
JÖS1 Production Systems and Information Engineering
J^Epl Volume 2 (2004), pp. 107-119

1 0 7

A DETAILED EXAMPLE OF APPLYING CONSTRAINTS ON
A LOGISTICAL PROBLEM

ELEMÉR KÁROLY NAGY
Department of Control Engineering and Information Technology,

Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics

eknagy@kempelen.iit.bme.hu

[Received November 2004 and accepted February 2005]

Abstract. This article demonstrates the use of constraints to reduce the
algorithmic complexity of industrial problems through a numerically detailed
example. To achieve this, the article first presents the basics of algorithmic
complexity and constraints as well as the types and uses of constraints. Second,
the article presents a logistical example and determines its complexity. Third,
constraints are applied on the problem. Fourth, the problem is modeled in a
constraint programming environment and the different results received from
different constraint sets are evaluated.

Keywords'. Algorithmic complexity, constraint programming, logistical problem

1. THE GROWTH OF COMPUTING POWER

In the early days of computing, computing power was so rare and expensive that
dozens of scientists had to work on the same computer and they could solve only
simple problems. Later, every scientist could have a personal computer and they
could do most of their work on it. However, if they had difficult problems they still
had to work on the mainframe. At the end of the 20th century, everyone had a
personal computer that was almost as powerful as a mainframe, and scientists
solved difficult problems on their PCs. When they needed even more computing
power, they entered the problem in a cluster of thousands of mainframes. Yet there
are problems that cannot be solved even with clusters. These problems have
enormous algorithmic complexity and they are believed to take at least a hundred
year even if the available computing power is doubled every year.[l]

2. ALGORITHMIC COMPLEXITY

"Algorithmic complexity" is an abstract expression which is used to describe the
computation power needed to solve a problem with a given algorithm. [2] It is
mostly independent of hardware and implementation details, depending only - at
least in theory - on the algorithm, the problem class and the type of resource used.

mailto:eknagy@kempelen.iit.bme.hu

1 0 8 E . K . N A G Y

One such problem class is the N -queen problem, in which we need to find all the
solutions of the problem " N queens on an N * N chess table, none of them can
hit any of the others in one move"

One such resource is the memory, measured in Memory Units or MUs, which - in
our example - denotes the memory needed to store an N*N table with N
queens. Another such resource is CPU time, measured in Computational Units or
CUs which - in our example - denotes the time needed to check an N*N
chessboard if it fulfills the requirements of the N -queen problem. The exact
amount of these resources may vary depending on the hardware, the programming
language, the data structures, etc. In our example, the memory denoted by "one
MU" may vary from about N *\og2(N2) bits to 4 * N2 bytes, namely 6 to 256
bytes for N = 8 .

Using these definitions, we could state that my hypothetical algorithm solves the
4-queen problem with using the maximum of 256 MUs and 128 CUs, solves the
8-queen problem with using the maximum of 2048 MUs and 512 CUs.

To describe the memory and CPU usage of my hypothetical algorithm for all
possible N s, 1 either need to produce a table that contains every N and the
corresponding MUs and CUs or I need to find a formula that generates this table. In
practice, it is widely accepted to use the formula of "maximum algorithmic
complexity" which is denoted as 0() and pronounced as "big ordo" This operator

is adopted from Calculus, in which the definition is (1), where C and N are
constants and an and bn are sequences:

In computer science, " 0(Ni) in terms of memory usage" is used to denote that
"the given algorithm solves the given problem class with parameter N using the
maximum of C * N3 MUs, even in the worst case, where C depends on hardware
and implementation but is independent of N " For example, my hypothetical
algorithm solves the N -queen problem in 0 (i V 3) MUs and 0(N2) CUs. In this
case, C = 4 , but C = 4 0 9 6 would still result 0{N*). This is the consequence of
the definition and reflects the fact that scalability1 cannot compensate non-linear
algorithmic complexity.

