
Production Systems and Information Engineering, Miskolc, Vol. 1. (2003), pp. 91-133

ALGORITHMS FOR BUILDING CONCEPT SETS AND
CONCEPT LATTICES

LÁSZLÓ KOVÁCS
Department of Information Technology, University of Miskolc

H-3515 MISKOLC, Hungary
kovacs@iit.uni-miskolc.hu

[Received May 2002 and accepted March 2003]

Abstract. In our days there is an increasing interest on the application of concept lattices for
data mining, especially for generating association rules. The building of concept lattice
consists of two, usually distinct phases. In the first phase the set of concepts is generated.
The lattice is built in the second phase from the generated set. The paper gives an overview
of the available methods and presents a proposed method for contexts of large size where
the full context can not be stored in the main memory and some objects may be repeated in
the context several times. The proposed algorithm for concept set generation is a fine-tuned
version of the incremental concept set building method. At the end of the paper, the test
results for comparing the new method with some known methods are given. The proposed
method yields in a significantly better cost value than the other methods under the assumed
conditions.

Keywords: formal concept analysis, concept lattice, algorithm, cost function

1. Introduction

Concept lattices are used in many application areas to represent conceptual hierarchies
stored in a hidden form in the underlying data. The field of Formal Concept Analysis [1]
introduced in the early 80ies has grown to a powerful theory for data analysis, information
retrieval and knowledge discovery. In our days, there is an increasing interest on the
application of concept lattices for data mining especially for generating association rules
[8], One of the main characteristics of this application area is the large amount of structured
data to be analysed. Beside this area another important application field is the program
analysis inside a compiler using concept lattices of very large size. A technical oriented
application field of Formal Concept Analysis is the area of production planning where
concept lattices are used to partition the products into disjoint groups yielding an optimal
processing cost [6]. Since the cost of building a concept lattice is a super-linear function of
the corresponding context size, the efficient computing of concept lattices is a very
important issue investigated for several years [5],

The building of concept lattices consists of two usually distinct phases. In the first
phase the set of concepts is generated. The lattice is built in the second phase from the
generated set. We can find proposals in the literature for both variants, i.e. there are
proposals addressing only one of the two phases and there are methods for combining these
phases into a single algorithm. Based on the analysis of these methods, the cost for both
steps is about the same order of magnitude and the asymptotic cost depends on mainly three
parameters: the number of objects, the number of attributes and the number of concepts.

mailto:kovacs@iit.uni-miskolc.hu

92 L. Kovács

The cost is always larger than the product of these parameters. The concept-set generation
algorithms have two main variants. The methods of the first group work in batch mode,
assuming that every element of the context table is already present. The most widely known
member of this group is the Ganter's next closure method. The other group of proposals
uses an incremental building mode. In this case, the concept set is updated with new
elements if the context is extended with a new object. The Godin's method belongs to this
group. Regarding the phase for building the lattice, the proposed approaches are based on
the considerations that the lattice should be built up in a top-down (or bottom-up) manner
because in this case only the elements of the upper (or lower) neighbourhood are to be
localised. The second usual optimisation step is to reduce the set of lattice elements tested
during the localisation of the nearest upper or lower neighbour elements.

This paper addresses both of the problems, the generating of concept sets and the
building of concept lattices. The proposal is intended to use for contexts of large size where
the full context can not be stored in the main memory. According to our assumption, the
access to context data is an expensive operation. Another basic feature of the investigated
problem area is that the same incoming attribute set may occur several times in the different
input objects, i.e. the objects may have the same set of attributes in the context.

This section gives only a brief overview of the basic notations of the theory for Formal
Concept Analysis. For a more detailed description, see [1],

A K context is a triple K(G,M,I) where G and M are sets and / is a relation between G
and M. The G is called the set of objects and M is the set of attributes. The cross table T of
a context K(G,MJ) is a matrix form description of the relation /:

2. Formal Concept Analysis

tij = 1 , i igJa j and
0 otherwise,

(1)

where g, e G, aj s M.
For every A cz G, a derivation operator is defined:

A'= {a e M\gIaioxV geA } (2)

and for every ficM

B'={ge G\gIafoTV aeB}. (3)

The pair C(A,B) is a concept of the K context if

-AQG
-BQM
-A' = B
- B' = A

(4)

