
Production Systems and Information Engineering, Miskolc, Vol. 1. (2003), pp. 107-133 

FUZZY Q-LEARNING IN SVD REDUCED 
DYNAMIC STATE-SPACE 

SZILVESZTER KOVÁCS' 
Department of Information Technology, University of Miskolc, 

Miskolc-Egyetemváros, Miskolc, H-3515, Hungary 
szkovacs@iit.uni-miskolc.hu 

Péter BÁRÁNYI' 
Department of Telecommunication and Telematics, Technical University of Budapest, 

Pázmány Péter sétány 1/d, B223, Budapest, H-l 117, Hungary 
baranyi@ttt.bme.hu 

[Received May 2002 and accepted April 2003] 

'intelligent Integrated Systems Japanese Hungarian Laboratory, 
Budapest University of Technology and Economics, Hungary 

Abstract. Reinforcement Learning (RL) methods, surviving the control difficulties of the 
unknown environment, are gaining more and more popularity recently in the autonomous 
robotics community. One of the possible difficulties of the reinforcement learning 
applications in complex situations is the huge size of the state-value- or action-value-
function representation [17]. The case of continuous environment (continuous valued) 
reinforcement learning could be even complicated, as the state-value- or action-value-
functions are turning into continuous functions. In this paper we suggest a way for tackling 
these difficulties by the application of SVD (Singular Value Decomposition) methods [6], 
[19], [20], 
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1. Introduction 

Reinforcement learning methods are trial-and-error style learning methods adapting 
dynamic environment through incremental iteration. The principal ideas of reinforcement 
learning methods, the dynamical system state and the idea of "optimal return" or "value" 
function are inherited from optimal control and dynamic programming [7], One common 
goal of the reinforcement learning strategies is to find an optimal policy by building the 
state-value- or action-value-function [17]. The state-value-function is a function of 
the expected return (a function of the cumulative reinforcements), related to a given state 
s e 5 as a starting point, following a given policy it. Where the states of the learning agent 
are observable and the reinforcements (or rewards) are given by the environment. These 
rewards are the expression of the goal of the learning agent as a kind of evaluation follows 
the recent action (in spite of the instructive manner of error feedback based approximation 
techniques, like the gradient descent training). The policy is the description of the agent 
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behaviour, in the form of mapping between the agent states and the corresponding suitable 
actions. The action-value function Q"(s,a) is a function of the expected return, in case of 
taking action a E A in a given state s, and then following a given policy JI. Having the 
action-value-function, the optimal (greedy) policy, which always takes the optimal (the 
greatest estimated value) action in every state, can be constructed as [17]: 

;r(i)= arg max a)- (1) 
at A, 

(Where the function arg is standing for the indexes of the set of possible actions.) 
Namely for estimating the optimal policy, the action-value function Q"(s,a) is needed to 

be approximated. In discrete environment (discrete states and discrete actions) it means, 
that at least XIWI element must be handled. (Where || is the cardinality of the set of 

possible actions in state s.) Having a complex task to adapt, both the number of possible 
states and the number of the possible actions could be an extremely high value. 

1.1 Reinforcement Learning in Continuous Environment 

To implement reinforcement learning in continuous environment (continuous valued 
states and actions), function approximation methods are widely used. Many of these 
methods are applying tailing or partitioning strategies to handle the continuous state and 
action spaces in the similar manner as it was done in the discrete case [17]. One of the 
difficulties of building an appropriate partition structure (the way of partitioning the 
continuous universe) is the anonymity of the action-value-function structure. Applying fine 
resolution in the partition leads to high number of states, while coarse partitions could yield 
imprecise or unadaptable system. Handling high number of states also leads to high 
computational costs, which could be also unacceptable in many real time applications 

