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Abstract. In our days there is an increasing interest on the application of concept lattices for 
data mining, especially for generating association rules. The building of concept lattice 
consists of two, usually distinct phases. In the first phase the set of concepts is generated. 
The lattice is built in the second phase from the generated set. The paper gives an overview 
of the available methods and presents a proposed method for contexts of large size where 
the full context can not be stored in the main memory and some objects may be repeated in 
the context several times. The proposed algorithm for concept set generation is a fine-tuned 
version of the incremental concept set building method. At the end of the paper, the test 
results for comparing the new method with some known methods are given. The proposed 
method yields in a significantly better cost value than the other methods under the assumed 
conditions. 
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1. Introduction 

Concept lattices are used in many application areas to represent conceptual hierarchies 
stored in a hidden form in the underlying data. The field of Formal Concept Analysis [1] 
introduced in the early 80ies has grown to a powerful theory for data analysis, information 
retrieval and knowledge discovery. In our days, there is an increasing interest on the 
application of concept lattices for data mining especially for generating association rules 
[8], One of the main characteristics of this application area is the large amount of structured 
data to be analysed. Beside this area another important application field is the program 
analysis inside a compiler using concept lattices of very large size. A technical oriented 
application field of Formal Concept Analysis is the area of production planning where 
concept lattices are used to partition the products into disjoint groups yielding an optimal 
processing cost [6]. Since the cost of building a concept lattice is a super-linear function of 
the corresponding context size, the efficient computing of concept lattices is a very 
important issue investigated for several years [5], 

The building of concept lattices consists of two usually distinct phases. In the first 
phase the set of concepts is generated. The lattice is built in the second phase from the 
generated set. We can find proposals in the literature for both variants, i.e. there are 
proposals addressing only one of the two phases and there are methods for combining these 
phases into a single algorithm. Based on the analysis of these methods, the cost for both 
steps is about the same order of magnitude and the asymptotic cost depends on mainly three 
parameters: the number of objects, the number of attributes and the number of concepts. 
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The cost is always larger than the product of these parameters. The concept-set generation 
algorithms have two main variants. The methods of the first group work in batch mode, 
assuming that every element of the context table is already present. The most widely known 
member of this group is the Ganter's next closure method. The other group of proposals 
uses an incremental building mode. In this case, the concept set is updated with new 
elements if the context is extended with a new object. The Godin's method belongs to this 
group. Regarding the phase for building the lattice, the proposed approaches are based on 
the considerations that the lattice should be built up in a top-down (or bottom-up) manner 
because in this case only the elements of the upper (or lower) neighbourhood are to be 
localised. The second usual optimisation step is to reduce the set of lattice elements tested 
during the localisation of the nearest upper or lower neighbour elements. 

This paper addresses both of the problems, the generating of concept sets and the 
building of concept lattices. The proposal is intended to use for contexts of large size where 
the full context can not be stored in the main memory. According to our assumption, the 
access to context data is an expensive operation. Another basic feature of the investigated 
problem area is that the same incoming attribute set may occur several times in the different 
input objects, i.e. the objects may have the same set of attributes in the context. 

This section gives only a brief overview of the basic notations of the theory for Formal 
Concept Analysis. For a more detailed description, see [1], 

A K context is a triple K(G,M,I) where G and M are sets and / is a relation between G 
and M. The G is called the set of objects and M is the set of attributes. The cross table T of 
a context K(G,MJ) is a matrix form description of the relation /: 

2. Formal Concept Analysis 

tij = 1 , i igJa j and 
0 otherwise, 

(1) 

where g, e G, aj s M. 
For every A cz G, a derivation operator is defined: 

A'= {a e M\gIaioxV geA } (2) 

and for every ficM 

B'={ge G\gIafoTV aeB}. (3) 

The pair C(A,B) is a concept of the K context if 

-AQG 
-BQM 
-A' = B 
- B' = A 

(4) 
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are satisfied. In this case, the A is called the extent and B is the intent of the C concept. It 
can be shown that for any A, <zG,ieI 

(S-^i E / Aj)' = F"L,E / A'l (5) 

and similarly for any Bi c M, i e I 

(yjie!Bd' = nielB', (6) 

is satisfied. 
Considering the 0 set of all concepts for the K context, an ordering relation can be 

introduced for the concept set in the following way: 

C, < C2 (7) 
if 

Ai^A 2 

where C, and C2 are arbitrary concepts. It can be shown that for every (CUC2) pair of 
concepts, the following rules hold true: 

C, A C2 e 0) (8) 
and 

C, v C2 e O. 

