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Abstract. This paper presents a case study how to apply the recently proposed 
TP model transformation technique, that has been introduced for nonlinear state-
feedback control design, to nonlinear observer design. The study is conducted 
through an example. This example treats the question of observer design to the 
prototypical aeroelastic wing section with structural nonlinearity. This type of 
model has been traditionally used for the theoretical as well as experimental ana-
lysis of two-dimensional aeroelastic behavior. The model investigated in the paper 
describes the nonlinear plunge and pitch motion of a wing, and exhibits complex 
nonlinear behavior. In preliminary works this prototypical aeroelastic wing section 
was stabilized by a state-feedback controller designed via TP model transformation 
and linear matrix inequalities. Extending this control strategy with the observer 
derived in this paper an output feedback strategy can be determined. Numerical 
simulations are used to provide empirical validation of the resulting observer. 

Keywords: nonlinear control, linear parameter varying model, TP model transfor-
mation, parallel distributed compensation, linear matrix inequality 

1 . I N T R O D U C T I O N 

The main goal of the paper is to study how to apply the TP (Tensor Product) model 
transformation to observer design. The motivation of this goal is that the TP model 
transformation was proposed under the Parallel Distributed Compensation (PDC) de-
sign framework [22] for nonlinear state feedback controller design [1,5] . The TP 
model transformation is capable of transforming a given time varying (parameter de-
pendent, where the parameters may include state variables) linear state-space model 
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into time varying convex combination of finite number of linear time invariant mo-
dels. The resulting linear time invariant models can then be readily substituted into 
Linear Matrix Inequalities (LMI), available under the PDC design framework, to de-
termine a time varying (parameter dependent, where the parameters may include state 
variables) nonlinear controller according to given control specifications. The whole 
above design can be executed numerically by computers and hence the controller can 
be determined without analytical derivations in acceptable time. In most cases not all 
of the state variables are available, but only some of them. This paper studies how 
to apply the result of the TP model transformation to observer design under the PDC 
design framework similarly to the controller design. The resulting observer can then 
be applied to estimate the unavailable state variables. 

A few papers were printed in last years dealing with the state-feedback control design 
of the prototypical aeroelastic wing section via TP model transformation, for instance 
see [2—4]. This paper focuses attention on the observer design to the prototypical 
aeroelastic wing section since not all of the state variables of the prototypical aero-
elastic wing section are available in reality. The combination of the state-feedback 
controller and the observer leads to the output feedback control of the prototypical 
aeroelastic wing section. 

2. BASIC NOTATION 

This section is devoted to introduce the notations being used in this paper: {a,b,.. }: 
scalar values. { a , b , . . . } : vectors. { A , B , . . . } : matrices. {A, .. }: tensors. The 

vector space of real valued (/i x /2 x x 7,y)-tensors. Subscript defines 
lower order: for example, an element of matrix A at row-column number i,j is sym-
bolized as (A),.; = a,, Systematically, the ;th column vector of A is denoted as 
a,, i.e. A = [ai a2 •••]. o ( J „ , . . . : are indices. o[rjN,...: index upper bound: for 
example: i = 1 . . / , j — 1..J, n = l.JV or in = 1 ../„. A(„j: w-mode matrix of ten-
sor A e & x „ U : H-mode matrix-tensor product. J3ig>„U„: multiple 
product as j? x | Ui X 2 U 2 X 3 x N U^. Detailed discussion of tensor notations and 
operations is given in [16]. 

3. BASIC CONCEPTS 

The detailed description of the TP model transformation and PDC design framework 
is beyond the scope of this paper and can be found in [1,2 ,5 ,22] , In the followings a 
few concepts are presented being used in this paper, for more details see [1 ,2 ,5 ,22] , 
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3.1. Linear parameter-varying state-space model 

Consider parameter-varying state-space model: 

« ( 0 = A ( P ( 0 M 0 + B(P(0)U(0 

y(0 = C(p(0)x(0+D(p(0)u(0, 
with input u(f), output y(t) and state vector x(i). The system matrix 

(1) 

S(P(0) = ( (2) 

is a parameter-varying object, where p(i) € £2 is time varying V—dimensional param-
eter vector, where £2 = [a\,b\] x [a^bj] x x [ a ^ , ^ ] c is a closed hypercube. 
p(i) can also include some (or all) elements of x(t). Further, for a continuous-time 
system sx(t) = x(/); and for a discrete-time system sx(k) — x(k+ 1) holds. 