Algorithms for Building Concept Set and Concept Lattice 93

are satisfied. In this case, the A is called the extent and B is the intent of the C concept. It
can be shown that for any A, <zG,ieI

(S-^i E / Aj)' = F"L,E / A'l (5)

and similarly for any Bi c M, i e I

(yjie!Bd' = nielB', (6)

is satisfied.
Considering the 0 set of all concepts for the K context, an ordering relation can be

introduced for the concept set in the following way:

C, < C2 (7)
if

Ai^A 2

where C, and C2 are arbitrary concepts. It can be shown that for every (CUC2) pair of
concepts, the following rules hold true:

C, A C2 e 0) (8)
and

C, v C2 e O.

Based on these features, (0, <) is a lattice, called concept lattice. According to the Basic
Theorem of concept lattices, (<P, <) is a complete lattice, i.e. the infinum and suprenum
exist for every set of concepts. The following rules hold true for every family (Ah B,), i e I
of concepts:

v , e / (A h Bt) = (n , 6 , A „ (u , e , B y) , (9)
a ,• 6 / (A„ Bi) = ((u, e ,AJ , e , Bi)

where A" denotes the closure of the set A and it is defined as derivation of the derivated set:

A" = (A')'. (10)

Using these definitions and rules, some other important and interesting rules may be
derived. Some of the derived rules are given in the following list:

A,cA2=>A2
,QA ,', (11)

A^iA')-,

The structure of the concept lattice can be used not only to describe the concepts
hidden in the underlying data system, but it shows the generalisation relation among the

94 L. Kovács

objects and it can be used for clustering purposes, too. A good description on the related
chapters of the lattice theory can be found among others in [2].

3. Algorithms for Generating the Concept Set

As for every concept the extent part is determined unambiguously by the intent part,
the generation of the intent parts is investigated only. In most data mining applications the
intent parts are enough to generate the rules. The rules define a relation, an implication
among the attributes, i.e. on the intent parts. The actual support set for the rules is usually
not important.

Among the sophisticated concept set generation algorithms the Ganter's next closure
algorithm [1] is probably the most widely known method. It is widely accepted by experts,
that this algorithm is not only the best known but the most effective one, too [4], The
concepts are generated according to an ordering relation. Based on the indexing of the
elements, the lexicographical ordering between the concepts is defined in the following
way:

A <B o 3 a , e G: A <i B (12)

where

A<iB <=> a, e B\A , A n{ai,...,aM } = B n{ai,...,a,-.i} (13)

This method calculates the extent part first, and the intent part is generated from the
extent part. The key function element, the next extent routine, tests several extent variants
until it finds an appropriate one. The total asymptotic cost of the algorithm is equal to

0(CN2<j+ CN2M) (14)

where
C : the number of concepts in the concept set, and
a is a cost unit.

Regarding the efficiency of this algorithm and the objectives, some facts should be
taken into consideration:

1. the disk IO cost may be very high if N is high;
2. the total cost is proportional to N2, so it will be resulted in high costs for
contexts with large number of objects, as it is assumed in our investigation.

One of the main characteristics of the Ganter's algorithm is that it accesses the context table
several times during the generation of a concept. As the same context table element is
accessed several times it is clear, this method assumes that

a: all parts of the context table are present at the concept set generation;
b: the context table can fit into the memory with low cost access operations.

Based on these assumptions, this method is called a batch method. A different kind of
approach is presented by Godin [2], His proposal is an incremental concept formation
method, where the concept set is updated in an incremental manner, i.e. the set is updated

Algorithms for Building Concept Set and Concept Lattice 95

when the context table is extended by a new object instance. In this kind of method, every
context table element is accessed only once, yielding a minimal 10 cost. The building of the
concept set in incremental mode is based on the following rule:

Every new concept intent after inserting a new object into the context,
will be the result of intersecting the attribute set of the new object with
some intent set already present in the concept set.

Godin's method can be used for updating the concept set after insertion of a new object
into the context. The algorithm consists of the following main steps. First, the concepts are
partitioned into buckets based on the cardinality. Next, the buckets are processed in
ascending cardinality order. Every intent in the current bucket is intersected with the intent
set of the new object. If the result set is not present in the concept set, it will be added. The
cost estimation for the algorithm can be given by

This fonnula assumes linear existence testing. Linear testing was implemented in the
algorithm as testing can be reduced to the subset of the so called marked elements. The
marking test can be performed only in linear mode. In the cost estimation formula D
denotes the number of elements with a mark. This mark is assigned to the elements
generated in the current phase. Comparing this cost function with the cost estimation of the
next closure method, we can see that the incremental method will be more efficient if

1: the crcost unit is high;
2: or TV is high.

