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Abstract. This paper presents a case study of the TP (Tensor Product) model 
transformation in the control of a nonlinear benchmark problem. We design a non-
linear controller of translational oscillation with an eccentric rotational proof mass 
actuator (TORA) system via TP model transformation and LMI (Linear Matrix 
Inequality) based controller design technique that is also capable of the reference 
signal tracking control. The main contribution of the paper is to show that both nu-
merical methods the TP model transformation and the LMI can readily be executed 
computer independently on the given problem and without analytical derivations, 
that, hence, lead to a fast way of controller designs for a class of engineering 
control problems. Numerical simulation is used in the paper to provide empirical 
validation of the control results. 

Keywords: nonlinear control design, tensor product model, linear matrix inequali-
ties, parallel distributed compensation, TORA system 

1. INTRODUCTION 

Recently a control design method was proposed for the stabilization of parameter 
varying nonlinear state-space models [2-4]. This method is based on two numerical 
steps. In the first step the TP model transformation [4] is executed, while in the 
second step LMIs are solved under the PDC (Parallel Distributed Compensation) 
framework, that also includes the feasible solution of LMIs' The book [20] refers 
to a great number of related papers dealing with PDC design framework. The first 
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step is capable of transforming a given state-space model into a tensor product form 
(which is identical with a class of the Takagi-Sugeno inference operator based fuzzy 
model, see in Section 5.1) whereupon design techniques of the PDC framework, can 
immediately be executed. The second step results in a controller according to various 
different control specifications. 
It is worth noticing here that both steps are executed numerically by computers. This 
implies two advantages such as: 

1. the controller can be derived automatically, without analytic derivations; 

2. the identified model which the control design method starts with can be defined 
either by analytical equations or by other soft-computing techniques, for in-
stance by neural networks, fuzzy logic systems, or algorithms based on Rudas-
type generalized operators [17,18], 

The main goal of this paper is to study, via the control of the TORA system exam-
ple, how to execute the TP model transformation based control design method and 
to show its performance in case of reference signal tracking control. This control 
problem has a great comparative literature related to different control theories, and 
also a special issue of the International Journal ofRobust and Nonlinear Control was 
devoted to describe the control problem and to present several control design meth-
ods including optimal control theory, Lyapunov backstepping, passivity theory, fuzzy 
logic, computing with words, etc. The overview of this literature is behind the scope 
of this paper, but we refer the reader to [1 ,5 ,12 ,14 ,20] 
The rest of the paper is organized as follows. Section 2 introduces the notation being 
used in this paper. Section 3 illustrates the case study of this paper, the TORA system. 
Section 4 briefly summarizes some preliminaries and defines the convex state-space 
TP model. Section 5 presents the TP model transformation and Section 6 describes 
the LMI based controller design. Section 7 is devoted for evaluation of the derived 
controllers, and finally Section 8 concludes the paper. 

2. NOMENCLATURE 

This section is devoted to introduce the notations being used in this paper. 

• {a, b,...} = scalar values 

• {a, b, . . . } = vectors 
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• {A, B , . . . } = matrices 

• {J3, fB,. . .} = tensors 

• K'1 x^x-x/a, _ v e c t o r S p a c e 0 f r e a i valued (/i x /2 x x In)-tensors 

• Oij<n, ••• = indices, they define lower order: for example, an element of matrix 
A at row-column number i,j is symbolized as (A),.y = a,. Systematically, the 
ith column vector of A is denoted as a, , i.e. A = [ai a2 • • •] 

• °[J,N, ••• = index upper bound: for example: i — 1 . . . / , j = 1 J, n — \ ...N 

or i„ = 1 ...In 

• A (n) = H-mode matrix of tensor A G B / |X ,2X"'XÍ!' 

• rank,, (A) = n-mode rank of tensor A 

• ÍA. x„ U = H-mode matrix-tensor product 

• JW8„U„ = multiple product as Jl x i Ui x 2 U2 x3 x^LJ/v 

• A + = the pseudo inverse of matrix A 

Detailed discussion of tensor notations and operations is given in [13]. 