3.2. Convex state-space TP model 

Equ. (2) can be approximated for any parameter p(/) as a convex combination of the 
R LTI system matrices Sr, r = I..R. Matrices Sr are also termed as vertex system 
matrices. Therefore, one can define basis functions vt>r(p(f)) G [0,1] C such that 
matrix S(p(i)) belongs to the convex hull of Sr as S(p(i)) = co{Si,S2,..,S/}}w(p( ()), 
where vector w(p(i)) contains the basis functions wr(p(i)) of the convex combina-
tion. The control design methodology, to be applied in this paper, uses univariate 
basis functions. Thus, the explicit form of the convex combination in terms of tensor 
product becomes: 

(3) is called as TP model in this paper. Function wnj(pn{t)) 6 [0,1] is the y'-th univari-
ate basis function defined on the n-th dimension of £2, and pn(t) is the n-th element 
of vector p(i). /„ (n=l,...,N) is the number of univariate basis functions used in the 
«-th dimension of the parameter vector p(/). The multiple index (/1, z 2, •••Jn) refers 
to the LTI system corresponding to the in—th basis function in the «-th dimension. 
Hence, the number of LTI vertex systems S,liI2v.iIA, is obviously R — !!„/„. One can 
rewrite (3) in the concise TP form as: 

(3) 

(4) 
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that is 

S ( p ( 0 ) ~ 5 ® y/„(Pn(t)). 
E n= 1 

Here, e represents the approximation error, and row vector w n { p „ ) € contains the 
basis functions w„ ,n {pn), theyV+2 -dimensional coefficient tensorS € x " ' x / ' v x 0 x / 

is constructed from the LTI vertex system matrices S,1)l2 6 The first N 
dimensions of S are assigned to the dimensions of Q. The convex combination of the 
LTI vertex systems is ensured by the conditions: 

Definition 1. The TP model (4) is convex if: 

Vn,i,p„{t) wnj(pn(t)) G [0,1]; (5) 

In 

Vn,p„(t) Jdwn,i{pn{t)) = \. (6) 
i=i 

This simply means that S(p(i)) is within the convex hull of LTI vertex systems 
S/1,/2,..,/Arforanyp(0 6 0 . 

Remark 1. S(p(?)) has finite TP model representation in many cases (e = 0 in (4)). 
However, one should face that exact finite element TP model representation does not 
exist in general (e > 0 in (4)), see [25,26], In this case e i - > 0 , when the number of 
LTI systems involved in the TP model goes to In the present observer design, the 
state-space dynamic model of the prototypical aeroelastic wing section can be exactly 
represented by a finite convex TP model. 

4. MODEL OF THE PROTOTYPICAL AEROELASTIC WING SECTION 

In the last few years various studies of aeroelastic systems have emerged. [14] presents 
a detailed background and refers to a number of papers dealing with the modelling 
and control of aeroelastic systems. The following provides a brief summary of this 
background. 
Regarding the properties of aeroelastic systems one can find the study of free-play 
non-linearity by Tang and Dowell in [23,24], by Price et al. in [21] and [20], by Lee 
et al. in [17], and a complete study of a class of non-linearities is in [28], [20], O'Neil 
et al. [18] examined the continuous structural non-linearity of aeroelastic systems. 
These papers conclude that an aerolesatic system may exhibit a variety of control 
phenomena such as limit cycle oscillation, flutter and even chaotic vibrations. 
Control strategies have also been derived for aeroelastic systems. [6] shows that con-
trollers, capable of stabilizing structural non-linearity over flow regimes, can be de-
rived via classical multivariable control methods. However, while several authors 
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have investigated the effectiveness of linear control strategies for aeroelastic systems, 
experimental evidence has shown that linear control methods may not be reliable 
when non-linear effects predominate. For example in the case of large amplitude 
limit cycle oscillation behaviour the linear control methodologies [6] do not stabilize 
aeroelastic systems consistently. [12] and [6] proposed non-linear feedback control 
methodologies for a class of non-linear structural effects of the wing section [18]. 
Papers [12,14,15] develop a controller, capable of ensuring local asymptotic stabil-
ity, via partial feedback linearization. It has been shown that by applying two control 
surfaces global stabilization can be achieved. For instance, adaptive feedback lin-
earization [ 13] and the global feedback linearization technique were introduced for 
two control actuators in the work of [14]. TP model transformation based control 
design was introduced in [2—4]. This control design ensures global asymptotic stabil-
ity with one control surface and is capable of involving various control specification 
beyond stability. 