Based on these features, (0, <) is a lattice, called concept lattice. According to the Basic 
Theorem of concept lattices, (<P, <) is a complete lattice, i.e. the infinum and suprenum 
exist for every set of concepts. The following rules hold true for every family (Ah B,), i e I 
of concepts: 

v , e / ( A h Bt) = ( n , 6 , A „ ( u , e , B y ) , (9) 
a ,• 6 / (A„ Bi) = ((u, e ,AJ , e , Bi) 

where A" denotes the closure of the set A and it is defined as derivation of the derivated set: 

A" = (A')'. (10) 

Using these definitions and rules, some other important and interesting rules may be 
derived. Some of the derived rules are given in the following list: 

A,cA2=>A2
,QA ,', (11) 

A^iA')-, 

The structure of the concept lattice can be used not only to describe the concepts 
hidden in the underlying data system, but it shows the generalisation relation among the 
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objects and it can be used for clustering purposes, too. A good description on the related 
chapters of the lattice theory can be found among others in [2]. 

3. Algorithms for Generating the Concept Set 

As for every concept the extent part is determined unambiguously by the intent part, 
the generation of the intent parts is investigated only. In most data mining applications the 
intent parts are enough to generate the rules. The rules define a relation, an implication 
among the attributes, i.e. on the intent parts. The actual support set for the rules is usually 
not important. 

Among the sophisticated concept set generation algorithms the Ganter's next closure 
algorithm [1] is probably the most widely known method. It is widely accepted by experts, 
that this algorithm is not only the best known but the most effective one, too [4], The 
concepts are generated according to an ordering relation. Based on the indexing of the 
elements, the lexicographical ordering between the concepts is defined in the following 
way: 

A <B o 3 a , e G: A <i B (12) 

where 

A<iB <=> a, e B\A , A n{ai,...,aM } = B n{ai,...,a,-.i} (13) 

This method calculates the extent part first, and the intent part is generated from the 
extent part. The key function element, the next extent routine, tests several extent variants 
until it finds an appropriate one. The total asymptotic cost of the algorithm is equal to 

0(CN2<j+ CN2M) (14) 

where 
C : the number of concepts in the concept set, and 
a is a cost unit. 

Regarding the efficiency of this algorithm and the objectives, some facts should be 
taken into consideration: 

1. the disk IO cost may be very high if N is high; 
2. the total cost is proportional to N2, so it will be resulted in high costs for 
contexts with large number of objects, as it is assumed in our investigation. 

One of the main characteristics of the Ganter's algorithm is that it accesses the context table 
several times during the generation of a concept. As the same context table element is 
accessed several times it is clear, this method assumes that 

a: all parts of the context table are present at the concept set generation; 
b: the context table can fit into the memory with low cost access operations. 

Based on these assumptions, this method is called a batch method. A different kind of 
approach is presented by Godin [2], His proposal is an incremental concept formation 
method, where the concept set is updated in an incremental manner, i.e. the set is updated 
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when the context table is extended by a new object instance. In this kind of method, every 
context table element is accessed only once, yielding a minimal 10 cost. The building of the 
concept set in incremental mode is based on the following rule: 

Every new concept intent after inserting a new object into the context, 
will be the result of intersecting the attribute set of the new object with 
some intent set already present in the concept set. 

