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Abstract. In the paper a machine learning based method will be proposed to give a quasi-
optimal solution to the /w-machine flow-shop scheduling problem. Namely, given a set of 
parts to be processed and a set of machines to carry out the process and the sequence of 
machines is fixed, each part should have the same technological path on all machines; the 
order of jobs can be arbitrary. The goal is to find appropriate sequence of jobs that mini-
mizes the sum of machining idle times. 

1. Introduction 

Recent research has put increasing emphasis on scheduling in all production phases. The 
goal of scheduling is defined as finding the best sequence of different activities (processing 
operations, delivering the goods) given a set of constraints imposed by the real world proc-
esses. These constraints can cover physical laws as well al rising costs that can make pro-
duction unrealistic or uneconomic. 

Basically, there are three main scheduling concepts: mathematically grounded algo-
rithms, heuristic approaches and algorithms supported by machine learning (ML). The first 
concept can be adapted to small-sized scheduling problems. Johnson's algorithm, e.g., 
solves a two-machine flow-shop scheduling task that is established by classical algebraic 
and dynamic programming ways as well. The advantage of the algorithm is that it is well 
defined, exact and can be generally applied to the wide range of two-machine scheduling 
tasks. The price is lack of scalability: i.e. no mathematical proof can be given for a larger 
number of machines. 

As a potential improvement, there are two directions of research to overcome the re-
strictions of mathematical formulations: using heuristics, and/or machine-learning. Both 
directions try to set up some model of human being problem-processing capability but in 
different ways. While heuristic approaches provide direct rules of thumb to follow, but no 
algorithm to find the solution in a modified decision environment. ML methods give a 
model of a mental process itself. As the knowledge of the learning agent improves the 
method results in solutions that are more and more close to the optimal solution, even in 
changing environment. 

In the paper an algorithm will be shown that is capable of "learning from scratch" using 
a reward-punishment procedure, called reinforcement learning (RL) [4], 
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2. Scheduling task 

The scheduling problem, under consideration, is called flow-shop scheduling where given a 
set of parts to be processed (jobs) and a set of machines for processing. Each part has the 
same technological path on all machines; the order of jobs is arbitrary. The goal is to find 
the appropriate sequence of jobs that minimizes the sum of idle times. 

2.1. Johnson's algorithm 

Let jobs be denoted by j/, j2, ..., j„ while the two machines by A and B. If there are no 
precedence restrictions among the jobs, there is n! (n factorial) number of possible job-
sequencing on the two equipment, which yields non-polynomial (NP) hard task. Figure 1 
illustrates the Gantt diagram of one possible job sequence. 

Occupation 
Jobs 

Machine A 

Machine B 

Pi P2 
A, A2 

X, 

PI 
As 

B, X: B2 X, 

P4 
A4 

: 
Bj X4—0 B4 

1 1 

time (t) 

Figure 1 Job sequence on two-machines.p, denote parts, A, machining times on A, B, 
machining times on B and X, are idle times on B. 

n 
In the figure, % = Z ^ i indicates the total off-machining time on machine B, as well as 

7=1 
the total idle time of the scheduling task with two-machines. The goal of optimization is to 
find a job-order, which minimizes X. 
The possible data structure of the algorithm, for example, is an «x2 matrix which can be 
seen in Figure 2. The scheduling method itself is illustrated in Figure 3. The proof of the 
algorithm can be found, e.g., in [1], 

2.2. Three-machine extensions: Palmer's andDannenbring's methods 

The two-machine scheduling algorithm can be extended to three-machine scheduling by 
imposing additional restrictions on machining times. 
A method that was first published by Palmer uses job priorities to set up job sequences. 
Single priority value compresses the following concept in a single rule: jobs that produce 
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shorter execution on the first machine are sorted to the beginning; jobs that have shorter 
execution times on the third machine are left behind [5]. 
Dannenbing's algorithm decomposes the w-machine scheduling task to m-1 two-machine 
tasks compromising quasi-optimal values [6]. 