4.1. Equations of Motion 

In this paper, we consider the problem of flutter suppression for the prototypical 
aeroelastic wing section as shown in Figure 1. The aerofoil is constrained to have 
two degrees of freedom, the plunge h and pitch a. The equations of motion of the 
system have been derived in many references (for example, see [10], and [9]), and 
can be written as 
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(7) 

where 

L — p U2bcia ( a (8) 

and where xa is the non-dimensional distance between elastic axis and the centre 
of mass; m is the mass of the wing; Ia is the mass moment of inertia; b is semi-
chord of the wing, and ca and Ch respectively are the pitch and plunge structural 
damping coefficients, and k/, is the plunge structural spring constant. Traditionally, 
there have been many ways to represent the aerodynamic force L and moment M, 
including steady, quasi-steady, unsteady and non-linear aerodynamic models. In this 
paper we assume the quasi-steady aerodynamic force and moment, see work [10]. It 
is assumed that L and M are accurate for the class of low velocities concerned. Wind 
tunnel experiments are carried out in [6]. In the above equation p is the air density, U 
is the free stream velocity, c/a and cma respectively, are lift and moment coefficients 
per angle of attack, and c/p and cmp, respectively are lift and moment coefficients per 
control surface deflection, and a is non-dimensional distance from the mid-chord to 
the elastic axis. P is the control surface deflection. 
Several classes of non-linear stiffness contributions ka(a) have been studied in papers 
treating the open-loop dynamics of aeroelastic systems [8,23,27,28]. For the purpose 
of illustration, we now introduce the use of polynomial non-linearities. The non-
linear stiffness term ka(a) is obtained by curve-fitting the measured displacement-
moment data for non-linear spring as [19]: 

The equations of motion derived above exhibit limit cycle oscillation, as well as other 
non-linear response regimes including chaotic response [8,19,28]. The system pa-
rameters to be used in this paper are given in [1] and are obtained from experimental 
models described in full detail in works [14,19], 
With the flow velocity u = 1 5 ( m / s ) and the initial conditions of a = 0.1 (rad) and 
h = 0.01 (m), the resulting time response of the non-linear system exhibits limit cycle 
oscillation, in good qualitative agreement with the behaviour expected in this class 

k a ( a ) = 2.82(1 - 2 2 . l a + 1315.5a2 + 8580a3 + 17289.7a4). 
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of systems. Papers [18,19] have shown the relations between limit cycle oscillation, 
magnitudes and initial conditions or flow velocities. 
Let the equations (7) and (8) be combined and reformulated into state-space model 
form: 

x (0 = 

(xA f h \ 
* 2 a 
* 3 h 

W W 

and u(i) = p. 

Then we have: 

i ( 0 - A ( p ( 0 ) x ( 0 + B ( p ( 0 ) u ( 0 = S(p(0) 
x ( 0 
u ( 0 (9) 

where 

A(p(0) = 

\ ( X3 

* 4 

-fcixi - {k2U2 + p(x2))x2 - cix3 - c2x4 

-k^x| - {knU2 + q(x2))x2 • c3x3 

B(p(0) 

/ 0 \ 

-C4X4/ 

0 
0 

g iU 2 

\g4U2/ 

where p(/) 6 contains values x2 and U. The new variables are tabulated in 
Table 1. One should note that the equations of motion are also dependent upon the 
elastic axis location a. 

