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Abstract. As is known, the Johnson algorithm is an exact solving method of the two-
machine, one-way, no-passing scheduling tasks [1], [6], which serves as a basis for many 
heuristic algorithms. This paper presents the extension of Johnson's algorithm for Group 
Technology (GT). The task is as follows: Let us assume that in a two-machine 
manufacturing cell, in which two machines (A and B) of high automation and environment 
degree are working together in such a way that machine A is always ready to perform jobs, 
and machine B is working or waiting according to the timing of the work-pieces transferred 
from machine A to machine B; the work-pieces are arranged in groups G,, G2,..., G,,..., Gm 

Because of the similarities of the work-pieces in group G,, retooling and other setups (e. g.: 
change of equipment) of the machines in the manufacturing cell are not necessary. 
Consecutive machining of the groups Gi and Gj requires retooling and other setups in the 

manufacturing cell. An ordering of the groups is to be determined considering all the 
groups so that the sum of the setup times is to be minimum for all groups. 
In the paper the authors prove that the solving of this task can be traced back to the 
extended application of the Johnson algorithm and results an exact, closed-form optimum. 
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1. Base Model of the Two-Machine, One-Way, No-Passing Scheduling Task 

The Johnson algorithm enables the solution of sequencing tasks (here: one-way, no-
passing), in which n different jobs are to be allocated to two consecutive workplaces 
(machines, equipment, m = 2 )[7], In certain special cases, the task can be extended also to 
m = 3. Although it cannot be used in case of m > 3 , yet it is an important procedure, 
because it constitutes the basis of the heuristic methods developed for large-sized tasks. Let 
us consider Figure 1: 

I n o u t 

I MANUFACTURING CELL 
O u t o u t 

M number of parts are 
waiting for machining 
or are being machined 

on machine A 

N number of parts are 
waiting for machining 
or are being machined 

on machine B 

Fig. 1: Model of the two-machine manufacturing cell for deducing Johnson's algorithm 

In Figure 1 a manufacturing cell consisting of two machines is demonstrated, on which the 
machining processes, in accordance with the machines are as follows: 

A —> rough boring, 
B —> finish boring. 

It is assumed that dividing the bore machining into two phases using two machines (with 
different accuracy) is reasonable because of the tolerances. 

The two different machining operations are to be carried out on n different parts whose 
characteristics are similar but their dimensions can significantly differ from one another; in 
addition, their arrival sequence is optional. Consequently, the throughput time for a series 
optional but fixed after selection can significantly differ from another variant of the same 
series manufactured in a different sequence. 

Let us denote the time needed for machining the /'th part on machine A and B with 
At and Bt, respectively. The task is to minimize the idle time of machine B. ("Idle time" 
stands for the time that elapses between the completion of job pi_[ and the start of job pt.) 
That is, we want to determine a sequencep x ,p2 , . . . ,pj , . . . ,pn , for which the sum of idle 
times between finish boring parts pj and pJ+] will be minimum, computing the sum for 
consecutive j values. 
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x, 
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x \ * 3 * 4 

(loading machine 
A) 

(loading machine 
B) 

Fig. 2: Default Gantt chart for the two-machine cell model 

Let us denote the time that elapses between the start of rough boring the first part and the 
completion of finish boring the last part by T. Let XF be the idle time between the 
completion of job pM and the start of job p,. According to Figure 2, we can write: 

1=1 1=1 

For ^ Bi is given and known, only ^ Jf, is to be minimized. 
I I 

From Figure 2 it can be seen that: 

X 
if AX+A2< BX +XX, 

X2=Ax+A2-Bx-Xx, if AX+ A2>BX+XX. 

(The equality sign is taken into consideration in the second case, because the transition 
times between the machines to a first approximation are ignored.) Therefore, such an X2 is 
to be determined, for which the following applies: 

2 1 I 

X2 = max(4 + A2-Bx-Xx,0) = m a x ( ^ A , - £ * , , ( ) ) . 
i=i ;=i i=i 

Let us examine the sum XX+X2. We can write that 
XX +X2 = XX + max(Ax +A2 -BX - ^ , , 0 ) = 

= max(Ax + A2 -Bx,XX) = max(^, + A2 -BX,AX) = 

= m a x i j a 4 ) . 
i=i i=i 

Similarly: 
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J f j - m a x ^ - ^ - ^ ' O ) . 
1=1 1=1 1=1 