Godin's method can be used for updating the concept set after insertion of a new object 
into the context. The algorithm consists of the following main steps. First, the concepts are 
partitioned into buckets based on the cardinality. Next, the buckets are processed in 
ascending cardinality order. Every intent in the current bucket is intersected with the intent 
set of the new object. If the result set is not present in the concept set, it will be added. The 
cost estimation for the algorithm can be given by 

This fonnula assumes linear existence testing. Linear testing was implemented in the 
algorithm as testing can be reduced to the subset of the so called marked elements. The 
marking test can be performed only in linear mode. In the cost estimation formula D 
denotes the number of elements with a mark. This mark is assigned to the elements 
generated in the current phase. Comparing this cost function with the cost estimation of the 
next closure method, we can see that the incremental method will be more efficient if 

1: the crcost unit is high; 
2: or TV is high. 

On the other hand, the cost of Godin's method is more sensitive to the C size of the 
concept set. 

Beside these two basic concept set generation algorithms, there are some other 
proposals in the literature, mainly some kind of optimisation of the basic algorithms. From 
these papers, only some of the most recent ones will be presented here to demonstrate the 
computational efficiency of the most up-to-date variants. 

In the paper of Hu [3], the concept set generation process is coupled with the 
calculation of the support value in order to discover association rules from the concept 
lattice. The concept set building part is based on the incremental method of Godin, thus 
resulting the same asymptotic calculation cost estimation value: 

Another proposal is the Titanic algorithm, presented in [7]. This method uses the 
support values of the different attribute sets to determine the concept intents. It generates 
the candidate generator sets in increasing order of the size. A set is called a generator set if 
its closure is a concept intent and it is minimal, i.e. it does not contain any other generators 
for the Same concept intent. The method processes first the one-attribute-long candidates 
and after then generates the candidate sets for the next level. At the next level, the length of 
the intents is increased by one 

0(Ncr + CNDM). (15) 

0(N<j+ CNDM). (16) 
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0{NMa + aMCN+a^M). (17) 

The algorithm processes not only the concepts, but all of the candidates, thus in the cost 
estimation formula, a denotes how many times the number of candidates is larger than the 
number of concepts. This value is always greater than 1. The most costly part of the 
algorithm is the generation of candidate sets. In this phase, every pair at level / having the 
same values in the first (/-l) attributes will be processed to generate a new candidate set at 

The proposal of Lindig given in [4], is aimed at not only the generation of the concept 
set but on the building of the whole concept lattice. If we consider now only the concept set 
generation part of the algorithm, this method is related to the Ganter's method in many 
aspects. It assumes a lectical ordering among the concepts and the concepts are processed 
according to this ordering. The method also generates for every new concept the set of 
upper neighbour concepts to use this kind of information during the insertion into the 
concept lattice. 

The neighbours of a concept are generated using the closure operation for the candidate 
neighbour attribute sets. At every call of the neighbour routine the full context table is 
scanned. The cost estimation of this algorithm is 

Thus the asymptotic complexity is the same as for the Ganter's method. 

The aim of the investigation was to find an efficient algorithm that can be used for 
cases with large context size, so the proposals found in the literature were evaluated using 
the following criteria: 

1. the disk 10 should be minimal, every context table should be accessed only 
once and 
2. the in-memory operations should be optimised to omit the redundant 
calculations. 

Based upon these selection criteria, the incremental method is the best solution as it 
has only a linear disk 10 cost and not all elements of the context table should be available at 
the beginning of the concept set building. To achieve a better performance, the objective 
was to improve the in-memory operations of the existing incremental methods. In the next 
sections of the paper a fine-tuned version of the incremental concept set building method is 
presented and the efficiency of the proposed method is also demonstrated with comparison 
tests. Based upon the test results, we can say that the incremental methods can outperform 
the batch method in practical applications. This result is in consonance with the results of 
Godin. 

According to the properties of the incremental methods, the context table is generated 
by adding single objects one by one, after each other. Let's denote the intent part of the 
concept set built up from the first k objects by 

level /. 

0(Nccr+ CN2M). (18) 

4. Fine tuned incremental method 

U 
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The Lk+] is constructed from Lk and ak where a* denotes the k-th object in the input list. The 
generation of Lk is based on the following considerations that can be proven very easily 
from the basic properties of the concept lattices, so we omit here the proofs. 

