure, for this task the finite state fuzzy automaton is adapted 
(Fig.4) [9]. This solution is based on the heuristic, that the necessities of the known 
behaviours for handling a given situation can be approximated by their suitability. 
Moreover the suitability of a given behaviour in an actual situation can be 
approximated by the similarity of the situation and the prerequisites of the 
behaviour. (Where the prerequisites of the behaviour is the description of the 
situations where the behaviour is valid (suitable itself)). In this case instead of 
determining the necessities of the known behaviours, the similarities of the actual 
situation to the prerequisites of all the known behaviours can be approximated. 
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Thus the first step of this kind of behaviour coordination is determining the 
similarities of the actual situation to the prerequisites of all the known behaviours -
applying the terminology of fault classification; it is the symptom evaluation (see 
e.g. Fig.4). The task of symptom evaluation is basically a series of similarity 
checking between an actual symptom (observations of the actual situation) and a 
series of known symptoms (the prerequisites - symptom patterns - of the known 
behaviours). These symptom patterns are characterising the systems states where 
the corresponding behaviours are valid. Based on these patterns, the evaluation of 
the actual symptom is done by calculating the similarity values of the actual 
symptom (representing the actual situation) to all the known symptoms patterns 
(the prerequisites of the known behaviours). There exist many methods for fuzzy 
logic symptom evaluation. For example fuzzy classification methods e.g. the Fuzzy 
c-Means fuzzy clustering algorithm [1] can be adopted, where the known 
symptoms patterns are the cluster centres, and the similarities of the actual 
symptom to them can be fetched from the fuzzy partition matrix. On the other 
hand, having a simple situation, the fuzzy logic symptom evaluation could be a 
fuzzy rule based reasoning system itself. 

One of the main difficulties of the system state approximation in behaviour 
coordination is the fact that in most of the cases the symptoms of the prerequisites 
of the known behaviours are strongly dependent on the actual behaviour of the 
system. Each behaviour has its own symptom structure. In other words for the 
proper system state approximation, the approximated system state is also needed. A 
very simple way of solving this difficulty is the adaptation of fuzzy automaton. In 
this case the state vector of the automaton is the approximated system state, and the 
state-transitions are driven by fuzzy reasoning (Fuzzy state-transition rule base on 
Fig.4), as a decision based on the previous actual state (the previous iteration step 
of the approximation) and the results of the symptom evaluation. 

4. APPLICATION EXAMPLES 

For demonstrating the simplicity of defining the rule base for interpolation-based 
fuzzy reasoning, as the first example, the state-transition rule base of the previously 
studied fuzzy automaton style behaviour coordination module applied for user 
adaptive information retrieval system in [10] and [11] will be discussed briefly in 
the followings. In this user adaptive information retrieval system example 
(introduced in [10] and [11] in more details) the user adaptivity is handled by 
combination of existing (off-line collected) human opinions (user models) in the 
function of their approximated similarity to the actual user opinions. As an analogy 
to the behaviour-based control applications, the different behaviours are the 
different existing user models, and the actual situation is the similarity of the actual 
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user to the evaluators, originally gave the existing user models. Based on the 
observations (inputs) the conclusion of the user feedback (the symptom 
evaluation about the state-transition to state i, SSi for all the possible states 
Vi e [l,N]) and the previous state values Si - the new state values (i.e. the vector of 
the suitability of the existing user models) are needed to somehow be estimated. 
The suggested heuristic in this example is very simple. If a suitable model (Si) is 
already found and the user feedback is still supporting it (SSi), it is needed to be 
kept even if the user feedback began to support some other models too. If there 
were no suitable model, but the user feedback began to support one, it has to be 
picked it at once. In case of interpolation-based fuzzy reasoning, the above 
heuristic can be simply implemented by the following state-transition rule base 
[10], [11]. For the i* state variable Si, i e [l,N]of the state vector S: 

I f Si=One And SSi=One T h e n Si=One (12 .1) 

I f S i = Z e r o And S S i = Z e r o T h e n S i = Z e r o 
(12.2) 