There are many methods in the literature for applying fuzzy techniques in reinforcement 
learning (e.g. for "Fuzzy Q-Leaming" [1], [8], [9], [11], [12]). One of the main reasons of 
their application beyond the simplicity of expressing priory knowledge in the form of fuzzy 
rules is the universal approximation property [10], [22] of the fuzzy inference. It means that 
any kind of function can be approximated in an acceptable level, even if the analytic 
structure of the function is unknown. Despite of this useful property, the use of fuzzy 
inference could be strictly limited in time-consuming reinforcement learning by its 
complexity problems [13], because of the exponential complexity problem of fuzzy rule 
bases [5], [20]. Fuzzy logic inference systems are suffering from exponentially growing 
computational complexity in respect to their approximation property. This difficulty comes 
from two inevitable facts. The first is that the most adopted fuzzy inference techniques do 
not hold the universal approximation property, if the numbers of antecedent sets are limited, 
as stated by Tikk in [18]. Furthermore, their explicit functions are sparse in the 
approximation function space. This fact inspires to increase the density, the number of 
antecedents in pursuit of gaining a good approximation, which, however, may soon lead to 
a conflict with the computational capacity available for the implementation, since the 
increasing number of antecedents explodes the computational requirement. The latter is the 
second fact and stated by Kóczy et al. in [13]. The effect of this contradiction is gained by 
the lack of a mathematical framework capable of estimating the necessary minimal number 
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of antecedent sets. Therefore a heuristic setting of the number of antecedent sets is applied, 
which usually overestimates, in order to be on the safe side, the necessary number of 
antecedents resulting in an unnecessarily high computational cost. E.g. the structurally 
different Fuzzy Q-Leaming method implementations introduced [8], [9], [11] and [12] are 
sharing the same concept of fixed, predefined fuzzy antecedent partitions, for state 
representation. One possible solution for this problem is suggested in [1], By introducing 
"Adaptive State Partitions", an incremental fuzzy clustering of the observed state 
transitions. This method can lead to a better partition than the simple heuristic, by finding 
the best fitting one in respect to the minimal squared error, but still has the problem of 
limited approximation property inherited from the limited number of antecedent fuzzy sets. 

Another promising solution, as a new topic in fuzzy theory, is the application of fuzzy 
rule base complexity reduction techniques. 

1.2 Fuzzy rule base complexity reduction 

The main goal of introducing fuzzy rule base complexity reduction techniques in 
reinforcement learning is enhancing the universal approximation property of the fuzzy 
inference by extending the number of antecedent sets while the computational complexity 
is kept relatively low. SVD based fuzzy approximation technique was initialized in 1997 by 
Yam [19], which directly finds a minimal rule-base from sampled values. Shortly after, this 
concept was introduced as SVD fuzzy rule base reduction and structure decomposition in 
[2], [20]. Its key idea is conducting SVD of the consequents and generating proper linear 
combinations of the original membership functions to form new ones for the reduced set. 
An extension of [21] to multi-dimensional cases may also be conducted in a similar fashion 
as the Higher Order SVD (HOSVD) reduction technique proposed in [5], [19], [20], Further 
developments of SVD based fuzzy reduction are proposed in [3], [5] and its extension to 
the generalized inference forms are proposed in [14], [15], [16]. 

The key idea of using SVD in complexity reduction is that the singular values can be 
applied to decompose a given system and indicate the degree of significance of the 
decomposed parts. Reduction is conceptually obtained by the truncation of those parts, 
which have weak or no contribution at all to the output, according to the assigned singular 
values. This advantageous feature of SVD is used in this paper for enhancing the universal 
approximation property of the fuzzy inference by extending the number of antecedent sets 
while the computational complexity is kept relatively low. The complexity and its reduction 
is discussed in regard of the number of rules, which result simplicity in operating with the 
rules, in reinforcement learning methods. 

On the other hand, as one of the natural problems of any complexity reduction technique, 
the adaptivity property of the reduced approximation algorithm becomes highly restricted. 
Since the crucial concept of the Fuzzy Q-leaming is based on the adaptivity of the action-
value function this paper is aimed propose to adopt an algorithm [6] capable of embedding 
new approximation points into the reduced approximation while the calculation cost is kept 
(where the calculation cost could be defined in the terms of the number of product 
operations done during the calculation). 
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2. Fuzzy Q-Learning 

For introducing a possible way of application of SVD complexity reduction techniques in 
Fuzzy Reinforcement Learning, a simple direct (model free) reinforcement learning 
method, the Fuzzy Q-Learning, was chosen. 