3. TORA SYSTEM 

The Translational Oscillations with a Rotational Actuator (TORA) system1 was de-
veloped as a simplified model of a dual-spin spacecraft [13]. Later, Bernstein and 
his colleagues at the University of Michigan, Ann Arbor, turned it into a benchmark 
problem for nonlinear control [5,7,8], 
The system shown in Fig. 1 represents a translational oscillator with an eccentric 
rotational proof-mass actuator. The oscillator consists of a cart of mass M connected 
to a fixed wall by a linear spring of stiffness k. The cart is constrained to have one-
dimensional travel. The proof-mass actuator attached to the cart has mass m and 
moment of inertia / about its center of mass, which is located at distance e from the 
point about which the proof mass rotates. The motion occurs in a horizontal plane, 
so that no gravitational forces need to be considered. In Fig. 1, N denotes the control 
torque applied to the proof mass, and F is the disturbance force on the cart. 

'Also referred to as the rotational/translational proof-mass actuator (RTAC) system. 
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Figure 1: TORA system 

Let q and q denote the translational position and velocity of the cart, and let 8 and 0 
denote the angular position and velocity of the rotational proof mass, where 6 = 0 deg 
is perpendicular to the motion of the cart, and 0 = 90 deg is aligned with the positive 
q direction. The equations of motion are given by 

(M + m)q + kq - m e ( 0 c o s 0 - 0 2 sin 9) +F 

(I + me2)Q —meqcosQ + N 

With the normalization 

\ J t ~ \f 
.. A M+m a j A 1 / M+m rr 

~ kÜ+me*) ' ' 

the equation of motion become 

| + ^ e ( 0 2 sinO —0cos0) + w 

0 - e ^ c o s 0 + M 

where 0 is the normalized cart position, and w and u represent the dimensionless 
disturbance and control torque, respectively. In the normalized equations, the symbol 
(•) represents differentiation with respect to the normalized time t. The coupling 
between the translational and rotational motions is represented by the parameter e 
which is defined by 

C A m e 

y/(I + me2){M + m) 

Letting x = (jti X2 — | 0 0 ) T the dimensionless equations of 
motion in first-order form are given by 

x = f(x) + g(x)« + d(x)w, (1) 
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Table 1: Parameters of the TORA system 

Description Parameter Value Units 
Cart mass M 
Arm mass m 
Arm eccentricity e 
Arm inertia I 
Spring stiffness k 
Coupling parameter e 

1.3608 
0.096 
0.0592 
0.0002175 

186.3 
0.200 

kg 
kg 
m 

kg m2 

N / m 

where 

f (* ) = 

0 1 0 
-1 

—e2cos2 xj 0 0 
0 0 0 

ECOSJCI 
-e2cos2 xj 0 0 

g « = 

\ 0 
— e c o s x 3 "i T T— 

1 —E1 COS JC3 

0 
V l - E 2 COS2 Xl ' 

_§*4sinx2_ 
1—e2cos2 xj 

1 

1 -e2 cos2j:3 / 
f 

d(x) = 

0 
1 

1— e 2 c o s 2 X 3 

0 
— C C O S X 3 

\ 1 -e2 COS2 ATJ ' 

Note that u, the control input, is the normalized torque N and w, the disturbance, is 
the normalized force F In the followings consider the case of no disturbance. The 
parameters of the simulated system are given in Table 1. 

4. BASIC CONCEPTS 

4.1. Parameter-varying state-space model 

Consider parameter-varying state-space model: 

sx(t) A ( p ( 0 ) x ( 0 + B ( p ( 0 ) u ( 0 

y ( 0 C ( p ( 0 ) x ( 0 + D ( p ( 0 ) u ( 0 , 

with input u(7), output y(t) and state vector x(/). The system matrix 

s ( p ( i ) ) " U ( P ( 0 ) D ( P ( 0 ) J e R 

(2) 

(3) 
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is a parameter-varying object, where p(í) 6 Í2 is time varying N-dimensional param-
eter vector, where £2 = [a\,b\] x [«2,62] x x C is a closed hypercube. 
p(i) can also include some elements of \(t). Further, for a continuous-time system 
s\(t) — x(t); and for a discrete-time system s\(k) = x(k + 1) holds. 