I f Si=One And S S i = Z e r o 
And S S k = Z e r o T h e n Si=One vk e [l,Njk * i (12 .3) 

I f S i = Z e r o And SSi=One 
And S k = Z e r o And S S k = Z e r o T h e n Si=One v k e [ l , N ] , k * i (12.4) 

I f S i = Z e r o And SSi=One 
And Sk=One And SSk=One T h e n S i = Z e r o 3 k e [ l , N j k * i ( 1 2 . 5 ) 

where SSi is the conclusion of the symptom evaluation about the state-transition to 
state i, Vie[l,N]; N is the number of known behaviours (state variables). The 
structure of the state-transition rules is similar for all the state variables. Z e r o and 
One are linguistic labels of fuzzy sets (linguistic terms) representing high and low 
similarity. The interpretations of the Z e r o and One fuzzy sets can be different in 
each Si, SSi universes. 

Please note that rule base (12) is sparse. It contains the main rules for the following 
straightforward goals only: Rule (12.1) simply keeps the previously chosen state 
values in the case if the symptom evaluation also agrees. The rule (12.2) has the 
opposite meaning, if the state values were not chosen, and moreover the symptom 
evaluation also disagrees, then the state value should be suppressed. The rule (12.3) 
keeps the already selected state values (previous approximation), even if the 
symptom evaluation disagrees, if it has no better "idea" Rules (12.4) and (12.5) 
have the task of ensuring the relatively quick convergence of the system to the 
sometimes unstable (changeable) situations, as new state variables which seem to 
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be fit, can be chosen in one step, if there is no previously chosen state, which is still 
accepted by the symptom evaluation (12.4). (Rule (12.5) has the task to suppress 
this selection in the case if exists a still acceptable state, which has been already 
chosen.) The goal of this heuristic is to gain a relatively quick convergence for the 
system to fit the opinions of the actual user, if there is no state value high enough to 
be previously accepted. This quick convergence could be very important in many 
application areas e.g. in case of an on-line user adaptive selection system 
introduced in [10], where the user feed-back information needed for the state 
changes are very limited. 

Some state changes of the fuzzy automaton in the function of the conclusion of the 
symptom evaluation (SSX, SS2) for the two states case (applying the state-
transition rule base (12)) are visualised on Fig.5 and Fig.6. 

• P s , 

s, 

1 I 

« 

I ' s 
» j o3 

'ss, I 

ss. 

T i m e in s t e p c o u n t T i m e in s t e p c o u n t 

Figure 5: Do not "pick up" a new state if the previous approximation is still adequate 

/ v u ( ^ 
| 

ss, 
! * 

| 
ss, 

! * 
:. M M !<• M « »-, _ x 

T i m e in s t e p c o u n t T i m e in s t e p c o u n t 

Figure 6: But "pick it up" if it seems better, or at least as good as the previous was 

Counting the rules of the classical (e.g. compositional) fuzzy reasoning for the 
same strategy, in the two state case the complete rule base needs 16 rules (four 
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observation universes (S l 5 SSi, S25 SS 2) each with two terms fuzzy partitions 
( Z e r o , One) - 24 rules), while the sparse rule base (12) contains 5 rules only (see 
table 1 for the state-transition rule base of state Si). Taking into account that in the 
proposed behaviour-based control structure a separate rule base is needed for each 
state variable, the behaviour coordination needs 32 rules, while 10 is enough in 
case of applying the proposed interpolation-based fuzzy reasoning method. 
Increasing the number of the state variables, the situation becomes even worse. In 
case of three state variables (Si, S2 , S3) the rate become 3 -26 («• 22 ", where n is the 
number of the states) and 3-6 («•(« +3)) up to the interpolation-based method (see 
table 2). 