Hence: 

i=i i=i i=i i=i i=i 

= m a x £ A, - X B,- £ + £ , £ ) •= 
1=1 1=1 i=l i=l i=l 

= m a x ( ] £ 4 - É B < ' Í J f < > = 

i=l 1=1 1=1 

í=i i=i i=i 

This formula can easily be extended for w-number idle times assuming a certain sequence 
(S) = (pl,p2,...,pi,...,pn): 

D„(S) = = max 4 
i=i L'=i i=i '=i '=i 

This formula can be written in a more concise form in the following manner: 

D(S) = max 
ISFFIN i=i i=i 

or in another way: 
r r-i 

ű„(S) = maxL r, where 
i=i i=i 

Let us have some kind of series (5 (1 )): 

(S0) ) = (pi,p2,-, pk-1 > Pk » Pk+1. Pk+2.-,/>„) 

and a series (S(2)), that can be obtained from (5(1)) exchanging k and k+1 with each other: 

. Pi »•••» Pk-1> />*+l» />* » />*+2 »•«. />„ ). 
and let us define the sums Ú^ and I(

r
2) for the first r members of (S0>) and (5 (2 )) similarly. 

It is easy to see that and I(
r
2) are the same for all 1 < r < n in the cases of series (50 )) 

and (5 (2>), except maybe the cases of r = k and r = k +1. 

Hence Dn (Sm ) = D„ (S(2)), whenever max(4°, ) = max(42) , Z*21,). 
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If max(4", 41],) * max(42), 4 ^ ) , then one of the two series (5 (1))and (S(2)) is more 

advantageous than the other. Series (Sm) - in which k+1 follows k - is more advantageous 

than series (S2), in which k+1 precedes k, if 

max(4 , ) ,4 ' i1) < max(4J>»-4+i)- (1) 
In detail: 

*-i t+i 

max(42),42
+

),) = max 

i-1 i—1 1=1 i=l 
t-l *-l t+l t-l 

B t+l 

Hence, we obtain: 
t-1 t+i 

* t+l t-l t-l t+l t+l t-l 

. i=l 1=1 1=1 1=1 1=1 
= max(-4+ 1 ,-Bk) = - min(4+1, Bk). 

= max 
;=i i=i 

And similarly: 
4-1 t + l 

= max 

= max 

t-i 

+ max(I2,Z,2
+l) = 

í=I /=i 
t+l t-l t-1 t+l t+l t-l i-l 

_ ni i=i i=i i=I i=i i=i i=i i=i 
-t-i t-i 
Z Á>+4+1 - ( Z 4 + a + 4 + , ) - f l t+ . . 1=1 /=l 

= max(-i4 t,-fi t+1) = -min(Ak,Bk+l). 

Hence, relation (1) is equivalent to the following form: 
- m i n ( ^ + l , f l t ) <-min(/4 t,B t+1), 

that is, to: 

Now, we can draw the conclusion that the sequence (..., pk, p t+1,.~) is more advantageous 
than the sequence(...,pt+1,pit,...) if: 

min (^ ,5 t + 1 ) < min(^+ 1 ,B t) (2) 
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Let l < £ < / < w a n d let us consider now the sequence(S") = (pl,p2,...,pl,...,pk,...,pn) 
different from (S) only in the fact that in (S') the job p, is staying in the position number k, 
and it is the job pk in the position k. 

The sequence (S) is more advantageous than (S ' ) , if and only if 
min(4 ,5 , )<min( / i ; , f i , ) , (3) 

which holds either Ak < Bt & Ak < A, & Ak < Bk is true, 
or B, < Ak & B, < A, & B, < Bk is true. 

The first case can be expressed also in the form: 
mini/^.-BJ^mini A„B,). (4) 

Therefore, if we find a time Ak in the table of times which is less than all other A, and B, 
at the same time, then it has to be begun the sequence with pk. If time Ak - although is one 
of the smallest times - is equal to another A, or B,, the sequence can also be begun with pk. 

The second case is equivalent to: 
min(4 ,B,) < min(4 ,B k ) . (4') 

Consequently, if we find a time B, in the table of times, that is less than all other Ak or Bk 

at the same time, then the sequence to be determined must be ended with p,. If time B, 
although is one of the shortest times - is equal to another Ak or Bk, the sequence can also 
be ended with it. 