On the other hand, the cost of Godin's method is more sensitive to the C size of the
concept set.

Beside these two basic concept set generation algorithms, there are some other
proposals in the literature, mainly some kind of optimisation of the basic algorithms. From
these papers, only some of the most recent ones will be presented here to demonstrate the
computational efficiency of the most up-to-date variants.

In the paper of Hu [3], the concept set generation process is coupled with the
calculation of the support value in order to discover association rules from the concept
lattice. The concept set building part is based on the incremental method of Godin, thus
resulting the same asymptotic calculation cost estimation value:

Another proposal is the Titanic algorithm, presented in [7]. This method uses the
support values of the different attribute sets to determine the concept intents. It generates
the candidate generator sets in increasing order of the size. A set is called a generator set if
its closure is a concept intent and it is minimal, i.e. it does not contain any other generators
for the Same concept intent. The method processes first the one-attribute-long candidates
and after then generates the candidate sets for the next level. At the next level, the length of
the intents is increased by one

0(Ncr + CNDM). (15)

0(N<j+ CNDM). (16)

96 L. Kovács

0{NMa + aMCN+a^M). (17)

The algorithm processes not only the concepts, but all of the candidates, thus in the cost
estimation formula, a denotes how many times the number of candidates is larger than the
number of concepts. This value is always greater than 1. The most costly part of the
algorithm is the generation of candidate sets. In this phase, every pair at level / having the
same values in the first (/-l) attributes will be processed to generate a new candidate set at

The proposal of Lindig given in [4], is aimed at not only the generation of the concept
set but on the building of the whole concept lattice. If we consider now only the concept set
generation part of the algorithm, this method is related to the Ganter's method in many
aspects. It assumes a lectical ordering among the concepts and the concepts are processed
according to this ordering. The method also generates for every new concept the set of
upper neighbour concepts to use this kind of information during the insertion into the
concept lattice.

The neighbours of a concept are generated using the closure operation for the candidate
neighbour attribute sets. At every call of the neighbour routine the full context table is
scanned. The cost estimation of this algorithm is

Thus the asymptotic complexity is the same as for the Ganter's method.

The aim of the investigation was to find an efficient algorithm that can be used for
cases with large context size, so the proposals found in the literature were evaluated using
the following criteria:

1. the disk 10 should be minimal, every context table should be accessed only
once and
2. the in-memory operations should be optimised to omit the redundant
calculations.

Based upon these selection criteria, the incremental method is the best solution as it
has only a linear disk 10 cost and not all elements of the context table should be available at
the beginning of the concept set building. To achieve a better performance, the objective
was to improve the in-memory operations of the existing incremental methods. In the next
sections of the paper a fine-tuned version of the incremental concept set building method is
presented and the efficiency of the proposed method is also demonstrated with comparison
tests. Based upon the test results, we can say that the incremental methods can outperform
the batch method in practical applications. This result is in consonance with the results of
Godin.

According to the properties of the incremental methods, the context table is generated
by adding single objects one by one, after each other. Let's denote the intent part of the
concept set built up from the first k objects by

level /.

0(Nccr+ CN2M). (18)

4. Fine tuned incremental method

U

Algorithms for Building Concept Set and Concept Lattice 97

The Lk+] is constructed from Lk and ak where a* denotes the k-th object in the input list. The
generation of Lk is based on the following considerations that can be proven very easily
from the basic properties of the concept lattices, so we omit here the proofs.

Proposition 1.

for every ake G: A(ak) e Lk (19)

where A (a) denotes the attribute set of object a.