4.2. Convex state-space TP model 

Eq. (3) can be approximated for any parameter p(i) as a convex combination of 
the R linear time-invariant (LTI) system matrices Sr, r = 1 . . .R. Matrices S,. are 
also termed as vertex system matrices. Therefore, one can define basis functions 
wv(p(í)) G [0,1] c R such that matrix S(p(f)) belongs to the convex hull of Sr as 
S(p(0) — co{S|,S2,...,S/t}w(p(i>), where vector w(p(i)) contains the basis func-
tions wy(p(0) °f the convex combination. This kind of approximation is termed as, 
for instance, basis function based approximation, B-spline approximation, or tensor 
product approximation, see Chapter 3.2 of [16] and [9], and one can find the above 
model as polytopic model in control theories. The control design methodology, to be 
applied in this paper, uses univariate basis functions. Thus, the explicit form of the 
convex combination in terms of tensor product becomes: 

( * ? H t l ••)(»«) (4) 

The (4) is termed as TP model in this paper. Function wnj(pn(t)) £ [0,1] is the 
y'th univariate basis function defined on the nth dimension of Q, and pn{t) is the 
nth element of vector p(i). The /„ (n — 1 , . . .,N) is the number of univariate basis 
functions used in the nth dimension of the parameter vector p(i). The multiple index 
(í\,Í2,---,ín) refers to the LTI system corresponding to the z'„th basis function in 
the nth dimension. Hence, the number of LTI vertex systems S,, ^ ....,̂  is obviously 
* = n„/n. 
Remark 1 Eq. (4) is also known as the explicit inference form of the Takagi-Sugeno 
inference operator based fuzzy model (TS fuzzy model for brevity). For instance, (4) 
is defined by fuzzy rules: 

IF wM l ( />i(0) AND w2h{p2(t)) 

wN:iN(pN{t)) THEN Shj2 , . .jN , 

where functions wn^n(pn{t)) represent the antecedent fuzzy sets and S;i il2 iv repre-
sents the consequent systems. 



T P M O D E L T R A N S F O R M A T I O N B A S E D C O N T R O L O F T H E T O R A S Y S T E M 1 6 5 

One can rewrite (4) in the concise TP form as: 

that is 

S ( p ( 0 ) » 5 ® *n{pn(t)). 
e n = l 

Here, row vector w„(p„) € M7" contains the basis functions wniri(pn), the N + 2-
dimensional coefficient tensor S € R7' x / 2 x " ' x / ' v x 0 x / is constructed from the LTI ver-
tex system matrices S,, j2....,ín G R 0 x / The first N dimensions of S are assigned to the 
dimensions of Q. The convex combination of the LTI vertex systems is ensured by 
the conditions: 

Definition 1 The TP model (5) is convex if: 

Vn,i,p„(t) w n , , (p« (0 )e [0 , l ] ; (6) 

In 

Vn,p„(t) £ w v ( A , ( 0 ) = l. (7) 
i=i 

This simply means that S(p(i)) is within the convex hull of LTI vertex systems 
Sh,i2,...,iN f o r a n y p ( í ) e Q . 

Remark 2 S(p(i)) has finite TP model representation in many cases (E = 0 in (5)). 
However, one should face that exact finite element TP model representation does not 
exist in general (t > 0 in (5)), see [21]. In this case £ —> 0, when the number of LTI 
systems involved in the TP model goes to 

We define here a further characteristic of the convex TP model. 

Definition 2 The LTI vertex systems form a tight convex hull if their corresponding 
basis functions have the following feature: 

Vn,i„;max(w„if(I(p„(f))) « 1, (8) 
Pn{t) 5„,, 

where VS„,,„ as small as possible. For instance, the basis functions are determined 
subject to 

minimize(||8||i2), 

where vector 6 consists of all 5„t,n. 
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5. TRANSFORMATION OF THE T O R A SYSTEM TO TP MODEL FORM 

First we give a brief introduction to the TP model transformation based on papers 
[2,4]. 