1 Faster processors, increased storage capacities, multiprocessor systems, clusters, distributed
applications, etc.

(1)

A DETAILED EXAMPLE OF APPLYING CONSTRAINTS ON A LOGISTICAL PROBLEM 109

There is another adopted operator in use, namely o() or "small ordo" with the

original Calculus definition of (2) , where c and N are constants and an and bn

are sequences:

This operator is used sometimes incorrectly to denote the "minimum
algorithmic complexity" which is slightly different from the exact mathematical
meaning2 This may be tolerable as the minimum algorithmic complexity usually
has far less importance in practice than the maximum algorithmic complexity.
Therefore, I will use the operator q() to denote the minimum algorithmic

complexity, so " g (N 3) in terms of memory usage" is used to denote that "the
given algorithm solves the given problem class with parameter ./V using the
minimum of C * N3 MUs, even in the best case, where C depends on hardware
and implementation but is independent of N "

There are algorithms/problems where q and O differ. For example, if we are not
interested in all solutions of the N -queen problem, just in the first solution, the
complexities may be q(N2) and 0(N4) in terms of memory usage. If q differs
from O , it is practical to use both of them when we speak about complexity, but
we may refer to O only as it denotes the worst case. In algorithms where q and O
are equal, it is sufficient to use O only.

In practice, an English-Mathematician Dictionary [3] contains the following
translations: 0(const) = "utópián", 0 (l o g N) = "excellent", O(N) = "very good",

0(N * l o g N) = "decent", 0(N2) = "not so good", 0(N3)= "pretty bad",
0(. /V4) = "terrible", 0{constN) = "disaster"3 This sequence of complexities is
also referred to as "complexity classes", so an 0(N2) problem is two classes
harder than an 0(N) problem. Until now, we used to denote q and O to describe
the complexity of an algorithm. However, we may use q and O to describe the
complexity of a problem, especially if we have an algorithm with known
complexity that solves the problem.

2 If the algorithm uses A* Nl MUs in every case, it is q{Ni) and o(W3 0001) but not o(N^)

(2)

const > 1

1 1 0 E . K . N A G Y

An 0(N * log N) problem denotes a problem that has at least one 0(N * log N)
solution. Sorting elements in an unsorted array with N elements is an
0(N * l og N) problem in terms of execution time. [4]

In some cases, it is mathematically proven that no faster algorithm exists, these
problems are often referred as "proved O(X) problems"

It is generally accepted that an algorithm designed to find a simple solution to a
problem is "way faster" than an algorithm designed to find all solutions while
algorithms designed to find the best solution are almost identical, at least in the
terms of MU and CU, with the ones designed to find all solutions. This is reflected
in algorithmic complexity as these three cases define three different problems. The
maximum complexities of these problems are often the same and the minimum
complexities of these problems almost always differ by at least two classes.

3. INDUSTRIAL LOGISTICS EXAMPLE

As defined in [5], "in an industrial context, logistics means the art and science of
obtaining, producing, and distributing material and product in the proper place and
in proper quantities" One such logistical problem is the problem of manufacturing
cells4 Manufacturing cells can produce different products but changing the type of
product requires time (referred to as retooling). The products and the resources
may have different restrictions that are direct consequences of storage capacities,
workforce limits, delivery deadlines, etc.

One such example is the following (MU is money unit, TU is time unit):
There are 3 identical manufacturing cells (CI, C2, C3). There are 3 resources (Rl ,
R2, R3). There are 4 tools , two of each type (Tl/1, Tl /2 , T2/1, T2/2). T1 tools
produce one R3 from two R2s and two R l s in every TU. T2 tools produce three
R2s from two Rl in every TU. The storage costs of R l , R2, R3 are 1, 1, 3 MU/TU.
Retooling takes 1 TU. Rl and R2 resources can be bought at a price of 5 MU/piece
in quantities of 20 while R3 can be sold at a price of 100 MU/piece in quantities of
10. Buying and selling takes 1 MU. At the beginning of the shift, we have 1000
MUs, CI has Tl /1 , C2 has T2/2, C3 has Tl /2 , and we have 100 pieces of Rls , 11
pieces of R2s and 1 pieces of R3. We have to prepare 50 pieces of R3s in the

4 The problem of manufacturing cells is often treated as scheduling or manufacturing problem when
"logistics" is used in a narrower sense. However, when the definition omits production from
logistics, then logistics (in a broader sense) becomes a sequence of logistics (in a narrower sense)
and production problems. As these problems are not independent, the complexity of the main
problem is not reduced but increased.