5. OBSERVER DESIGN 

The recently proposed very powerful numerical methods (and associated theory) for 
convex optimization involving Linear Matrix Inequalities (LMI) help us with the anal-
ysis and the design issues of dynamic systems models in acceptable computational 
time [7,11]. One direction of these analysis and design methods is based on LMI's 
under the PDC design framework [22], In this paper we apply the TP model trans-
formation in combination with the PDC based observer design technique to derive 
viable observer methodologies for the prototypical aeroelastic wing section defined 
in the previous section. The key idea of the proposed design method is that the TP 
model transformation is utilized to represent the model (9) in convex TP model form 
with specific characteristics, whereupon PDC controller design techniques can im-
mediately be executed. 
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Table 1: System variables 
d — m{Ia — mx^b2) 
k, — lath. — d 
, __ Iapbcia+mxab3pc mg 
K 2 ~ d 
£3 _ -mxgbkk 

^ _ —mxab2pcia-mpb2cma 

p { a ) = ^ t ( a ) 
q(a) = f *d(a) 

C\{U) = Ia(cb+PUbcla)+mxvPU*c'»a  
' \ ( u \ — IapUb2cia (i —a)—mxabca+mxapUb*cma (\-a) 

c2\u) — d  
C j ( u ) — ~ mxabch-r"XafiUb2cia -mpUb2cma 

( j t \ _ mca-mxapUblcia(\ -a)-mpUb3cma -a) C4{U ) — . d 

Si = -rnxab3pcm&) 
g 4 = +mpb2cmfi) 

5.1. TP model form of the prototypical aeroelastic wing section 

5.1.1. TP model transformation 

The goal of the TP model transformation is to transform a given state-space model 
(1) into convex TP model [1,2,5], in which the LTI systems form a tight convex hull. 
Namely, the TP model transformation results in (4) with conditions (5) and (6), and 
searches the LTI systems as a points of a tight convex hull of S(p(i)). 

The detailed description of the TP model transformation is discussed in [ 1,2,5]. In the 
followings only the main steps are briefly presented. The TP model transformation is 
a numerical method and has three key steps. The first step is the discreatisation of the 
given S(p(r)) via the sampling of S(p(i)) over a huge number of points p 6 £2, where 
fl is the transformation space. The sampling points are defined by a dense hyper 
rectangular grid. In order to loose minimal information during the discretisation we 
apply as dense grid as possible. The second step extracts the LTI vertex systems from 
the sampled systems. This step is specialized to find the minimal number of LTI 
vertex systems as the vertex points of the tight convex hull of the sampled systems. 
The third step constructs the TP model based on the LTI vertex systems obtained in 
the second step. It defines the continuous basis functions to the LTI vertex systems. 
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5.1.2. Determination of the convex TP model form of the aeroelastic model 

We execute the TP model transformation on the model (9). We used the following 
parameters: b — 0.135m; span - 0.6m; kh — 2844AN/m; Ch = 27 . 43Ns /m; ca = 
0.036Ns; p = 1 .225kg/m 3 ; cla = 6.28; c/p = 3.358; cma = (0 .5+a)c l a ; cmp = -0 .635; 
m = 12.387kg; xa = - 0 . 3 5 3 3 - a; Ia = 0.065kgm2; ca = 0.036. 
First of all, according to the three steps of the TP model transformation, let us define 
the transformation space £2. We are interested in the interval U G [14,25](m/s) and 
we presume that the interval a € [—0.2,0.2] (rad) is sufficiently large enough. There-
fore, let: Q [14,25] x [ -0 .1 ,0 .1 ] in the present example (note that these intervals 
can arbitrarily be defined). Let the grid density be defined as M\ x A/2, M\ = 300 and 
M2 = 300. Step 2 of the TP model transformation yields 6 vertex LTI systems: 