The goal of the Q-leaming is to find the fixed-point solution Q of the Bellman Equation 
[7] through iteration. In discrete environment Q-Learning [23], the action-value-function is 
approximated by the following iteration: 

a , - e S 1 v . - e / . v ^ i / (2> 

where g**1 is the k +1 iteration of the action-value taking the u* action A^ in the state 

ST, SJ is the new (F1) observed state, g j i i is the observed reward completing the s. -> SJ 

state-transition, y is the discount factor and e [0,l] is the step size parameter (which can 

change during the iteration steps), I is the set of the discrete possible states and U is the set 
of the discrete possible actions. 

For applying this iteration to continuous environment by adopting fuzzy inference (Fuzzy 
Q-Leaming), there are many solutions exist in the literature [1], [8], [9], [11], [12], Having 
only demonstrational purposes, in this paper one of the simplest one, the order-0 Takagi-
Sugeno Fuzzy Inference based Fuzzy Q-Leaming is studied (a slightly modified, simplified 
version of the Fuzzy Q-Leaming introduced in [1] and [12]). This case, for characterising 
the value function Q(s,a) in continuous state-action space, the order-0 Takagi-Sugeno 

Fuzzy Inference System approximation Q(s,a) is adapted in the following manner: 

If s is S, And a is ^ Then Q(s,a) = Qly, ieI,ueU, (3) 

where s, is the label of the i"1 membership function of the n dimensional state space, A^ 

is the label of the u"1 membership function of the one dimensional action space, Qlu is the 

singleton conclusion and Q(s,a) is the approximated continuous state-action-value 

function. Having the approximated state-action-value function Q(s,a), the optimal policy 

can be constructed by function (1). 
Setting up the antecedent fiizzy partitions to be Ruspini partitions, the order-0 Takagi-

Sugeno Fuzzy Inference forms the following approximation function: 
'i.'i I„.U N (4) 

where Q(s,a) is the approximated state-action-value function ^ i i( i j i) is the membership 

value of the /(i
th state antecedent fiizzy set at the n"1 dimension of the N dimensional state 

antecedent universe at the state observation sn, p,(a) is the membership value of the u * 

action antecedent fiizzy set of the one dimensional action antecedent universe at the action 
selection a and q u (^ is the value of the singleton conclusion of the Í1,Í2,...,Ín,U ",h fiizzy 
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rule. (A fuzzy partition is a Ruspini partition if the sum of the membership values of the 
i 

member sets of the partition is equal to one for the entire universe of discourse: ^ / / , ( * ) = ' 
i 

for Vx e X, where ^.(x) is the membership function of the ^ fuzzy set of the I element 
fuzzy partition on the universe of discourse X- see e.g. on Fig.l.a) 

Applying the approximation formula of the Q-leaming (2) for adjusting the singleton 
conclusions in (4), leads to the following function: 

= < 4 ( 5 ) 
mi 

=< + F K . „ ( 0 - < • (g,UJ+r • maxg;;' -n=l 

where q**1 . is the k + \ iteration of the singleton conclusion of the i^i2...iNu,h fuzzy rule 

taking action 4 in state Sj, Sj is the new observed state, g. u . is the observed reward 

completing the 5 5 state-transition, y is the discount factor and a
k

iu e [0,l] is the step 

size parameter. The m a x g * + l and action-values can be approximated by equation (4). 
vet/ J , v ' 

3. Dynamic Partition Allocation 

The next problematic question of the Fuzzy Reinforcement Learning, as it was introduced 
in Section 1, is the proper way of building the fuzzy partitions. The methods sharing the 
concept of fixed, predefined fuzzy partitions, like [8], [9], [11] and [12] are facing the 
following question: More detailed partitions are yielding exponentially growing state 
spaces (rule base sizes), elongating the adaptation time, and dramatically increasing the 
computational resource demand, while less detailed partitions (containing only a few 
member fuzzy sets) could cause high approximation error, or unadaptable situation. One 
possible solution for this problem is suggested in [1], By introducing "Adaptive State 
Partitions", an incremental fuzzy clustering of the observed state transitions. This method 
can lead to a better partition than the simple heuristic, by finding the best fitting one in 
respect to the minimal squared error, but still has the problem of limited approximation 
property inherited from the limited number of antecedent fuzzy sets. 