A DETAILED EXAMPLE OF APPLYING CONSTRAINTS ON A LOGISTICAL PROBLEM 111

storage at the end of the 56th TU when it will be removed as ordered by the CEO.
We have to achieve the most MUs at the end of the 100th TU. What shall we do?

This example is a simplified real-life example, in which the quality of the solution
found has great impact on profit. To find the best solution, a PPS5 should utilize an
algorithm that finds the optimal solution before the shift starts. Let us assume that
we have a state-of-the-art computer that can store 10 000 000 states in its memory
and can analyze 100 000 states per second. Let us assume that the computer has 24
hours to find the best solution.

4. THE COMPLEXITY OF THE EXAMPLE

The problem of manufacturing cells can be modeled as a single-source multi-
destination directed grah search problem. In a graph search problem, there are
nodes (also referred as states) and edges (also referred as transitions). In the
example, there is a single source node (the beginning of the shift), there are
destination nodes (the possible outcomes at the end of the shift) and there are
intermediate (mid-shift) nodes. In the example, the nodes are arranged in layers,
each layer contains nodes with the same TUs. Also, the edges always connect two
adjacent layers and the destination's TU is always higher than the source's TU
exactly by one. In a general graph search problem, these restrictions do not apply.

A search algorithm takes the current node and chooses an edge to follow, entering
into the next current node. The difference between the search algorithms comes
from the difference in the choices they make. If the edges have "distance" or "cost"
values and it affects the choices made by the algorithms, we speak of guided search
algorithms.

In this example, as each cell can either retool or produce or stay idle, we have 3
possibilities for each cell. We may decide to buy or to not buy 20 pieces of Rls , to
buy or not to buy 20 pieces of R2s, to sell or not to sell 10 pieces of R3s, thus we
have 2 possibilities for each resource. This means we have to make six choices and
thus we have 3 * 3 * 3 * 2 * 2 * 2 = 2 1 6 possibilities in each TU (216 transitions
from every state).

The basic unguided algorithm to solve such a problem is the breadth-first
search. [6] To find the best solution (the destination state with the most MUs) with
the breadth-first search it is necessary to examine all possible states. To find all
possible solutions, we would have to check 216100 possibilities and we would
need to compute for about 10221 years with the given computer. It is impossible to

5 In this context, Production Planning System

112 E . K . N A G Y

do so because finding the most profitable solution(s) for this problem with simple
breadth-first search without applying constraints has the complexity of 0(216N)
where N is the number of TUs. Guided algorithms like the A* search find one of
the best solution faster than unguided search algorithms if certain conditions apply6

and so if they do not need to check all possible states. In this example, we require
that the search algorithm checks all states that are not disqualified by constraints,
so the breadth-first search is used for the sake of simplicity.

Figure 1: Simple BFS

5. CONSTRAINTS

Constraints are restrictions that reduce the number of possible actions, reducing the
number of states and thus they reduce the necessary computing power. [7]

Constraints are either:
• internal problem constraints (we cannot produce R3s if we have no R2 in

the storage),
• external problem constraints (we need to have 50 R3s at the end of the 56th

TU), or
• algorithm constraints7 (one algorithm could find out that if we need to have

50 R3s at the 56th TU, then - as we cannot produce more than two R3s in
a TU as we have only two T l s - we need at least 48 R3s at the 55th TU, 46
R3s at the 54th TU, , 2 R3s at the 32nd TU).

6 Detailed discussion is not feasible within the frame of this article
7 Algorithm constraints include deducted constraints (constraint deducted from other constraints) but

also include constraints that are not formally deducted.