Proposition 2.

for every A£ e Lk=> A n B e Lk. (20)

Proposition 3.

for every A e A ± A(ak), A £ Lk:3 B e Lk:A= A(a^0 n i . (21)

Based on these propositions, in every iteration loop starting with Lk, the A(ak) can be added
first to L and then the intersections of A(ak) with the elements already present in the Lk are
generated and inserted into L&\. Since the number of possible pairs for an intersection is
very large, the algorithm has a high cost in testing the intersections. A possibility of cost
reduction is provided by the fact that not every pair generates a new concept intent. Most of
the pairs yield in an existing intent value. The key point for fine tuning of the incremental
algorithm in our proposal is based on the following simple considerations:

Proposition 4.

for every A,B,C e Lk, A n B = 0, C c A: CnB = 0. (22)

The meaning of this rule is for us the following: if A is disjoint with some B then all of its
subsets can be pruned from testing.

Proposition 5.

for every A, B, C e Lk,A QB,C^A: C c f i and C n B = C. (23)

Thus, if an intent part is a subset of the tested element, then all its subsets can be
eliminated.

Proposition 6.

if 3 B e Lk, A(ak)) = B then for V C e Lk: CnAfaJ e Lk. (24)

Thus, if an intersect part is presented in the concept set, then the whole testing loop for
A(ak) can be eliminated.

98 L. Kovács

To implement the cost reduction elements into the concept set building algorithm, the
following modifications of the basic incremental method were developed:

1. Before the testing loop for the new incoming object, it is tested whether it equals
an already existing intent part. The test for existence checking is performed using a
B-tree structure, resulting in a test cost of 0(log(C)).
2. Before the intersects of the elements would be inserted into the concept set, the
candidate elements (the results of the intersections) are stored in a hash table, so the
sets generated repeatedly can be detected in a cost effective way.
3. To reduce the redundant intersection tests, the elements of the concept set are
stored in a special pointer list where the elements containing a given attribute value
are connected to each other. The intersection operation should be performed only
for elements having at least one common attribute. Thus the intersection test for
disjoint elements can be eliminated.
4. To eliminate the insertion testing for intents already present in the concept set,
during the intersection phase, a special marker is used in the hash table. In most
cases, the existence can be detected in the hash table building phase, before the
insertion phase.

Based on these considerations, the structure of the algorithm is
LI loop

read_next(a)
findinBtree(a)

Cl if not foundO then
update_pointer_chain(a)
insertset(a)

L2 foreach X(element of) L(k), X(intersect) A(a) not = 0 do
Y = X (intersect) A(a)
insert_hash(Y)

endfor
L3 foreach X elements in hash do

ifit is not marked then
insert_set(X)

endif
endfor

endif
until (no more input)

The estimated cost of the proposed algorithm is calculated in the following way.
read_next() 0(d)
find_in_Btree 0(Mlog(C'))
update_pointer_chain O(M)
inserthash O(M)
intersect O(M)
LI loop it is executed for every object, so the number of

iterations is equal to N

Algorithms for Building Concept Set and Concept Lattice 99

L2 loop it is executed for every intent set having common
attribute with the new object, the number of iterations is
equal to C where C <C

L3 loop the insert operation is performed only if the intersection
result is not marked, the number of iterations: C" « C

C1 branching the inner part is executed for objects with a new
attribute set, N'<N

The total cost can be given by

0(N{a+ MlogC)} + N'{M+ MlogC + C'{M) + C"{MlogC) }). (25)

This expression can be transformed into a simpler form

0(Ncr + NMlogC + N'MlogC + N 'C'M +N 'C'MlogC) (26)

and pruning the non-dominant tags:

0(Na + NMlogC + N'MlogC + N 'C'MlogC). (27)

One of the benefits of this algorithm is that it can reduce the computational cost if the
new object has an attribute set contained in the context already. In applications this case
may occur often, for example in processing questionnaires where several people may give
the same answer. The C' value is the number of sets having intersection with the new
object's attribute set. A rough estimation for C can be given as follows:

Let's denote the length of the attribute set of the objects by K. For K = 1, the
probability that it has no common part with a subset of M is equal to

2m-'/2m='/2 (28)

so

P, ='/, .

In a similar way we get, that

P,= 1/2'

The number of subsets having length i is equal to

fM"

J /

(29)

(30)

(31)

So the probability that an arbitrary subset has no common part with an other subset is

100 L. Kovács

(M

\L J

Pj/2 = (Z I
\ l j

1/2') / 2 M = (3/4)"
(32)

Although, the relative gain of using this intersection pointer list is lower for large M values,
the absolute number of testing that can be omitted is large enough to use this kind of
optimisation in the applications.