Proposition 1. 

for every ake G: A(ak) e Lk (19) 

where A (a) denotes the attribute set of object a. 

Proposition 2. 

for every A£ e Lk=> A n B e Lk. (20) 

Proposition 3. 

for every A e A ± A(ak), A £ Lk:3 B e Lk:A= A(a^0 n i . (21) 

Based on these propositions, in every iteration loop starting with Lk, the A(ak) can be added 
first to L and then the intersections of A(ak) with the elements already present in the Lk are 
generated and inserted into L&\. Since the number of possible pairs for an intersection is 
very large, the algorithm has a high cost in testing the intersections. A possibility of cost 
reduction is provided by the fact that not every pair generates a new concept intent. Most of 
the pairs yield in an existing intent value. The key point for fine tuning of the incremental 
algorithm in our proposal is based on the following simple considerations: 

Proposition 4. 

for every A,B,C e Lk, A n B = 0, C c A: CnB = 0. (22) 

The meaning of this rule is for us the following: if A is disjoint with some B then all of its 
subsets can be pruned from testing. 

Proposition 5. 

for every A, B, C e Lk,A QB,C^A: C c f i and C n B = C. (23) 

Thus, if an intent part is a subset of the tested element, then all its subsets can be 
eliminated. 

Proposition 6. 

if 3 B e Lk, A(ak)) = B then for V C e Lk: CnAfaJ e Lk. (24) 

Thus, if an intersect part is presented in the concept set, then the whole testing loop for 
A(ak) can be eliminated. 
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To implement the cost reduction elements into the concept set building algorithm, the 
following modifications of the basic incremental method were developed: 

1. Before the testing loop for the new incoming object, it is tested whether it equals 
an already existing intent part. The test for existence checking is performed using a 
B-tree structure, resulting in a test cost of 0(log(C)). 
2. Before the intersects of the elements would be inserted into the concept set, the 
candidate elements (the results of the intersections) are stored in a hash table, so the 
sets generated repeatedly can be detected in a cost effective way. 
3. To reduce the redundant intersection tests, the elements of the concept set are 
stored in a special pointer list where the elements containing a given attribute value 
are connected to each other. The intersection operation should be performed only 
for elements having at least one common attribute. Thus the intersection test for 
disjoint elements can be eliminated. 
4. To eliminate the insertion testing for intents already present in the concept set, 
during the intersection phase, a special marker is used in the hash table. In most 
cases, the existence can be detected in the hash table building phase, before the 
insertion phase. 

Based on these considerations, the structure of the algorithm is 
LI loop 

read_next(a) 
findinBtree(a) 

Cl if not foundO then 
update_pointer_chain(a) 
insertset(a) 

L2 foreach X(element of) L(k), X(intersect) A(a) not = 0 do 
Y = X (intersect) A(a) 
insert_hash(Y) 

endfor 
L3 foreach X elements in hash do 

ifit is not marked then 
insert_set(X) 

endif 
endfor 

endif 
until (no more input) 

The estimated cost of the proposed algorithm is calculated in the following way. 
read_next() 0(d) 
find_in_Btree 0(Mlog(C')) 
update_pointer_chain O(M) 
inserthash O(M) 
intersect O(M) 
LI loop it is executed for every object, so the number of 

iterations is equal to N 
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L2 loop it is executed for every intent set having common 
attribute with the new object, the number of iterations is 
equal to C where C <C 

L3 loop the insert operation is performed only if the intersection 
result is not marked, the number of iterations: C" « C 

C1 branching the inner part is executed for objects with a new 
attribute set, N'<N 

The total cost can be given by 

0(N{a+ MlogC)} + N'{M+ MlogC + C'{M) + C"{MlogC) }). (25) 

This expression can be transformed into a simpler form 

0(Ncr + NMlogC + N'MlogC + N 'C'M +N 'C'MlogC) (26) 

and pruning the non-dominant tags: 

0(Na + NMlogC + N'MlogC + N 'C'MlogC). (27) 

One of the benefits of this algorithm is that it can reduce the computational cost if the 
new object has an attribute set contained in the context already. In applications this case 
may occur often, for example in processing questionnaires where several people may give 
the same answer. The C' value is the number of sets having intersection with the new 
object's attribute set. A rough estimation for C can be given as follows: 

Let's denote the length of the attribute set of the objects by K. For K = 1, the 
probability that it has no common part with a subset of M is equal to 

2m-'/2m='/2 (28) 

so 

P, ='/, . 