A (minutes) B (minutes) 
Jobl 10 15 
Job2 20 15 
Job3 30 65 
Job4 20 10 
Job5 45 100 

Figure 2 Machining times of different jobs on machines A and B. The length of machining 
is measured e.g. in minutes 

function Johnson (table of machining times) 
return optimal sequence 

let Q denote the queue of jobs 
initialize Q with empty set 
for each j cell of the table ( 

find the minimal machining time scanning in both columns 
if the time found occurs in column A than 

add the job, to the beginning of the queue Q 
else add jobj to the end of the queue Q 

delete the slot found 
endif 

return Q as the optimal sequence 
end 

Figure 3 Johnson's algorithm 

3. Machine learning approach 

In order to implement any machine-learning algorithm, first, the concept of learning should 
be defined. Learning, in its original sense, means that a system is capable of modifying its 
internals (structure or parameters) to satisfy the requirements of the "evaluator" (or teacher, 
or external environment). 

3.1. Determination of the optimality criterion 

For translating the definition into scheduling terms, some evaluation process has to be 
developed to be capable of distinguishing among different schedule plans (evaluator, or 
fitness function in genetic algorithms). 
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As the definition of scheduling environment is clear, it is easy to develop an evaluation 
algorithm to express the "goodness" of scheduling in numerical terms. Figure 4 shows an 
algorithm that computes idle times to an arbitrary number of machines and jobs. The real 
benefit of the method is that it computes partial idle time data corresponding to individual 
machines and jobs. 

The evaluator inputs the matrix of machining times (M) and the job and/or machining 
sequence permutation vectors (r, p). Both vectors are necessary for the proposed schedul-
ing algorithm, not by the scheduling task itself. The number of jobs is indicated by n, the 
number of machines by m. The algorithm outputs a scalar value v indicating the sum of idle 
times, vector d stores sum of idle times preceded by the corresponding job. 

The computation cost of evaluation is at level 0(nm). More details about the algorithm 
can be found in [5]. 

input M[m,n], r[m], p[n]; 
output v; 
storage d[n], D[m,n]; 
function n_machine return D[m,n] or v 
begin 

v: =0 ; 
for i:=l to m do 

s[i] :=M[r[i],l] ; 
d[i]:=v; 
D[i,ll:=v; 
v:=v+M[r[i],1] ; 

end 
for j:=1 to n do D[1,j]:=0; 
for j : =2 to n do 

for i:=l to m-1 do 
s[i]:=s[i]+M[r[i],p[j]]; 
D[i+1, j]:=max(0, s[i]+d[i]-s[i + 1]-d[i + 1]); 
d[i+1] :=d[i+l]+D[i+l,j]; 

end 
s[m]:=s[m]+M[r[i],p[j]]; 

end 
v:=0; 
for i:=l to in do v:=v+d[i]; 
return v; 

end 

Figure 4 Determination of machining idle times for arbitrary number of machines and jobs 

3.2. The learning module 

Having the evaluation algorithm been examined, a question can be immediately addressed: 
how can it be used in real-life machine learning applications? There are two basic ap-
proaches under consideration: reinforcement learning and genetic algorithm. 
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One of the possible approaches is to use a reinforcement-learning (RL) based module, 
called Q-leaming to maintain job precedence preferences, or in RL terms, action-state val-
ues. 

input M[m,n], jobs, alpha, gamma; 
output r[n]; 
storage Q[n][n], V[n]; 
function Q-update return r[n]; 
begin 

Q[i][j]=0 for all i=l..n, j=l..n; 
while annealing_cycle do 

r[n]=permutation(jobs) ; 
reward=n_machine(M[m,n],r[n]); 
for i:=l to n-1 do 

update_Q_table(Q[r[i],r[i+1)], reward,alpha,gamma); 
end 
update_V(r[1],reward,alpha,gamma); 

end 
end 

Figure 5 Q-leaming based flow-shop sequencer algorithm 

RL methods evolved from dynamic programming and automata theory and model reality 
through a set of states, state-changes and values (preferences) assigned to both. RL also 
defines update rules over the state, state-change model, which are used for maintaining 
values with respect to the measured feedback provided by the environment of the learning 
model. 

Whenever an RL method is applied to a certain problem, the property that can be used 
as states should be identified. Furthermore, the state-changes and the reward measurement 
should also be identified. Then the RL algorithm makes explorative and exploitative trav-
erses in the state-space trying to find a path that is highly rewarded. The benefit of the 
algorithm is its capability of exploration, i.e. traversing through states that are not well-
rewarded but may yield higher reward in the long run, bypassing local maxima this way. It 
is important to pay attention to exploitation and exploitation balancing problem [4]. Explo-
ration is interpreted as an operation mode of the learning agent when it makes experiments 
and tries to discover its environment. On the other hand, exploitation is a mode when the 
agent has gathered enough knowledge and makes real decisions. 