A DETAILED EXAMPLE OF APPLYING CONSTRAINTS ON A LOGISTICAL PROBLEM 1 1 3

A problem can be either - by internal and external constraints:
• over-constrained (there is no solution to the problem);
• under-constrained (the number of solutions is too great); or
• well-constrained.

Algorithm constraints may be added to the problem to reduce the number of
transitions from the states as long as they do not remove any of the best solutions
of the problem. To make the example solvable, we introduce the following four
algorithm constraints:

• Constraint 1: We do not buy 20 Rls if we have 11 or more Rls.
• Constraint 2: We do not buy 20 R2s if there are two T2s equipped or we

have 4 or more R2s.
• Constraint 3: We sell 10 R3s if we have more than 9 R3s in the storage

and it is past the 56th TU.
• Constraint 4: We sell 10 R3s if we have more than 59 R3s.

These constraints can only be applied to this particular example. When applied,
they reduce the 8 possibilities of buying/selling to the average of 3. This results in
an enchanted performance as we reduced the number of states to check from
216100 to about 81100, which is 10 43 faster.

According to the definition, the problem still has 0 (2 1 6 ' v) complexity as O
denotes the maximum algorithmic complexity. If we analyzed all states, we would
get 0 (8 for the given specific example with the four example constraints
added. However, if we change any specific data (the starting amount of Rls , for
example) then it might not be 0 (8 1 N) while it still would be 0 (2 1 6 N) .

6. ADDING AND USING CONSTRAINTS

There are two ways of adding constraints: automatically or manually. Manually
added constraints tend to be "stronger" as they reduce the complexity more
severely than automatically added constraint, but also have the tendency of
disqualifying valid solutions even best solutions due to human error.
Automatically added constraints often do not reduce the complexity enough to
solve the problem in the given time but they usually speed it up.

If an algorithm tries to check all possible solutions it may use constraints in one of
the following ways:

• In every state, the algorithm checks if all the constraints are fulfilled. If any
of the constraints is violated, the algorithm steps back (backtrace). For

114 E . K . N A G Y

example, if we are in the 56th TU and we don't have 50 R3s then we go
back to the previous state.

Figure 2: Backtrace

• The algorithm initiates a transition only if it is sure that all constraints will
be fulfilled after the transition (forward checking). For example, in the 55th
TU we do not sell 10 R3s if we have less than 60 pieces.

Figure 3: Forward checking

• The algorithm generates new constraints from the available ones and does
not initiate a transition that violates any of them (constraint propagation).
For example, deducting the need for 2 R3s at the 32nd TU.

Figure 4: Constraint propagation

A DETAILED EXAMPLE OF APPLYING CONSTRAINTS ON A LOGISTICAL PROBLEM 1 1 5

7. OTHER METHODS TO REDUCE COMPLEXITY

There are two ways of reducing complexity. Non-destructive reductions are
reducing the state space by eliminating unnecessary nodes that can not lead to valid
solutions. Destructive reductions reduce the state space by eliminating nodes that
may or may not lead to valid solutions, thus possibly reducing the quality of the
solution found. Constraints, as long as they are correct, are non-destructive. The
other two non-destructive reduction methods are remodeling and equality checking.
The destructive reductions include applying policies and changing the granularity.

Remodeling the problem decreases the complexity if the new model is simpler than
the original. In our example, we may remodel the three identical cells and the four

tools as a single cell with 8 tools, thus decreasing the complexity to 0 (64 1 0 0) In
most cases, there are constraints with the same effect, for example, the ITACF
constraint introduced in "Solving the given problem"

Equality checking is based on the fact that
there may be identical state-pairs in a
system from which any chosen
transaction results identical states8, and it
is sufficient to keep only one of them and
drop the others as they can not lead to a
better solution. If a proper value function
is given, it is even possible to find state-
groups from which only one state is needed to be preserved. In our example, if two
states have the same tool configuration, TUs and resources, it is feasible to store
only the one with the highest amount of MUs and drop all other inferior states,
using a proper value function.