Table 1: State-transition rule base of state Si in case of two state variables (Si,S2) 
according to rule base (12) 

Rsb Si SSi S2 SS2 Si 

1., One One One 

2., Zero Zero Zero 

3., One Zero Zero One 

4., Zero One Zero Zero One 

5., Zero One One One Zero 

according to (12.1) 
according to (12.2) 
according to (12.3) 
according to (12.4) 
according to (12.5) 

Table 2: State-transition rule base of state Si in case of three state variables (S1,S2,S3) 
according to rule base (12) 

Rsi; Si SSj s 2 s s 2 S3 SS3 Si 

1., One One One 

2., Zero Zero Zero 

3., One Zero Zero Zero One 

4., Zero One Zero Zero Zero Zero One 

5., Zero One One One Zero 

6., Zero One One One Zero 

see (12.1) 
see (12.2) 
see (12.3) 
see (12.4) 
see (12.5) 
see (12.5) 

The exponential rule number "explosion" in case of increasing the number of the 
input variables makes many heuristic ideas unimplementable and therefore useless. 
E.g. in the case of the original source of the example application of this paper 
(introduced in [10]), the behaviour coordination module applied for user adaptive 
information retrieval system had 4 state variables (one for each emotional model), 
which makes this simple rule base (12) practically unimplementable as a complete 
rule base (4-2" = 1024 rules). While the working demonstrational example (which 
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can be downloaded from [18]) had only 28 rules thanks to the applied 
interpolation-based fuzzy reasoning method. 

4.1. Vehicle navigation control example 

For another example of the interpolation-based fuzzy rule base definition 
simplicity, in the followings, the behaviour coordination module of an automated 
guided vehicle (AGV) steering control [12], [13] will be discussed briefly. 

In this example application the steering control has two main goals, the path 
tracking (to follow a guide path) and the collision avoidance. The simulated AGV 
is first trying to follow a guide path, and in the case if it is impossible (because of 
the obstacles), it leaves it, and as the collision situation is avoided, it tries to find 
the guide path and follow it again. 
The AGV has two simulated sensor systems. The path sensing system senses the 
position of the guide path by special sensors (guide zone) tuned for the guide path. 
The obstacles are sensed directly by three ultrasonic distance sensors (on the front 
of the AGV, one in the middle (UM) and one-one on both sides (UL, UR) (see Fig.7) 
and the obstacle boundaries are approximated based on dead reckoning and 
previous obstacle distances [12], The global goal of the path tracking strategy is to 
follow the guide path by the guide zone with minimal path tracking error on the 
whole path (see Fig.7). 

Figure 7: Differential steered AGV with guide zone, 8 is the path tracking error, ev is the 
distance of the guide path and the guide point Pv, K is the driving centre, RL, RR, RM are the 

distances measured by the left, right and middle ultrasonic sensors (UL, UR, UM). 

Because of the requirement of being able to find the guide path after leaving it, the 
complete path tracking and the collision avoidance strategy needs four component 
behaviours: 
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Path tracking and restricted collision avoidance strategy: The main goal of this 
strategy is the path tracking (to follow a guide path) and as a sub goal, a kind of 
restricted (limited) collision avoidance [13]. (Here the restricted collision 
avoidance means, "avoiding obstacles without risking the chance of loosing the 
guide path".) 

The collision avoidance strategy: The second known behaviour is a simple 
collision avoidance steering strategy. Its only goal is to avoid collisions. 

The collision avoidance with left/right tendency strategy: The next two behaviours 
are basically the same as the collision avoidance steering strategy, expect the left or 
right turning tendencies in case of no left or right turning difficulties. These 
strategies are needed to help finding the path after leaving it (because of the fail of 
the first strategy). 

In this vehicle navigation control example (introduced in [13] in more details) the 
studied behaviour coordination module has the task of determining the necessities 
of the four component behaviours. Having four known behaviours, the automaton 
has four state variables (see Fig.4). 

These are the necessity of the path tracking and restricted collision avoidance 
strategy (Sp), the necessity of the collision avoidance strategy (Sc), and the 
necessities of the collision avoidance strategies with right tendency (SCR), and left 
tendency (SCL) in solving the actual situation. 