Regarding the C" value, the gain here can be more dominant as the number of pruned sets
is much higher. If ck is the number of concepts after inserting the fc-th object, then the
following holds true:

1 = c , < c 2 < . . . < c „ = | q . (33)

The total number of insertion testing without marking is

c, + c2 + + cN. (34)

So, the gain of the reduction is equal to the difference

c, + c2 + + cN - | q . (35)

A rough estimation for ck can be

0(k2) (36)

so this reduction step is very important.

5. Algorithms for Building Concept Lattices
Let's denote the set of concepts and the ordering relation on this set by (0 <). For any

arbitrary concept C, the upper and lower neighbour can be defined in the following way.
An L e 0 is a lower neighbour of C if

L <C and !3 X e 0: L <X<C. (37)

The upper neighbour can be defined in a similar way. In a lattice an element may have
several upper and lower neighbour elements. We denote the set of lower (upper) neighbours
for C by Low(C) and Upp(C). For building the lattice Low(C) and Upp(C) must be known
for every C.

The naive way to generate Upp(C), Low(C) is to test all of the concept pairs. The main
structure of the algorithm for Upp(C) consists of two nested loops to test every concept
pair. If one of them is the ancestor of the other then it should be tested whether there is
another element being between these two elements. So, this algorithm contains three nested
loops and the cost of the execution can be estimated by the following formula:

OiC^CuM) (38)

Algorithms for Building Concept Set and Concept Lattice 101

where C„ is the number of upper neighbours. Comparing this estimation with the cost
values for generating the concept set, we can see that this cost is of the same magnitude or
sometimes higher than the cost of the first phase. This short evaluation shows the
importance of an optimised lattice building method.

In the literature, we can find several approaches addressing this problem. Only the
most recent ones are described here.

The proposal of Ky Hu [3] was published in 1999. The first phase of this method is
based on Godin's incremental lattice generation method. The algorithm generates the
concepts in increasing cardinality order of the intent part. According to this principle, the
parents are generated first, and only after that come die children. This means, that during
insertion of a new concept into the lattice only the parent neighbours, the ancestor part of
the lattice should be tested. The lower neighbours will be determined during the insertion of
the children elements. The concepts of smaller intent size are all tested to find the potential
parents. For every potential parent, the set of its lower neighbours is tested whether they are
parents of the new concept. If the candidate element is an upper neighbour, then all nodes
marked as upper neighbour previously and being an upper neighbour of the tested element
should be removed from the set of marked nodes. At the end, the marked elements will
constitute the upper neighbour set.

The main optimisation elements presented in [3] are
- only a subset of concepts is tested during the search for potential parents,
- the test for pruning elements marked previously is reduced to a special subset of
elements.

The cost estimation of the algorithm can be given by

Ca : number of ancestor nodes,
C„: number of neighbour nodes.

Another current approach is the algorithm of Lindig presented in [4], The proposed
concept set and lattice building algorithm is related to the Ganter's method in many aspects.
The concepts from the concept set are processed in total order to make sure all concepts
that are inserted into the lattice are also considered for their neighbours. The lectical order
used in Ganter's method is an appropriate ordering. Due to this processing order only the
upper neighbour set is needed to be generated here, too. The test for upper neighbours is
based on extending the extent part with a new element and performing a closure operation.
The cost estimation for this algorithm can be given by

i.e. it has the same asymptotic cost value as the next closure method has.

The method presented in [4] performs an element-wise update of the lattice according
to a linear extension of the lattice order. The lattice extension is done in a top-down
manner, starting from the top node and processing the rest of the nodes according to a total
order which is a linear extension of the lattice order. At each step the current element is

OiCCr.CM) (39)

where

0(CNzM), (40)

102 L. Kovács

connected to each of its immediate successors in the final lattice. During the building of the
lattice a special subset of elements, the so called border elements play an important role.
The border of a lattice 0 is defined as

Border(0) = { C, e 0\ VC, 'e (0\0), C, <C, => C, ' = C, } (41)

where C, and C,' denote concepts in the lattice. During the insertion of a new X concept, the
border will change. The border set always contains the new element, whereas all elements
of the old border that are greater than A'are dropped out. The cost estimation of this method
is

0(CC,2M) (42)

where C" denotes the number of elements in the border region.
Based upon the proposals mentioned here, we can see that every optimisation

approach is based on the following considerations:
- the lattice should be built up in a top-down (or bottom-up) manner so only the
elements of the upper or lower neighbourhood are to be localised;
- the search for elements of Upp(C) or Low(C) are performed on only a subset of
the whole lattice.