5.1. TP model transformation 

The goal of the TP model transformation is to transform a given state-space model (2) 
into convex TP model, in which the LTI systems form a tight convex hull. Namely, 
the TP model transformation results in (5) with conditions (6) and (7), and searches 
the LTI systems as a points of a tight convex hull of S(p(i)), see (8). 
The TP model transformation is a numerical method and has three key steps. The 
first step is the discretization of the given S(p(f)) via the sampling of S(p(i)) over 
a huge number of points p € £2. The sampling points are defined by a dense hyper 
rectangular grid. In order to loose minimal information during the discretization we 
apply as dense grid as possible. The second step extracts the LTI vertex systems from 
the sampled systems. This step is specialized to find the minimal number of LTI 
vertex systems as the vertex points of the tight convex hull of the sampled systems. 
The third step constructs the TP model based on the LTI vertex systems obtained in 
the second step. It defines the continuous basis functions to the LTI vertex systems. 

Method 1 (TP model transformation) 
Step 1) Discretization 

• Define the transformation space Q as: p(?) € £2 [a\,b]] x [021^2] x x 
[aN,bN]. 

• Define a hyper rectangular grid by equidistantly located grid-lines: 
gn,m„ —an + (mn — 1), m„ = \.. .M„. The numbers of the grid lines in the 
dimensions are M„. 

• Sample the given function S(p(i)) over the grid-points: 

Sm\,m2,...,mn ~ S(Pmi,m2,...,m.v) £ ^ i 

where pmi,m2....,ww = (gi,m, gN,mN)- Superscript "s" means "sampled". 

• Store the sampled matrices S^ mi mjv into the tensor 
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Step 2) Extracting the LTI vertex systems 
This step uses Higher-Order Singular Value Decomposition (HOSVD), and transfor-
mations Non-negativeness (NN), Sum Normalization (SN) and Normalization (NO). 
The studies of HOSVD can be found in a large varieties ofpublications. This paper 
uses the concept and tensor notation of HOSVD as discussed in [13]. The SN, NN 
and NO transformations are introduced in [22] and [23]. 
This step executes HOSVD, extended with NN, SN and NO transformation, on the first 
N dimensions of tensor Ss During performing the HOSVD we discard all zero or 
small singular values Cfy and their corresponding singular vectors in all dimensions. 
As a result we have 

Ss^S ® U „ , 
y n 

where the error y is bounded as: 

) < ! < £ (9) 
h ) k 

The resulting tensor S, with the size of (I\ x /2 x x x O x I), where V« /„ < 
M„, contains the LTI vertex systems, and is immediately substitutable into (5). The 
NN and SN transformations guarantee that the resulting LTI vertex systems form a 
convex hull of the sampled systems in Ss When the transformation NO is executed 
the resulting LTI systems form the tight convex hull of the sampled systems. 
The software implementations of HOSVD, NN, SN and NO are rather simple, for 
instance, in MATLAB. 
Step 3) Constructing continuous basis system 

• One can determine the discretized points of the basis easily from matrices U„. 
The inth column vector u„.In=i.../n of matrix U„ € RM"x/" determines one dis-
cretized basis function wnArt (p„(t)) of variable pn{t). The values un mn jn of col-
umn in define the values of the basis function w„jn{p„{t)) over the grid-lines 
Pnit) = gn,m„: 

wn,i„(Sn,m„) = un,m„,i„-

• The basis functions can be determined over any points by the help of the given 
S(p(i)) . In order to determine the basis functions in vector w d{pd), let pk be 

fixed to the grid-lines as: 

Ss-S<8>U„ 

Pk = gk,\ k=l...N, k^d. 
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Then for pd: 

M P d ) = (S(p)) ( 3 ) J 

where vector p consists of elements pk and pj asp= ( g u pd gN,i), 
and superscript "+ " denotes pseudo inverse and u^ i is the first row vector of 
U*. The third-mode matrix ( S ( p ) ) ^ of matrix S(p) is understood such that 
matrix S(p) is considered as a three-dimensional tensor, where the length of 
the third dimension is one. This practically means that the matrix S(p) is stored 
into one row vector by placing the rows of S(p) next to each other, respectively. 