In a similar way we get, that 

P,= 1/2' 

The number of subsets having length i is equal to 

fM" 

J / 

(29) 

(30) 

(31) 

So the probability that an arbitrary subset has no common part with an other subset is 
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( M 

\L J 

Pj/2 = ( Z I 
\ l j 

1/2' ) / 2 M = (3/4)" 
(32) 

Although, the relative gain of using this intersection pointer list is lower for large M values, 
the absolute number of testing that can be omitted is large enough to use this kind of 
optimisation in the applications. 

Regarding the C" value, the gain here can be more dominant as the number of pruned sets 
is much higher. If ck is the number of concepts after inserting the fc-th object, then the 
following holds true: 

1 = c , < c 2 < . . . < c „ = | q . (33) 

The total number of insertion testing without marking is 

c, + c2 + + cN. (34) 

So, the gain of the reduction is equal to the difference 

c, + c2 + + cN - | q . (35) 

A rough estimation for ck can be 

0(k2) (36) 

so this reduction step is very important. 

5. Algorithms for Building Concept Lattices 
Let's denote the set of concepts and the ordering relation on this set by (0 <). For any 

arbitrary concept C, the upper and lower neighbour can be defined in the following way. 
An L e 0 is a lower neighbour of C if 

L <C and !3 X e 0: L <X<C. (37) 

The upper neighbour can be defined in a similar way. In a lattice an element may have 
several upper and lower neighbour elements. We denote the set of lower (upper) neighbours 
for C by Low(C) and Upp(C). For building the lattice Low(C) and Upp(C) must be known 
for every C. 

The naive way to generate Upp(C), Low(C) is to test all of the concept pairs. The main 
structure of the algorithm for Upp(C) consists of two nested loops to test every concept 
pair. If one of them is the ancestor of the other then it should be tested whether there is 
another element being between these two elements. So, this algorithm contains three nested 
loops and the cost of the execution can be estimated by the following formula: 

OiC^CuM) (38) 
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where C„ is the number of upper neighbours. Comparing this estimation with the cost 
values for generating the concept set, we can see that this cost is of the same magnitude or 
sometimes higher than the cost of the first phase. This short evaluation shows the 
importance of an optimised lattice building method. 

In the literature, we can find several approaches addressing this problem. Only the 
most recent ones are described here. 

The proposal of Ky Hu [3] was published in 1999. The first phase of this method is 
based on Godin's incremental lattice generation method. The algorithm generates the 
concepts in increasing cardinality order of the intent part. According to this principle, the 
parents are generated first, and only after that come die children. This means, that during 
insertion of a new concept into the lattice only the parent neighbours, the ancestor part of 
the lattice should be tested. The lower neighbours will be determined during the insertion of 
the children elements. The concepts of smaller intent size are all tested to find the potential 
parents. For every potential parent, the set of its lower neighbours is tested whether they are 
parents of the new concept. If the candidate element is an upper neighbour, then all nodes 
marked as upper neighbour previously and being an upper neighbour of the tested element 
should be removed from the set of marked nodes. At the end, the marked elements will 
constitute the upper neighbour set. 

The main optimisation elements presented in [3] are 
- only a subset of concepts is tested during the search for potential parents, 
- the test for pruning elements marked previously is reduced to a special subset of 
elements. 

The cost estimation of the algorithm can be given by 

Ca : number of ancestor nodes, 
C„: number of neighbour nodes. 