In this paper another dynamic partition allocation method is suggested, which is instead 
of adjusting the sets of the fuzzy partition, simply increase the number of the fuzzy sets by 
inserting new sets in the required positions. The main idea is very simple (see Fig.l. for an 
example). Initially a minimal sized (e.g. 2-3 sets only) Ruspini partition built up triangular 
shaped fuzzy sets on all the antecedent universes (see Fig. 1 .a). In the case when the action-
value function update (5) is high (e.g. greater than a preset limit £q : AQ>eQ), and the 

partition is not too dense already at that point (e.g. the distance of the cores of the 
surrounding fuzzy sets ( ^ ) is greater than a preset limit £s: Sm-s- ds > es), and the actual 
state-action point ( S o ) is far from the existing partition members (e.g. the actual state-action 
point is closer to the middle than one of the surrounding fuzzy sets cores: 
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. _£Í1£ííi - see e.g. on Fig.l.b, then a new fuzzy state is inserted among the 
4 

existing partition to increase the resolution (e.g. sk^=s t> VJfc > i , i > i =
 s '+ sn-2) - see e.g. on 

Fig.l.d. 
If the update value is relatively low (AQ<eQ , see e.g. Fig.2.), or the actual state-action 

> , see e.g. Fig.3.), than the 
4 

point is close to the existing partition members ( 
2 

partition is staying unchanged. The state insertion is done in every state dimensions 
separately (in multidimensional case it means an insertion of a hyperplane), by interpolating 
the inserted values from the neighbouring ones (see Fig.l.e and Fig.4. as a two dimensional 
example). Having the new state plane inserted in every required dimension, the value 
update is done regarding to the Fuzzy Q-Leaming method as it was introduced in Section 2, 
by the equation (5). (See e.g. on Fig.l.e, Fig.l.d, or Fig.4.d.) 

The proposed dynamic partition allocation method has the property of local step-by-step 
refinement in a manner very similar to the binary search. It can locate the radical positions 

d 
2' 

of the value action function with the precision of d'*k =—j 'mk steps (where d[ is the 

starting precision). 
The main problem of the proposed simple dynamic partition allocation method is the 

non-decreasing adaptation manner of the antecedent fuzzy partitions. In some situation, it 
could mean rapidly increasing partition sizes in the sense of the number of the component 
fuzzy sets. Moreover, these cases also lead rapidly growing, or at least non-decreasing 
computational resource demand. 
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b, Next approximation of Q at SQ: Q*+! 

c, Next approximation, without partition 
modification 

d, The modified partition (Sl+1 is inserted) 

e, The inserted q* values are interpolated 

Si SMSo
 Sf+2 Í 

f, Next approximation, with partition 
modification 

Fig. 1. The proposed dynamic partition allocation method. 

Fig. 2. The action-value function update is relatively low. 
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inserted action values ., y/e[l,y]. from 

the neighbouring and ones. 

b, Next approximation of Q at s -. d, Next approximation, with state insertion 
s , and value update regarding to (7) 

Fig. 4. The proposed dynamic partition allocation in two-dimensional 
(single state and action) antecedent case. 