A i i = 10 

A 2 , i = 

/ 0 
0 

- 0 . 2 3 1 4 
V 0.2780 

0 
0 

-231.3804 
V 277.9906 

0 
0 

- 0 . 0 0 9 5 
- 1 . 1 0 3 6 

0 
0 

-46 .3063 
-966 .7931 

0.0010 
0 

- 0 . 0 0 3 4 
0.0071 

1.0000 
0 

- 4 . 3 7 7 6 
10.6520 

0 \ 
0.0010 

-0 .0001 
-0.0000/ 

0 \ 
1.0000 

- 0 . 2 5 7 3 
0.4104 / 

B 

B '2.1 

0 \ 
0 

- 8 . 5 8 2 5 
32.4370/ 

0 \ 
0 

- 2 7 . 3 6 7 7 
- 1 0 3 . 4 3 4 4 / 

A 3 I = 1 0 3 

( 0 
0 

- 0 . 2 3 1 4 
\ 0.2780 

0 
0 

- 0 . 0 2 2 7 
- 1 . 0 5 4 3 

0.0010 
0 

- 0 . 0 0 3 9 
0.0089 

0 \ 
0.0010 

- 0 . 0 0 0 2 
0.0002 / 

B3,I = 10J 

\ 0 
0 

- 0 . 0 1 5 4 
0 .0580/ 

( 
Ai 2 = 

0 
0 

- 2 3 1 . 3 8 0 4 
V 277.9906 

0 
0 

- 1 6 . 5 7 8 6 
23.0842 

1.0000 
0 

- 3 . 4 3 3 3 
7.1447 

0 \ 
1.0000 

- 0 . 1 4 2 5 
- 0 . 0 1 5 7 / 

/ \ 
B 1,2 = 

0 
0 

8.5825 
\—32 .4370 / 

A2,2 

( 0 
0 

-231 .3804 
\ 277.9906 

0 
0 

- 5 3 . 4 0 9 4 
159.8695 

1.0000 
0 

- 4 . 3 7 7 6 
10.6520 

0 \ 
1.0000 

- 0 . 2 5 7 3 
0.4104 / 

02,2 = 

0 
0 

- 2 7 . 3 6 7 7 
V - 1 0 3 . 4 3 4 4 / 
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/ 0 0 1.0000 0 \ / 0 \ 
0 0 0 1.0000 _ 0 

3 ' 2 ~ -231.3804 -29 .8524 -3 .9054 - 0 . 1 9 9 9 3 ,2 ~ -15 .3526 
\ 277.9906 72.3823 8.8983 0.1974 / \ - 5 8 . 0 2 4 4 / 

The third steps results in basis functions w\j(U) and W2j(a) depicted in Figure 2. 
When we numerically check the error between the model (9) and the resulting TP 
model, we find that the error is about 10"11 that is caused by the numerical compu-
tation. 
In conclusion, the aeroelastic model (9) can be described exactly in finite convex TP 
form of 6 vertex LTI models, also see [2], Note that, one may try to derive the basis 
functions analytically from (9). The basis functions of a can be extracted from £a(cc). 
Finding the basis functions of U, however, seems to be rather complicated. In spite 
of this, the computation of the TP model transformation takes a few seconds. 

Figure 2: Basis functions on the dimensions U and a. 

5.2. Observer design to the prototypical aeroelastic wing section 

5.2.1. Method for observer design under PDC framework 

In reality not all the state variables are readily available in most cases. Unavailable 
state variables should be estimated in the case of state-feedback control strategy. Un-
der this circumstances, the question arises whether it is possible to determine the 
state from the system response to some input over some period of time. Namely, the 
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observer is required to satisfy: 

x ( i ) - x ( f ) - > 0 as i—>oo, 

where x(t) denotes the state vector estimated by the observer. This condition guar-
anties that the steady-state error between x(t) and x(t) converges to 0. We use the 
following observer structure: 

i ( 0 = A ( p ( 0 ) i ( 0 + B ( p ( 0 ) u ( 0 + K ( p ( 0 ) (y(0 - y ( 0 ) 

y ( 0 = C ( p ( 0 ) i ( 0 . 

That is in TP model form: 

x ( 0 = ^ ® w ( p B ( i ) ) x ( 0 + ®<8>w„(/>„(f))u(0+ (10) 
n n 

+X.®w{Pn{t)){y{t)-y{t)) n 

y ( 0 = C®w{p„(t))x{t). 
n 

At this point we should emphasize that in our example the vector p(f) does not con-
tain values form the estimated state-vector x(t), since p\(t) equals U and p2(t) equals 
the pitch angle (x2(()). These variables are observable. We estimate only state-values 

(t) and X4(t). Consequently the goal, in the present case, is to determine gains in 
tensor 3C f° r (5.1). For this goal the following LMI theorem can be find in [22], 
Before dealing with this LMI theorem, we introduce a simple indexing technique, in 
order, to have direct link between the TP model form (3.4) and the typical form of 
LMI formulations: 

Method 1. (Index transformation) Let 

S _ ( A r B A 

where r = ordering(i\,i2, (r = I..R = Y\nIn). The function "ordering" results 
in the linear index equivalent of an N dimensional array's index i\, i2, ..,iff, when the 
size of the array is I\ x I2 x x Let the basis functions be defined according to 
the sequence of r: 

W r ( p ( 0 ) = l l w » . ' > » ( 0 ) -
n 
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Theorem 1. (Globally and asymptotically stable observer) 
In order to ensure 

x ( í ) - x ( í ) — > 0 as / - » o o , 

in the observer strategy (5.1), find P > 0 and Nr satisfying equ. 