Another current approach is the algorithm of Lindig presented in [4], The proposed 
concept set and lattice building algorithm is related to the Ganter's method in many aspects. 
The concepts from the concept set are processed in total order to make sure all concepts 
that are inserted into the lattice are also considered for their neighbours. The lectical order 
used in Ganter's method is an appropriate ordering. Due to this processing order only the 
upper neighbour set is needed to be generated here, too. The test for upper neighbours is 
based on extending the extent part with a new element and performing a closure operation. 
The cost estimation for this algorithm can be given by 

i.e. it has the same asymptotic cost value as the next closure method has. 

The method presented in [4] performs an element-wise update of the lattice according 
to a linear extension of the lattice order. The lattice extension is done in a top-down 
manner, starting from the top node and processing the rest of the nodes according to a total 
order which is a linear extension of the lattice order. At each step the current element is 

OiCCr.CM) (39) 

where 

0(CNzM), (40) 
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connected to each of its immediate successors in the final lattice. During the building of the 
lattice a special subset of elements, the so called border elements play an important role. 
The border of a lattice 0 is defined as 

Border(0) = { C, e 0\ VC, 'e (0\0), C, <C, => C, ' = C, } (41) 

where C, and C,' denote concepts in the lattice. During the insertion of a new X concept, the 
border will change. The border set always contains the new element, whereas all elements 
of the old border that are greater than A'are dropped out. The cost estimation of this method 
is 

0(CC,2M) (42) 

where C" denotes the number of elements in the border region. 
Based upon the proposals mentioned here, we can see that every optimisation 

approach is based on the following considerations: 
- the lattice should be built up in a top-down (or bottom-up) manner so only the 
elements of the upper or lower neighbourhood are to be localised; 
- the search for elements of Upp(C) or Low(C) are performed on only a subset of 
the whole lattice. 

This kind of optimisation method requires more or less meta-data structures with significant 
administration cost. In the next section another approach for optimisation of concept lattice 
building is introduced, that is based on a simple insertion. 

6. Efficiency Analysis of the simple lattice building algorithm 

Let us consider now a simple lattice building algorithm which locates the elements of 
Upp(X) and Low(X) for an arbitrary X by using a simple top-down or bottom-up lattice 
scanning method. The search starts at the top (bottom) node traversing the concepts being 
an ancestor or descendant of X. The ancestor nodes having no child with this property are 
the elements of the neighbourhood. The search for neighbours can be defined in a recursive 
way: 

searchjupp(Y,X) 
c=0 
foreach C child of Y do 

if C > X then 
search_upp(C,X) 
C + + 

endif 
endfor 
if c = 0 then 

Upp(X) = Upp(X) + Y 
endif 

where X is the new concept's upper neighbour which we are searching for. Y is the tested 
lattice element. 
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During the tests with different input orders we became aware of another and more 
important factor for efficiency, namely the parent-child relationships among the elements. 
The rule is the following: in the search processes for upper or lower neighbour elements, 
the cost of lattice traversing depends on the number of nodes to be processed and not on the 
number of ancestors or descendants. The number of tested nodes is greater than the number 
of ancestors or descendants as there are a large number of nodes with negative test results. 
These nodes are located on the border of the ancestors' or descendants' sub-lattice. These 
elements are children of the ancestors (or parents of the descendants) but they themselves 
are not ancestors (descendants) of the new element. According to our test results, the cost 
for processing these border elements can be very high and it depends dominantly on the 
position and insertion ordering of the X nodes. The aim of our investigation was to find an 
optimal order of concept insertion yielding a low computational cost. 

During the search for upper neighbour nodes, at every ancestor node, all of the lower 
neighbour elements are tested. A similar statement is true for the search for lower 
neighbouring nodes. The cost of insertion for an arbitrary C concept is proportional to the 
number of nodes to be tested in both directions: 

Costc = ^neSAC NC„ + E„eSDC NP„ (43) 
where 

NCc : the number of lower neighbour nodes at C, 
NPC: the number of upper neighbour nodes at C, 
SAC : the set of ancestors of C, 
SDC : the set of descendants of C. 