5.2. Determination of the convex state-space TP model form of the TORA sys-
tem 

Observe that the nonlinearity is caused by X3 (t) and X4 (t). For the TP model transfor-
mation we define the transformation space as £2 = {—a,a] x [—a,a] (x^(t) 6 [—a,a\ 
and X4(t) e [—a, a]), where a — ^Ttrad (note that these intervals can be arbitrarily 
defined). Let the density of the sampling grid be 100 x 100. The sampling results in 
A a n d B? •, where i j — 1 100. Then we construct the matrix S[ ; = (A[y. B£y.), 
and after that the tensor Ss 6 M100x 100 x 4 x 4 from S f j . If we execute HOSVD on the 
first two dimensions of Ss then we find that the rank of Ss on the first two dimen-
sions are 4 and 2 respectively. This means that the TORA system can be exactly 
given as convex combination of 4 x 2 = 8 linear vertex model. In the present case the 
fourth singular value of the first dimension is very small comparing to the other three 
(Gi = 200.28,CT2 = 2.0191,c3 = 0.93035,g4 = 0.0036238), therefore we discard it. 
Consequently, we reduce the rank of the first dimension to three, which causes a dis-
pensable error. In conclusion, the TP model transformation describes TORA system 
as: 

3 2 

* ( 0 = X X vvu(x3(0)w2,,-(*4(0) ( A ' J x ( 0 + B , j u ( t ) ) . (10) 
;=ly=l 

The basis functions wi,,(;t3(i)) and w i j i x ^ t ) ) are depicted in Fig. 2. 

6. DETERMINATION OF CONTROLLERS FOR THE TORA SYSTEM VIA PDC DESIGN FRAMEWORK 

In the previous section we transformed the TORA system (1) to TP model form 
whereupon LMI design under the PDC framework can immediately be executed. 
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Angular position: x 3 (rad) Angular speed: x4 (rad) 

Figure 2: Basis functions on dimension JC3(í) and X4(t) 

This section briefly introduces the main concept of the LMI design and calls LMI 
design theorems involving different control purposes. These LMI design theorems 
will be applied in the second part of this section to the TORA system. 
As a result of the dramatic and continuing growth in computer power, and the advent 
of very powerful algorithms (and associated theory) for convex optimization, we can 
now solve very rapidly many convex optimization problems involving LMIs [15]. 
Many control problems and design specifications have LMI formulations [6,11] that 
comes from the fact that LMI formulations have the ability to readily combine various 
design constraints or objectives in a numerical tractable manner. This is especially 
true for Lyapunov-based analysis and design. 
As an alternative way of LMI based control design the PDC framework was intro-
duced by Tanaka and Wang [20]. The PDC design framework determines one LTI 
feedback gain to each LTI vertex systems of a given convex TP model. The frame-
work starts with the LTI vertex systems S, and results in the vertex LTI gains of 
the controller. The Ki is computed by the LMI based stability theorems. After having 
the 3C, the control value u(/) is determined by the help of the same basis functions as 
used in (5): 

( ff 
u ( 0 = - [X. ® Wn(pn(t)) 

V "=' 

The LMI theorems, to be solved under the PDC framework, are selected according 
to the stability criteria and the desired control performance. For instance, the speed 
of response, constraints on the state vector or on the control value can be considered 
via properly selected LMI based stability theorems. The present control design ap-

x(0- (11) 
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plies different LMI theorems to achieve global asymptotic stability and to enforce 
constraint on the control value for the present TORA system. 
In order to complete the paper let us recall briefly those LMI theorems, which will 
be applied in this paper. The derivations and the proofs of these theorems are fully 
detailed in [20], 
Before dealing with the LMI theorems, we introduce a simple indexing technique in 
order to have direct link between the TP model form and the typical form of LMI 
formulations. 