Having four necessities (four conclusions), four state transition rule bases are 
required. The RsP state transition rule base is determining the next value of the SP 

state variable, Rsc is for determining SC, and the RSCR and RSCL are determining 
the next values of SCR and SCL- The available observations [13] of the state 
transition rule bases are the distance between the guide path and the driving centre 
(ev), the distances measured by the left middle and right ultrasonic sensors (RL, RM, 
R r) , the approximated maximal left and right turning angle without side collision 
(aML, aM R) , the availability of the path sensing (Pv), and the state variables 
themselves ( S P , S C , S C R , S C L ) -

Based on heuristic considerations and simulated experiments the four state-
transition rule bases became the following ones: 
Rsp: 

Sp Sc ScR PV RL RR RM OML C<MR Sp 
Z V L L 

PL V S Z 
NL V s Z 

NV Z 

(13.1) 
(13.2) 
(13.3) 
(13.4) 
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Sc 
L (14.1) 
z (14.2) 
z (14.3) 

SCR 
(15.1) 

Í L _ (1 5-2) 
z (15.3) 
z (15.4) 

S(X 
L (16.1) 
L (16.2) 
z (16.3) 
z (16.4) 

where the linguistic labels of fuzzy sets (linguistic terms) stand for N: negative, P: 
positive, VL: very large, L: large, S: small, Z: zero, V: path valid, NV: path not 
valid. 

The heuristic considerations laying behind the state-transition rule base of the path 
tracking and restricted collision avoidance strategy (RSP) are quite straightforward: 
Rule (13.1) simply takes the path tracking strategy in case if there is a valid path 
with no path tracking error (ev=Z) and there is no collision situation. The rest of the 
rules are suppressing the path tracking strategy in case of collision situation (13.2)-
(13.3), or if the path sensing is not available (13.4). 

The state-transition rule base of the collision avoidance strategy (Rsc) is also 
straightforward: Rule (14.1) calls the collision avoidance strategy in case of valid 
path sensing and collision situation. Rule (14.2) suppresses the collision avoidance 
strategy if there is no collision situation (the distance of the obstacle and the middle 
sensor is large) and the path sensing is valid. Rule (14.3) suppresses the collision 
avoidance strategy if the path sensing is not valid (PV=NV), as these situations are 
handled by the collision avoidance strategies with left and right tendencies. 

The remaining two state-transition rule bases are serving the requirement of being 
able to find the guide path after leaving it. They are symmetric in the sense of the 
left and right directions. The right turning tendency is called if the vehicle leaves 

Rsc: 
SC SCR SCL F V RL RR RM OML QMR 

V 
V 

NV 

R S C R ; 

Sp SC SCR SCL FV RL RR RM C<ML OMR 

NVL V 
NV 
V 

R S C L ; 

Sp Sc SCR SCL 
PVL 

PV RL RR RM OML O ^ 
V 

NV 
V 
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the guide path on the left side (see rule (15.1)) and left turning tendency is called if 
the vehicle left on the right (rule (16.1)). Rules (15.2) and (16.2) have the task to 
keep the already selected right or left direction tendency if the path sensing is still 
not available (PV=NV). Rules (15.3) and (16.3) are suppressing the strategies 
serving the free run if the guide path is found again (valid path P V = V with no path 
tracking error e^Z). Rules (15.3) and (16.3) are serving of the mutual exclusion of 
the two contradictive (left or right turning tendencies) strategies. 

Figure 8 introduces some results of the simulated AGV steering application. 

Figure 8: Track of a single run in case of one obstacle and the time function of 
observations, conclusions and system state values (SP, SC, SCL, SCR). 

A downloadable and runable code of the application examples and the code of the 
interpolation-based fuzzy reasoning method studied in this paper can be found at 
[18]. 

5. CONCLUSIONS 

The goal of this paper was to review an interpolation-based fuzzy reasoning 
method, which could be implemented to be simple and quick enough to fit the 
requirements of behaviour-based control structures in real-time direct fuzzy logic 
control systems. The suggested approximate fuzzy reasoning method based on 
interpolation in the vague environment of the fuzzy rule base gives an efficient way 
for designing direct fuzzy logic control applications. The lack of the fuzziness in 
the conclusion is a disadvantage of the proposed method, but it has no influence in 
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