It can be seen from the detailed deduction, that the sequence can be determined step-by-step 
by means of the Johnson algorithm. In Operations Research, the mathematical method that 
optimizes a series of decisions depending on one another is named Dynamic Programming. 
Johnson's algorithm solves actually a dynamic programming problem. 
Extension of the Johnson algorithm for three machines 

The Johnson algorithm can also be used in the following two special cases: 
min Ai > max B- or min C, > max Bl, 

if the three machines A, B and C with n jobs to be done are given. In such a case the 
examination of the times is executed with the sums Ai + Bj and B1 + C,. These "virtual 
machining times" are handled exactly as real machining times of two fictive machines [7], 

Let us consider the following task: 
The turning, milling and grinding operations are defined by periods Al, B. and C, for the 
parts denoted by px,..., p5. 
Let us start from the following table: 
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Turn (At) Mill (Bt) Grind (C,) 
PI 8 6 7 
PI 12 3 10 
PI 9 5 4 
PA 15 4 18 
Ps 11 5 10 

Table I 
It is valid that min 4 > max Bi, because: 8 >6. We can compile the second table, too: 

AI + B I Bi + Ct 

Pi 14 13 
PI 15 13 
PI 14 9 
PA 19 22 
PI 16 15 

Table II 

Applying the Johnson algorithm, we get: 
1. 

PI 14 13 

PI 15 13 

PA 19 22 

PS 16 15 

P, 14 9 

PI 14 13 

PA 19 22 

PS 16 15 

PI 15 13 

PI 14 9 

PA 19 22 

PS 16 15 

PI 14 13 

PI 15 13 

PI 14 9 
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The algorithm can be well followed through Table II, 1.2. and 3. 
1. We examine, which is the smallest time in the Table II; this time, it is 9 minutes. 
2. If this value belongs to the first column of the table, then we start with the part 

corresponding to it.; i f i t belongs to the second column, then we end machining with 
the part corresponding to it. 

3. We separate the corresponding row of the table, and we follow the steps 1.-2.-3. with 
the remaining part of the table. For the optimal scheduling sequence we get, that: 

s = (PA>PS>PI>P2> Pi)-

Let us take the original ad hoc sequence: 
S\ =(P\>P2>P]>P4>Pi)-

Representing it (Figure 3): 

A, 
Turn 

B, 
Mill 

(Idle) 

Grind 

(idle) 

P,(8) 

8 

Pa(12) Pj(9) P.(15) P,(11) 

Pi(6) 

X* 

14 

(3) 

P,(7) 

P.(5) 

P,(10) 

10 

P<(4) 

10 

Ps(5 

Idle time: 37 min. 

P,(18) P.(10) 

Idle time: 27 min. 

E Idle time: 64 min. 

Fig. 3: Demonstrating the extension of the Johnson algorithm through a concrete example 
(Gantt chart, ad hoc sequence) 

According to the Johnson algorithm (Figure 4): 

P.(15) P5(11) P,(8) Pa(12) P,(9) 
A, 

C, 

15 

19 

P.(4) P«(5) P,(6) Pj(3) PJ(5) 

Idle time: 37 min. 

P,(18) P^10) P,(7) P^10) Pj(4) 

Idle time: 19 min. 

£ Idle time: 56 mln. 

Fig. 4: Demonstrating the extension of Johnson's algorithm through a concrete example 
(Gantt chart, optimal sequence) 
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From the two Gantt chart it can be seen, that the Johnson algorithm decreases the idle times 
by 8 minutes. 

2. Modification of the Base Model Considering Retooling (Setup) Times 

Let pi, p2, .... pn be the pieces to be machined on machine A and B, and let us denote their 
machining times by A/, A2,.... A„ and Bt, B2, .... B„, respectively [5]. Let xh x2, ..., x„ denote 
the idle times during (or rather prior to) the machining of pieces pt, p2, .... p„ on machine B. 
Let n = (//, i2, in) denote an arbitrary permutation of the indexes (7, 2, ri) and let p„ 
stand for the set of all permutations of the index set {7, 2,.... n}. 

It is known, that in case of a p, ,Pi ,...,Pi permutation of the pieces, idle times 

xf"',*'"1 x(,n) that occur on machine B differ - Let us denote the sum of these with X„. 'l 1 '2 " 

If the pieces are ordered in the sequence pj{, ph,..., p^ that is given by Johnson's 

algorithm, i.e. we consider the Xj=(ji, j2, ...,j„) permutation of the indexes (7, 2, ..., n), then 
idle time Xn j will be the minimum possible, that is 

XMj =mm{xj\7tepn). 