Method 2 (Index transformation) Let 

where r = ordering^, i2,..., ín) (r — 1 . . .R = WnIn). The function "ordering" re-
sults in the linear index equivalent of an N-dimensional array's index i \, i2, • • •, ín, 
when the size of the array is I\ x I2 x x Let the basis functions be defined 
according to the sequence of r: 

First we call one of the simplest LMI design theorems. The controller design can be 
derived from the Lyapunov stability theorems for global and asymptotic stability as 
shown in [19,20]: 

Theorem 1 (Global and asymptotic stabilization of the convex TP model (5)) As-
sume a given state-space model in TP form (5) with conditions (6) and (7). 
Find X > 0 and Mr satisfying eq. 

n 

-XAj" - ArX + M r
rB[ + B rM r > 0 (12) 

for all r and 
-XAj - ArX - X A [ - A , X + 

+ M [ B r
r + BrM, + M j B j + B,M r > 0. 

(13) 

for r <s <R, except the pairs (r,s) such that wr(p(í))w iS(p(í)) = 0, Vp(í). 
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Since the above conditions (12) and (13) are LMI's with respect to variables X and 
Mr , we can find a positive definite matrix X and matrix M r or determine that no 
such matrices exist. This is a convex feasibility problem. This numerical problem 
can be solved very efficiently by means of the most powerful tools available in the 
mathematical programming literature e.g. M A T L A B L M I Control Toolbox [10]. The 
feedback gains can be obtained form the solutions X and Mr as 

Kr = M r X - 1 (14) 

Then, by the help of r = ordering(;'i, Í2,..., ín) in Method 2 one can define feedbacks 
KÍI,/2....,/AÍ from Kr obtained in (14) and store into tensor of (11). 
In order to set constraints on the control value we add the following LMIs to (12) and 
(13): 

Theorem 2 (Constraint on the control value) Assume that ||x(0)|| < <]), where x(0) 
is unknown, but the upper bound <|) is known. The constraint ||u(f) || < p is enforced 
at all times t > 0 if the LMIs 

<|>2I < X 
X M f \ 

M, p h ) * ° 

hold. We obtain the feedback gains as above (14) by solving all the LMIs. 

7. EVALUATION OF THE DERIVED CONTROLLERS 

To demonstrate the performance of the controlled system numerical experiments are 
presented in this section. The control values are computed by (11) as 

in all cases of the simulations. Vectors K,.y are resulted by LMIs discussed above. 

7.1. Controller 1: Global and asymptotic stabilization of the TORA system 

Let the resulting LTI vertex systems be substituted into the LMIs of the Theorem 1. 
The LMI solver shows that eq. (12) and (13) are feasible in the present case. Eq. (14) 
yields 6 LTI feedback gains Kl y. 
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0 50 100 150 200 250 300 350 400 450 500 
Time (sec) 

Figure 3: Controller 1: Global and asymptotic stabilization of the TORA system 

In order to show the performance of the controller we generated a sinusoidal reference 
signal f { t ) with the following parameters: amplitude yj^nrad and frequency 0.01 
Thus, the input of the controller became x-} (t)—f{t). The response of the reference 
signal tracking control is shown in Fig. 3. They show the state values x\ (t), X3 (t) 
(solid line) and f ( t ) (dashed line), and the control value u(t) for the initial conditions 
xi(0) = 0.1m,x3(0) = ^Ttrad. 

7.2. Controller 2: Constraint on the control value 

In order to be capable of bounding the control values we apply Theorem 2. In the 
case of Controller 2 we define the minimal control value whereas the LMIs are still 
feasible. The response of the resulting controller is presented in Fig. 4. The control 
value in the second case (max(||u||) = 0.0759) is significantly smaller in the first 
case (max(||w||) = 1.75) while only a slight difference can be seen on the simulation 
results. 
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0 50 100 150 200 250 300 350 400 450 500 
Time (sec) 

Figure 4: Controller 2: Constraint on the control value 

8 . CONCLUSION 

This paper shows that once we have a computer program, for instance in M A T L A B , 

of the TP model transformation and an LMI solver (MATLAB LMI Control Tool-
box [10]) then the control design method, studied in this paper, can easily and auto-
matically be executed. This paper shows an example when we want to achieve more 
than the global and asymptotic stability but also we want to define some constraint 
on the control value. The derived controllers' performance is shown in a reference 
signal tracking case. This paper applied rather simple LMI theorems in the controller 
design, but by applying more advanced theorems other control specifications can be 
taken into consideration during the controller design. 
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