- Ar
rP - PAr + Cr

rNr
r + N rC r > 0 (11) 

for all r and 

- A j P - PAr - A [ P - PAS+ (12) 

+ C r
r N j + N s C r + CjNr

r + N r C s > 0. 

for r < s < R, except the pairs (r,s) such that w r(p(í))wJ(p(í)) = 0, Vp(í). 
Since the above equations are LMI's with respect to variables P and Nr, we can 
find a positive definite matrix P and matrix Nr or determine that no such matrices 
exist. This is a convex feasibility problem. Numerically, this problem can be solved 
very efficiently by means of the most powerful tools available in the mathematical 
programming literature e.g. MATLAB-LMI toolbox [11], 
The observer gains can then be obtained as: 

K, = p - ' N r . (13) 

Finally, by the help of r = ordering(i\, Í2,--,ín) in Method 1 one can define K , I I ( 2 - . . I 1 V 

from K R obtained in ( 5 . 4 ) and store into tensor of ( 5 . 1 ) . 

5.2.2. Observer design to the prototypical aeroelastic wing section 

This section applies Theorem 1 to the TP model of the aeroelastic wing section. We 
define matrix C for all r from: 

y ( 0 = Cx(0 , 

that is in present case: 

C, = 
1 0 0 0 
0 1 0 0 

The LMIs of Theorem 1, applied to result of the TP model transformation, are feasi-
ble and yields 6 observer feedbacks: 

K u = 103 

/ 0.0000 0.0001 \ 
0.0001 0.0008 

- 0 . 0 4 3 2 0.0001 
V 0.5674 - 3 . 8 7 9 1 / 



O B S E R V E R D E S I G N V I A T P M O D E L T R A N S F O R M A T I O N 189 

K2,I - 103 

K3,I - 103 

Ki,2 = 103 

K2,2 = 103 

/ 0.0000 0.0002 \ 
0.0001 0.0008 

-0 .0429 - 0 . 0 3 5 6 
^ 0.5670 - 3 . 7 4 3 2 / 

/ 0.0000 0.0001 \ 
0.0001 0.0008 

-0 .0430 -0 .0127 
\ 0.5672 - 3 . 8 3 0 2 / 

/ 0.0000 -0 .0001 \ 
0.0002 0.0010 

-0 .0430 - 0 . 0 4 4 2 
V 0.5677 2.8271 / 

/ 0.0000 - 0 . 0 0 0 1 \ 
0.0002 0.0010 

-0 .0431 -0 .0785 
V 0.5672 2.9650 / 

/ 0.0000 -0.0001N 
0.0002 0.0010 

-0 .0430 - 0 . 0 5 6 6 
\ 0.5675 2.8768 / 

K3,2 = 103 

In conclusion the state values x3(?) andjt4(i) are estimated by (5.1) as: 

i ( 0 = A(p(0) i (0+B(p(0)«(0+ 

3 2 

where 

(y( ' ) -y( ' ) ) , 

and * ) = ( * « ) - PW = ( « 

(xi (t) — h, plunge, and * 2 ( i ) = a, pitch). In order to demonstrate the accuracy of the 
observer, numerical experiments are presented in the next section. 
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5.2.3. Simulation results 

We simulate the observer for initials x(0) = (0.01 0.1 0.1 0 . l ) r and x(0) = 
T 

(—0.01 —0.1 - 0 . 1 - 0 . 1 ) , for the open loop case. Figure 3 shows how the 
observer is capable of converging to the immeasurable state values xi (t) and*4 (i). 

Figure 3: State values x$(t), x^t) (solid line) and estimated values xi(t) , ^ ( i ) 
(dashed line) for open loop response. 

(U — 20m/s, a — - 0 . 4 , initials: x(0) = (0.01 0.1 0.1 0 . l ) F 

x(0) = (—0.01 - 0 . 1 - 0 . 1 - 0 . l ) r ) 

6. CONCLUSION 

First message of the paper is that the TP model transformation method under the PDC 
design framework can be used for observer design in the same way as for controller 
design. The second message is that the paper shows how to determine observer for 
the prototypical aeroelastic wing section. 
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