(1) First of all, we would like to show that if machine A does not start to operate at 
the t=0 point of time but at the point of time t (where t can also be negative, which means 
that machining on machine A had already been started before 0 point of time), the optimal 
sequence of machining - i.e. the sequence when the sum of idle times x, on machine B is 
minimum - remains the one that is determined by the Johnson algorithm, that is the 
sequence corresponding to the index permutation 7tj. If t > 0 then this case can also be 
viewed as if, the machining time of piece on machine A that stands in the first position 

would grow from/4,, toA i )+t, for the machining sequence p , , / ^ g i v e n by the 

permutation n=(//, i2, .... /„), and the machining time on machine B would remain Bt 

As is known, the idle time (in case of starting at the point of time 0) for permutation /rwas 
í r r - 1 ^ 

so far given by the formula XK = max ISrSn , now we get the following: 

X' =max IS,£n >1 j=\ 1 J=\ 

= X+t 

Now: 
minfXI/r e pn)= min(í + Xx\n 6 p„)= t + m i n ( j f ^ ep„). 
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Since the minimum involved in the latter sum turns up just in the permutation relevant to 
the Johnson algorithm, therefore the idle time X'K will also be minimum, if K = Jij\ i.e. if 
the pieces are further ordered according to the Johnson algorithm. Moreover, the idle time 
that results in this manner is exactly t + Xn - i.e. it is longer exactly by t time units (than 

in case of starting at 0 point of time). 

If t<0, then this situation can also be seized as if we started measuring the time earlier than 
at 0, but at t point of time; yet machine B would come into operation only with |f| -time 
later. 

And this latter case can be considered, as if the machining time of the first one, part p o n 

machine B increased from B- to B- +1/| = Bt for the machining sequence concerning the 

permutation of the indexes n=(//, i* ..., i„), and the machining time on A did not alter. 
r-1 r-1 r-1 

Now ^ B; = # , • - ' + X Bi, = X ~'' t ' i u s n o w ^ t o t a l idle time Xn is as follows: 
j=1 j=2 j=l 

f f , \ \ f r-1 
X , = max max 

i f f . . , 
+ t 5 ° = m a x 

V i-1 j=i ISrSn 
V 

;0 = max(i + A';[;0) 

- considering the fact that the idle time Xn (for any t<0) can only be positive or 0. Since 

for the index-permutation nj determined by the Johnson-algorithm it is true that Xnj < XK 

for all TV e pn, therefore max(r + X1Ij ;0) < max(f + X„ ;0), i.e. the Johnson algorithm gives 

still the least idle time possible, which idle time is t + XKj if this latter number is positive, 

and zero if t + Xn < 0 . 

Summing up the t>0 and the t<0 cases we can say that the Johnson algorithm derives in 
both cases such a sequence of the pieces, beside which the total idle time is the minimum 
possible and both cases fit the relation that is follows: XXj = m a x ^ +f;o). 

(2) As an application of the above-mentioned ones, let us consider the situation in 
which the machining process on machine A and machine B is preceded by the setup times 
SA and Sg- This case can also be viewed as if machine A in comparison with machine B 
were available only in the point of time SA-SB. According to the above model, now the time 
shift on machine A is t=SA-SB• To this, according to item (1), the optimal sequence of pieces 
remains the one that is determined by the Johnson algorithm; denoting the given optimal 
total times with X or in case of considering setup times with X , the relation between them 
is as follows: 

X = max(A" + /;0) = m a x ^ + SA - SB fi). 

(Note: Here the setup time of machine B is not considered an idle time!) 
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3. Extension of the Modified Base Model for Group Technology 

Hereafter, let us make an attempt at an optimal fitting of piece groups [3], [4] by means of 
tracing back it to Johnson's algorithm. 