This kind of optimisation method requires more or less meta-data structures with significant
administration cost. In the next section another approach for optimisation of concept lattice
building is introduced, that is based on a simple insertion.

6. Efficiency Analysis of the simple lattice building algorithm

Let us consider now a simple lattice building algorithm which locates the elements of
Upp(X) and Low(X) for an arbitrary X by using a simple top-down or bottom-up lattice
scanning method. The search starts at the top (bottom) node traversing the concepts being
an ancestor or descendant of X. The ancestor nodes having no child with this property are
the elements of the neighbourhood. The search for neighbours can be defined in a recursive
way:

searchjupp(Y,X)
c=0
foreach C child of Y do

if C > X then
search_upp(C,X)
C + +

endif
endfor
if c = 0 then

Upp(X) = Upp(X) + Y
endif

where X is the new concept's upper neighbour which we are searching for. Y is the tested
lattice element.

Algorithms for Building Concept Set and Concept Lattice 103

During the tests with different input orders we became aware of another and more
important factor for efficiency, namely the parent-child relationships among the elements.
The rule is the following: in the search processes for upper or lower neighbour elements,
the cost of lattice traversing depends on the number of nodes to be processed and not on the
number of ancestors or descendants. The number of tested nodes is greater than the number
of ancestors or descendants as there are a large number of nodes with negative test results.
These nodes are located on the border of the ancestors' or descendants' sub-lattice. These
elements are children of the ancestors (or parents of the descendants) but they themselves
are not ancestors (descendants) of the new element. According to our test results, the cost
for processing these border elements can be very high and it depends dominantly on the
position and insertion ordering of the X nodes. The aim of our investigation was to find an
optimal order of concept insertion yielding a low computational cost.

During the search for upper neighbour nodes, at every ancestor node, all of the lower
neighbour elements are tested. A similar statement is true for the search for lower
neighbouring nodes. The cost of insertion for an arbitrary C concept is proportional to the
number of nodes to be tested in both directions:

Costc = ^neSAC NC„ + E„eSDC NP„ (43)
where

NCc : the number of lower neighbour nodes at C,
NPC: the number of upper neighbour nodes at C,
SAC : the set of ancestors of C,
SDC : the set of descendants of C.

The total cost for building the concept lattice is

Cost = E c e<p Costc • (44)

After inserting a new element into a lattice, the NC, NP, SA, SD values may change, so the
NC, NP, SA, SD parameters are a function of the discrete time value. Let's denote this time
value by i which is a simple sequence number, thus we get

Cost = E •„/foes™ NC„,i + Enesa/1 NPJ (45)

where SAni, SDni denote the set of ancestors (descendants) of the concept n at the time
point i. Similarly, the i index for NC and NP denotes the value at the time point i. At the
end of the building process, the <2> lattice is built up completely. This resulting lattice does
not depend on the insertion order of the concepts. So for every C e <t>, NC, NP, SA, SD
have a given, fixed value. But for any 0 < i < |<P| point of time, these values may be
unknown. Any of the functions may increase or decrease during the building phase.

Summarising these considerations, the rule of optimisation can be formulated as
follows:

The larger the number of elements below (above) an x element is, the
longer the number of lower neighbour nodes (upper neighbour nodes) for x
should remain on such a low value as is possible.

104 L. Kovács

This rule implies the following rule that can be implemented easier in the practice:

The elements with low ancestor (descendant) population should get a
new upper (lower) neighbour first.

To provide a feasible method for this problem, a cost saving heuristic optimisation
method based on the previous considerations is introduced.

The proposed heuristic method builds an approximate tree structure for the lattice. This
can be considered as a spanning tree. This tree can be generated in an efficient way and the
elements are inserted into the lattice in the order based on the hierarchy structure of this
tree. The information to build this tree can be gathered during the concept set generation
phase. The tree is processed in a top-down traversing and every processed element will be
inserted into the lattice according to the order of traversing. The spanning tree is generated
in the concept set building stage, during the intersection generation phase. The basic
consideration behind the tree construction algorithm is the following. If

A = B n C

then B and C contain A, so B and C are candidate parents of A. The candidate parent
concept with minimal length (the number of attributes not present in A is minimal) is
selected as the parent element of A in the spanning tree.