The total cost for building the concept lattice is 

Cost = E c e<p Costc • (44) 

After inserting a new element into a lattice, the NC, NP, SA, SD values may change, so the 
NC, NP, SA, SD parameters are a function of the discrete time value. Let's denote this time 
value by i which is a simple sequence number, thus we get 

Cost = E •„/foes™ NC„,i + Enesa/1 NPJ (45) 

where SAni, SDni denote the set of ancestors (descendants) of the concept n at the time 
point i. Similarly, the i index for NC and NP denotes the value at the time point i. At the 
end of the building process, the <2> lattice is built up completely. This resulting lattice does 
not depend on the insertion order of the concepts. So for every C e <t>, NC, NP, SA, SD 
have a given, fixed value. But for any 0 < i < |<P| point of time, these values may be 
unknown. Any of the functions may increase or decrease during the building phase. 

Summarising these considerations, the rule of optimisation can be formulated as 
follows: 

The larger the number of elements below (above) an x element is, the 
longer the number of lower neighbour nodes (upper neighbour nodes) for x 
should remain on such a low value as is possible. 
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This rule implies the following rule that can be implemented easier in the practice: 

The elements with low ancestor (descendant) population should get a 
new upper (lower) neighbour first. 

To provide a feasible method for this problem, a cost saving heuristic optimisation 
method based on the previous considerations is introduced. 

The proposed heuristic method builds an approximate tree structure for the lattice. This 
can be considered as a spanning tree. This tree can be generated in an efficient way and the 
elements are inserted into the lattice in the order based on the hierarchy structure of this 
tree. The information to build this tree can be gathered during the concept set generation 
phase. The tree is processed in a top-down traversing and every processed element will be 
inserted into the lattice according to the order of traversing. The spanning tree is generated 
in the concept set building stage, during the intersection generation phase. The basic 
consideration behind the tree construction algorithm is the following. If 

A = B n C 

then B and C contain A, so B and C are candidate parents of A. The candidate parent 
concept with minimal length (the number of attributes not present in A is minimal) is 
selected as the parent element of A in the spanning tree. 

7. Test Results 

To compare the efficiencies of the different approaches, the different lattice building 
methods were implemented in a test system. The implementation programming language 
was the Java to create a platform independent solution. In the first phase the different lattice 
set building algorithms were tested. According to the test results the proposed fine-tuned 
method provides the best cost values among the tested ones. The next table summarises 
some results related to two different concept sets. 

Table 1: Experimental test results for concept set generation 
Method Elapsed time Size of the concept set 
naive method 245 3865 
Ganter method 14 
Godin method 6 
proposed method 3 
naive method 795 37344 
Ganter method 170 
Godin method 83 
proposed method 42 

In the second phase the lattice building algorithms were tested. Taking the simple 
lattice building algorithm presented in the previous section, the proposed approximation 
tree ordering resulted in a better result than the other methods. It is an interesting 
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experience, that in the case of insertion ordering based on intent size the results are always 
worse than with random ordering. The next closure method that is also based on special 
ordering, is also worse than an average random ordering method. The following table 
shows the computational cost in elapsed time and in number of performed set operations. 

Table 2: Experimental test results for lattice building 
Method Elapsed time Number of operations 
spanning tree order 10 7068255 
lattice top-down traversing order 9 6093848 
Keyun method's order 12 7136129 
normal intersection order 13 8181065 
random order 23 17020450 
next closure order 40 38784364 
increasing set size order 71 49308966 
Valtchev method's order 98 56898773 

In the tests, the size of the concept lattice is between 100 and 12000. All of the 
contexts were generated randomly. 

We should mention that these results are based on the simple insertion algorithm. The 
methods mentioned in Table 2 are usually based on modified lattice building algorithms 
which include some kind of heuristic elements, too. In the next closure method, for 
example, the searching phase for the descendants is omitted as the current incoming 
element is always the smallest one without any descendants. Eliminating this step, the total 
cost can be significantly reduced. Thus, the result values in the table are related only to the 
insertion order, the original lattice building algorithms can provide better cost values. The 
aim of this investigation was only to analyse the effect of different insertion orders during 
the lattice building algorithm. 
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