It is assumed that it is in groups G/, G2, GM advantageous for the pieces to be machined 
(on machine A and B) because of some economic requirements, where the setup times 

and SB on machine A and B belong to each group G, (that is the setup time of the 

machines to be prepared for the machining of group G,). If the parts ph, p^ ,—,p,K belong to 

group G„ then let us denote their times needed to be machined on machine A and B 
with A, ,A, ,...,A,. , and with B, ,B, B, 

'I >2 *l '2 'Hi 
N, N, 

Moreover, let us introduce the notations A, = SA + ̂  A- and B{ = SB + ̂  B- . According 
> i ' ' j=i 

to item (2), the total idle time for group G, will be minimum, if the pieces i.e. the 
corresponding number pairs (4., } (42 , ]i..., , Bín j are ordered in accordance with 
the Johnson algorithm. Let us denote the so arisen total idle time (at which the setup times 

have not been considered yet) for group G, with Xt. (i.e. Xt , if the pieces are 
y=i 

ordered in the group according to the Johnson algorithm). 

Let us have a look at the total idle time Xt that is arisen during the machining of the pieces 
of group G„ if the group machining is executed in the sequence of G/, G2, G,.y, GB 

GM. 

The total idle time for group G, will namely be influenced by the fact which point of 
times TA ,TB J machine A after completing the pieces of the groups G/, G2, G,./, and 

machine B after completing the pieces of the groups G/, G2, GJ.I are available at. 

Accurately, the reason for the idle time X{ to be altered is that machine A in comparison to 
machine B is available with a time shift of = TÁ i - TB Thus, the new idle time X\ is 

as follows: X] = max(Xl +f i_ l,0) = m a x ^ +TÁ ( -TB j ,0). The time TA means evidently 
ft 

the sum AJ+A2+...+AJ.I of the times (where AK = SAI + ^AK - so it contains the setup 
J-' 

t i m e s , . . . , S A m too.), whilst the time TB^ is the sum of the times 

5, + X\ +B2+X2+... + + X\_{ (where: Bk = SBi + ^BkJ ). so 
7=1 
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i-l 
I *=1 k-l *=1 

Let us observe that in case of group G/, which is preceded by no other groups but the setup 
times SA< and SBi, T^ = SA<, = SB< , thus it can be said that t0 = SA< - SB< , and for X\ 

we get that X\ = maxCA', +10; 0) = maxiA', + SAi - SBi; 0). 

Similarly, X\ = max(X, +/,; 0) = max(X2 +Ai-Bl - X\;0). 

Thus X[ + X2 = max(X2 + A, -B/, X j ) = max(X2 + A{ -Bi,Xl + S^ -S^; 0) 

X'j=max(X2+t2; 0) = max(Ar
3 + A2)-(B] +B2)-(X\ + X2); 0) 

Thus 
X\ +X2+X}= maxíA-j + (AÍ+A2)-(5, + B2)\ X\ + X2) = 
+ max(*3 + (Ai+AJ)~(Bi + B2); X2+Al-B]'X] + SA] -S^;0). 

In general 
f 

Xi = m a x ^ , + tiA ,0) = max 

and 

X\ +X2+...,+X= max 
*=1 k=I 

therefore for the total idle time X = Xl+X2+... + Xm the following formula is obtained: 
m-1 iff-1 m-2 m-2 ^ 

*=1 t=l *=1 *=1 
that can be written in a more concise maimer as is follows: 

X = max 

X = max(T r ) , where T0 = 0 and Tr = Xr + ^A, 
i=l /=1 

(Note: A0 is regarded as S^ , and B0 as SB<). 

Let us consider now the group sequences 
Sj: Gi,G2,...,G/0...,Gi,...,Gm and 
S2: Gi,G2,...,Gi,...,Gk,...,Gm 

that differ from each other only in the fact that in the second series it is the group Gt staying 
in the position number k, and it is the group Gk. in the position number /. 

Since in this case the computations can be fulfilled in a very analogous way as in the case 
when k and / are consecutive numbers, for the sake of clarity we will confine ourselves only 
to the latter case. 
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Let the series of groups be the followings: 
St: Gi,G2,...,Gk.i,Gk,Gk+i,...,Gm and 
S2: G/,G2,...,Gk-i,Gjt+ /,Gfo...,Gm, 

Let us denote the part sums Tr that belong to the first series of groups with T], and the ones 

that belong to the second series of groups with Tr
2 

Obviously, the machining sequence that is given by series Si is more efficient than the 
machining sequence corresponding to S2 if and only if 

max(7;\r;J<max(r^7;2
+ l). (*) 

/ *-i t-i t t ^ 
Now: maxfr;, ) = max Xk + £ 4 ~ Z B>' + Z A ' ~ Z B> ' 