Policies are constraints that are not formally deducible from other constraints and
therefore they might disqualify valid solutions. In our example, one such policy is
LRS which is described in "Solving the given problem"

Changing the granularity reduces the state space by reducing the domain of state
variables. A linear reduction in the proper variable's domain may reduce the state
space exponentially. In our example, by reducing the 100 TUs in a shift to 20 TUs,
we reduce the complexity from 0 (2 1 6 1 0 0) to 0 (2 1 6 2 0) , but we also decrease the
quality of the solution. Another example could be splitting the problem into two
smaller problems, namely the problem of the first 56 TUs and the problem of the
last 44 TUs.

8 There are many other definitions of „identical" not discussed here.

1 1 6 E . K . N A G Y

If the problem is still too complex to be solved by an algorithm in the limited time,
there are means to increase the quality of the solution found.

These include random sampling and guided search, which takes many forms from
greedy search to A* search. Greedy search always checks the transitions with the
most income first, while A* search checks the transition first with the highest
value, which is provided by a heuristic function. One such heuristic function may
return the total value of stored resources plus the current amount of MUs minus the
estimated storage costs until the 100th TU. Random sampling chooses a transition
at random, thus - on average - progressing through the state graph evenly.

8. SOLVING THE GIVEN PROBLEM

This particular problem can be solved with a number of tools. One such tool is
SCPFW, which is developed by the author and is available at sourceforge.net under
GPL. SCPFW is used in the education at BUTE and the given problem can also be,
and is solved by SCPFW. The ProductionSytem class in SCPFW is a more abstract
problem of manufacturing cells that can be easily customized to implement the
given problem. The ProductionSystem has two built-in general constraints and a
built-in optimization. The optimization is "Similarity Check" or SC, which drops
the states that have less money than their state-pairs, as described in "Other
methods to reduce complexity" The first constraint is "Lazy Resource Strategy" or
LRS, which disables resource buying as long as the resource can be bought faster
than consumed and there is enough resource left. The second is "Identical Tool
Action Combinations Filter" or ITACF, which disables transitions that are
permutations of other transitions and are identical in their effect. The customized
ProductionSystem has a problem-specific constraint, namely "Max R3 Constraint"
or MR3, which limits the maximum amount of R3 in the storage.
ProductionSystem contains a simple BFS-backtrace algorithm that handles all inner
constraints. It tries to execute all transitions from all the N-step states before
entering any of the N+l-step states. In case of violation of an inner or outer
constraint, a return value is set to false or an exception is generated and the
algorithm drops the resulting state. If the transition is executed successfully, the
algorithm adds the resulting state to the bank of good states. When all transitions
are executed from all N-step states, the algorithm logs the number of good states
and starts analyzing the N+l-step states.

A DETAILED EXAMPLE OF APPLYING CONSTRAINTS ON A LOGISTICAL PROBLEM 1 1 7

S . S C * • S C + L R S S C + L R S + I T A C F \ M R 3 + S C + L R S
\ S C - H T A C F \ M R 3 4 S C - I L R S + I T A C F

M R 3 - M a x i m u m R 3 L R S - Lazy resource strategy

S C - Similar i ty check I T A C F - Identical tool /act ion c o m b i n a t i o n fil ter

Number of s teps

Figure 5: Impact of constraints on execution time

The algorithm was executed on a middle-class multi-user server several times with
different constrains enabled and with the maximum execution time of 120
seconds/step. The results are summarized in Figure 5 (some results were dropped
to increase readability).