In the flow-shop scheduling exercise the model takes machining times, machining costs 
as input parameters, and job sequence as a variable parameter, and a certain job sequence is 
sought that minimizes idle time, in the long run. 
To fit RL methods, it is reasonable to define states as job sequences, or more precisely job 
precedence relations. State-changes (or actions) are defined as changes in relations. An 
action step is performed by a permutation operator, which sets up a job sequence according 
to precedence preferences. At the beginning no preferences are given, so states are trav-
ersed randomly. As learning proceeds, preferences are updated, which, in turn, influences 
action selection policy converging to the found quasi-optimal job sequence. From this 
respect the learning algorithm is a directed search procedure. 
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Parameters of the algorithm are the same as those of the evaluation algorithm, except 
RL specific arguments: Q stores action-state values (decision preferences), alpha and 
gamma regarding to learning rate and discount rate [2]. 

The Q-leaming based algorithm can be seen in Figure 5. It introduces a new element, v, 
which is a vector of preferences. Array v expresses the value of starting the job sequence 
with jobi, for all jobs. Update methods are formulated as the usual RL update rules: 

Qn+\UiJj) = QnUiJj)+<*r+yma^(jiJk)-QnUiJj)) 0 ) 
k 

Vn+\Ui) = VnUi) + «ir + Y™zQnUM-VnVi)) (2) 
k 

Evaluation algorithm shown in Figure 4 can be used as a fitness evaluator of any genetic 
algorithm-based method as well. In this case job sequences are regarded as "fenotypes", 
heuristic operators such as mutation and crossover are defined as specific job permutations. 

4. Implementation 

An RL-based scheduler has been developed in Java in order to validate theoretical results. 
The code is formulated to be modular to let non-RL modules be plugged in and allow com-
parisons between them. 

Figure 6 shows the screenshot the Gantt chart of an example five-machine, nine-job 
scheduling task. 

So far the scheduler is capable of learning using step-by-step iteration, and through a 
single annealing period. Annealing schedule * is set up manually. Algorithm in Figure 4 has 
been extensively tested on different job-machine setups. The accuracy of the learning pro-
cedure depends on the "speed" of the annealing schedule: the larger the annealing period is, 
the more accurate the solutions are. Given a time horizon three annealing schedules have 
been compared. The best result was achieved when concave annealing function was cho-
sen, which let exploration until about 95% of the full time horizon and "chopped down" 
exploration turning immediately into exploitation phase. 

The optimality criterion can be modified easily: multiple optimum criteria can also be 
applied provided that it can be mapped into a single scalar feedback. 

5. Conclusions and future work 

It has been established that RL-scheduler is able to find close-to-optimal solution, and RL 
combined with simulated annealing and balancing algorithms are also capable of finding 
quasi-optimal solutions when machining-times vary in time. 

1 The term annealing schedule regards the temperature-time function and has nothing in common 
with machining schedule. 



Flow-Shop Scheduling Based on Reinforcement Learning Algorithm 89 

fc Applet Viewer: Diayram.dass j a x j 

Gantt-diagram 

Number of machines 

14 14 2 1 I I i n 14 12 I D 17 

U UP flO jl li| 

2 1 I 1 7 3 2 4 I S I i s \ k a [ lo is i a 

The present job sequence: 

6 3 5 2 8 7 1 9 4 

Sum of idle times: 

1 7 6 

T ]14:18:41 
( R a n d o m " ! Machines § Jobs L M 

Graph [• Data Qtab Logs r Dffi r ' 

Applet started. 

Figure 6 Gantt-chart of a 9-job, 5-machine task in a RL-based simulator, numbers above 
stripes indicate processing or idle times 

As for the future plans, it is purposed to make a detailed comparison among the results 
of a RL-scheduler; a genetic algorithm-based scheduler and the Johnson algorithm. A new 
protocol is also under development which provides a real manufacturing environment-
virtual manufacturing environment communication primitive, which can be used for on-line 
learning. 
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