V 1=1 1=1 1=1 Í=1 , 
t-l t-l 

thus: £ fi< " Z 4 + max(r;, ) = max(* t ; XM + Ak-Bk). 
1 = 1 i—1 

On the other hand: 
, ( t-i t-i t-i t-i 

max(r/,Tk+i) = max XM + £ 4 - Z B > ' X* + Z A < + ~ Z " 

- taking into consideration that the total idle time during the machining of group Gk+] is 
Xk+/, and during the machining of group Gk is Xk. 
Thus 

t-i t-i 

Z - Z A<+ maxi r*2 '7*•>)= m a x ( ^ > : * * + a m - O • 
i=i i=i 

According to the researches, the inequality (*) is equivalent to the inequality as follows: 
max(A\; Xk+I + A k - B k ) < max(Xk+l; Xk + Ak+l - Bk+l) 

Adding -Xk - Xk+1 to both side of the inequality, we get 
max(- Xk+l; Ak -Bk - A r J < m a x ( - Xk\ AM-BM - X M ) , i.e. 
m a x ( - X M - , - { B k + X k - Ak))< m a x ( - X k ; -(Bk+l + XM - Ak+I)). 

Since Xt > 0 for all 1=7,2,....n and since Bt + Xt -At>0 is true, all four numbers in 
parentheses are negative or 0, we can write: 

- min(*4+I; Bk + Xk - Ak) < -min^,; Bk+I + XM - Ak+1), 
wherefrom we get that (*) is equivalent to the inequality 

min(^i+l; Bk + Xk - Ak) > min^; Bk+l + XM - AM) 
therefore in this case serial Si means a more advantageous sequence than series S2. 

Now returning to the general case when 
5;.- Gi,G2,...,Gh...,Gi,...,Gm and 
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S2: G1,G2,...,Gí...,Gh...,Gm (where k<l), 
we would get in analogous way that is more advantageous than sequence S2 if and only 

if 
m in (A r

/ ,B k +X k -A k )Z min(X t,B, + X, - A,), 

namely, if 
min( Xk; B, + X, - A,) ^ min^,; Bk + Xk - Ak). 

Apparently, this same criterion applies to such an abstract Johnson-sequence that consists 
of the following number pairs: 

4 BT + XK- AK\...,{XM- BM + XM- AM). 

Now in order to trace back the optimal sequencing problem of the groups Gt, G2, .... Gh ..., 
Gm to the sequencing problem of these number pairs according to the Johnson algorithm, it 
is sufficient to show that were such Active parts Fl,...,Fk,...,Fm considered instead of the 
groups Gu...,Gk,...,Gm, whose work time on machine A are Xlt...,Xk,...,Xm, and whose 
work time counted for machine B are B]+X[ -A],...,Bk - t-X k-A k , . . . ,Bm + Xm-Am , then 
we would obtain the same idle time and the same optimal sequence as in case of the 
machining of the piece groups GI,...,Gi0...,Gm. 

Let us denote the idle times for the fictive serial with Xx ,...,Xk,...,Xm, and their sums 

with X" 

According to the theory of Johnson's algorithm: 

x' = Í X = ' Whereí> = Í * . -TiW +Xi)~A)= Xr • ;=i 1=1 1=1 1=1 1=1 
( ÍI-1 n-l \ 

hence X = max 
1 SrSm /=! i. 1 

Because as for an optional permutation n = (i,,^,...,/„) of the indexes the total idle times of 
the group series Gi,G2,...,Gh...,Gm and the fictive series of pieces F/,F2 Fn...,Fm are the 
same, i.e. X\ = A'j, therefore it will be the same permutation i,,i2,...,i„ of the indexes that 
will provide the smallest total idle time for the series G1,G2,...,Gh...,G„, as for the abstract 
series Fi,F2l...,Fi,...,Fm,\ and this is exactly the same that we have obtained for the latter 
series by means of the Johnson algorithm. 

Therefore, first and last, it can be said that the group series Gt, G2, ..., Gm can truly be 
substituted for the fictive piece series F/,F2,...,Fni, where the machining time of an Fk 
"piece" on machine A is treated as Xh and its machining time on machine B is treated as 
Bk+Xk-Ah 
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Purely and simply, these quantities can be explicated as: 

** = Í X and Bh+Xk-Ak = SBt +j^Bkj + ^ X k j - i ^ +^Akj 
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