As we expected, the algorithm could not solve the problem without constraints in
the available time. At first glance, it may be a surprise to find that the algorithm
runs out of memory or execution time in two to five steps only, if we do not apply
any non-internal constraints. On second thought, four steps mean about 16 million
valid states from the 69 billion possible states. Even with the SC and ITACF
constraints enabled, execution time still increases like an exponential curve, but we
may reach even step 15. If we add LRS (and thus the maximum Rl and R2
constraints named "Constraint 1" and "Constraint 2" in the paragraph
"Constraints"), the problem becomes solvable in the limited time. There is,
however, a spike in the execution time at the 56th TU, which is the result of the
enormous number of rollbacks caused by not having enough R3s in the store. It
even halts SC+LRS, which would need about 140 seconds of execution time for
this step. The MR3 constraint (which incorporates "Constraint 3" and "Constraint
4" from the paragraph "Constraints") filters out this spike, reduces execution time

118 E . K . N A G Y

from about 40 steps and halves total execution time. It does not, on the other hand,
help anything before the 31 st TU.

In this particular example, we can see

• The difference between a backtrace and a forward checking algorithm in
the difference between SC and SC+ITACF.

• The difference between a forward checking and a constraint propagation
algorithm in the difference between SC+LRS+ITACF and
MR3+SC+LRS+IT ACF.

• That we could not solve the problem within the set time limit without
applying "Constraint 1" and "Constraint 2"

By manipulating the starting conditions, we may find other interesting results:

• If we set the storage costs of the resources to 0, the number of possible
states increases. This is because the storage costs create a hidden constraint
of "Constraint 5: produce at least about 1000 MUs in every 20 TUs"

• By increasing the starting amount of MUs, "Constraint 5" can be weakened
or eliminated.

• By decreasing the starting amount of Rl , "Constraint 5" and LRS can be
weakened.

• Strong constraints (the ones that reduce the number of possible states
considerably) often disqualify the same states and thus they are rarely
additive.

9. CONCLUSION

Even with the ever-increasing computing power available today, there are
problems that still cannot be solved in a human lifetime. These problems have very
high algorithmic complexity. Industrial optimization problems (especially
problems from the domain of logistics, manufacturing and scheduling) are often
such problems. Constraint programming is an effective tool to reduce the
complexity of such problems. In this article, a problem is explained and its
complexity is analyzed. After adding constraints to the problem, the formerly
unsolvable problem is solved by a tool which is developed by the author and is
used in the education, thus the complexity reduction effect of constraints is
demonstrated. Equalities of constraints and non-constraint methods - in the terms
of complexity reduction - are also demonstrated.

A DETAILED EXAMPLE OF APPLYING CONSTRAINTS ON A LOGISTICAL PROBLEM 1 1 9

REFERENCES

[1] RSA SECURITY INC, Has the RSA algorithm been compromised as a result of
Bernstein's Paper?, http://www.rsasecurity.com/rsalabs/node.asp?id=2007

[2] CORMEN, T . H . , LEISERSON, C.E. , RLVEST, R.L.: Introduction to Algorithms, M I T
Press, 1990

[3] PER J. KRAULIS: Algorithmic complexity,
http://www.sbc.su.se/~per/molbioinfo2001/multali-algocomplex.html

[4] MICHAEL L.: Algorithms & Data Structures, Sorting Algorithms,
http://linux.wku.edu/~lamonml/algor/sort/sort.html

[5] HOMER COMPUTER SERVICES PTY LTD, Glossary of terms,
http://www.homercomputer.com.au/homer_software_guide/glossary.htm

[6] BLACK, P.E.: Breadth-first search, http://www.nist.gov/dads/HTML/breadthfirst.html

[7] KRZYSZTOF A. : Principles of Constraint Programming, Cambridge University Press,
2003

http://www.rsasecurity.com/rsalabs/node.asp?id=2007
http://www.sbc.su.se/~per/molbioinfo2001/multali-algocomplex.html
http://linux.wku.edu/~lamonml/algor/sort/sort.html
http://www.homercomputer.com.au/homer_software_guide/glossary.htm
http://www.nist.gov/dads/HTML/breadthfirst.html

	 - 0110
	 - 0111
	 - 0112
	 - 0113
	 - 0114
	 - 0115
	 - 0116
	 - 0117
	 - 0118
	 - 0119
	 - 0120
	 - 0121
	 - 0122