7. Test Results

To compare the efficiencies of the different approaches, the different lattice building
methods were implemented in a test system. The implementation programming language
was the Java to create a platform independent solution. In the first phase the different lattice
set building algorithms were tested. According to the test results the proposed fine-tuned
method provides the best cost values among the tested ones. The next table summarises
some results related to two different concept sets.

Table 1: Experimental test results for concept set generation
Method Elapsed time Size of the concept set
naive method 245 3865
Ganter method 14
Godin method 6
proposed method 3
naive method 795 37344
Ganter method 170
Godin method 83
proposed method 42

In the second phase the lattice building algorithms were tested. Taking the simple
lattice building algorithm presented in the previous section, the proposed approximation
tree ordering resulted in a better result than the other methods. It is an interesting

Algorithms for Building Concept Set and Concept Lattice 105

experience, that in the case of insertion ordering based on intent size the results are always
worse than with random ordering. The next closure method that is also based on special
ordering, is also worse than an average random ordering method. The following table
shows the computational cost in elapsed time and in number of performed set operations.

Table 2: Experimental test results for lattice building
Method Elapsed time Number of operations
spanning tree order 10 7068255
lattice top-down traversing order 9 6093848
Keyun method's order 12 7136129
normal intersection order 13 8181065
random order 23 17020450
next closure order 40 38784364
increasing set size order 71 49308966
Valtchev method's order 98 56898773

In the tests, the size of the concept lattice is between 100 and 12000. All of the
contexts were generated randomly.

We should mention that these results are based on the simple insertion algorithm. The
methods mentioned in Table 2 are usually based on modified lattice building algorithms
which include some kind of heuristic elements, too. In the next closure method, for
example, the searching phase for the descendants is omitted as the current incoming
element is always the smallest one without any descendants. Eliminating this step, the total
cost can be significantly reduced. Thus, the result values in the table are related only to the
insertion order, the original lattice building algorithms can provide better cost values. The
aim of this investigation was only to analyse the effect of different insertion orders during
the lattice building algorithm.

Acknowledgements
This work has been supported by the Hungarian Eötvös State Fellowship Grant No.: MÖB
595-1-2001.

REFERENCES

1. GANTER, B., WILLE, R.: Formal Concept Analysis: Mathematical Foundations,
Springer Verlag, 1999.

2. GODIN, R., MISSAOUI, R., ALAOUI, H.: Incremental concept formation algorithms
based on Galois lattices, Computational Intelligence, 11(2), 1995, pp. 246-267.

3. HU, K., LU, Y., SHI, C: Incremental Discovering Association Rules'. A Concept
Lattice Approach, Proceedings of PAKDD99, Beijing, 1999, pp. 109-113.

4. LINDIG, C.: Fast Concept Analysis, Proceedings of the 8th ICCS, Darmstadt, 2000.
5. NOURINE, L., RAYNAUD, O.: A Fast Algorithm for Building Lattices, Information

Processing Letters, 71, 1999, pp. 197-210.
6. RADELECZKI, S., TÓTH, T.: Fogalomhálók alkalmazása a csoporttechnológiában,

OTKA kutatási jelentés, Miskolc, Hungary, 2001.

106 L. Kovács

7. STUMME, G. , TAOUIL, R., BASTIDE, Y., PASQUIER, N., LAKHAL, L.: Fast
Computation of Concept Lattices Using Data Mining Techniques, 7th International
Workshop on Knowlegde Representation meets Databases (KRDB 2000), Berlin, 2000.

8. ZAKI, M., OGIHARA, M. Theoretical Foundations of Association Rules, Proceedings
of 3 rd SIGMOD'98 Workshop on Research Issues in Data Mining and Knowledge
Discovery (DMKD'98), Seattle, Washington, USA, June 1998.

9. KOVÁCS, L.: Efficiency Analysis of Building Concept Lattice, Proceedings of 2nd

ISHR on Computational Intelligence, Budapest, 2001.

	 - 0094
	 - 0095
	 - 0096
	 - 0097
	 - 0098
	 - 0099
	 - 0100
	 - 0101
	 - 0102
	 - 0103
	 - 0104
	 - 0105
	 - 0106
	 - 0107
	 - 0108
	 - 0109