4. SVD based Complexity Reduction 

For retaining the benefits of the dynamic partition allocation and maintaining the overall 
computational resource demand low, in this paper, the adoption of Higher Order SVD [5] 
based fuzzy rule base complexity reduction techniques and its fast adaptation method is 
suggested. The application of the fast adaptation method [6] gives a simple way for 
increasing the rule density of a rule base stored in a compressed form directly. Providing an 
economic sized structure for handling continuously increasing and varying rule bases, 
which is so typical in reinforcement learning. 
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4.1. SVD Based Fuzzy rule base complexity reduction 

The essential idea of using SVD in complexity reduction is that the singular values can be 
applied to decompose a given system and indicate the degree of significance of the 
decomposed parts. Reduction is conceptually obtained by the truncation of those parts, 
which have weak or no contribution at all to the output, according to the assigned singular 
values. This advantageous feature of SVD is used in this paper for enhancing the universal 
approximation property of the fuzzy inference by extending the number of antecedent sets 
while the computational complexity is kept relatively low. The complexity and its reduction 
is discussed in regard of the number of rules, which result simplicity in operating with the 
rules, in reinforcement learning methods. 

Definitions: 

N-mode matrix of a given tensor A: Assume an N -th order tensor A e 5R'1*'2"" The 
w-mode matrix A(aj e , J = 0 / ; contains all the vectors in the «-th dimension of the 

tensor A. The ordering of the vectors is arbitrary, this ordering shall, however, be 
consistently used later on. (A(n))y is called an y-th n-mode vector. Note that any matrix of 

which the columns are given by n-mode vectors (A(n)); can evidently be restored to be the 

tensor A . (See a three dimensional example on Fig.5.) 

A: 

h h 

J=hh 

Fig. 5. N-mode matrix of a tensor (three dimensional example). 

N-mode matrix-tensor product: The «-mode product of a tensor A e M'1*'2""'"'" by a 
matrix U e W ' , denoted by Ax„V is an (/, x/2 x . . .x / n ] x Jx / n + 1 x. . .x/w)-tensor of 

which the entries are given by AxnU = B, where fl(n) = U• - Let a®U„ stand for 

Ax, U, x2 Uj-.x* I V 

N-th Order SVD or Higher Order SVD (HOSVD): 

Every tensor e SH'1"'''̂ • can be written as the product A = S® U > in which 
i»=i n 

Un =[ i i | ( i u2n u, J is a unitary (iN x iN ) -matrix called n-mode singular matrix. 

Tensor S e ÍR'1*''" "'" of which the subtensors s, ^ have the properties of all-orthogonality 

(two subtensors S, ^ and s, =/) are orthogonal (their scalar product equals 0) for all 
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possible values of n,a and /?: (st ma,S, = 0 wh e n a* p (where 

(A B ) = , i, is the scalar product of two tensors A,B e ÍR'1"'1""'")) and 
'l '2 '» 

ordering: p.^j > ||^=2 | | ^... > | | | > 0 for all possible values of n (where = J(A,A) is 

the Frobenius-norm of a tensor A). (See a three dimensional example on Fig.6.) See detailed 
discussion and notation of matrix SVD and Higher Order SVD (HOSVD) in [5]. 

/4 = S®U„ u , 

1 / 

i; 

u, Xl I 

n x 2 n 

u2 

Fig. 6. N-th Order SVD or Higher Order SVD (three dimensional example). 

Exact / non-exact reduction 

Assume an 7V-th order tensor A e Í R ' 1 * ' 2 " . Exact reduced form A = Ar ® U » where "r" 

denotes "reduced", is defined by the tensor A' e 9t'' " and basis matrices u„ e 9^'"*'", 
Ir„ </„» n = \,2,...,N which are the result of HOSVD, where only zero singular values and 

the corresponding singular vectors are discarded. Non-exact reduced form Á = Ar® U » ' s 

obtained if not only zero singular values and the corresponding singular vectors are 
discarded. 

SVD Based Fuzzy Rule Base Complexity Reduction 

The explicit formula of the order-0 Takagi-Sugeno Fuzzy Inference method: (e.g. (4)) 
Assume an TV-variable fuzzy rule base given by: antecedent fiizzy sets fJ.i „ (*„) defined 
on input universe X„ and all combination of the antecedents corresponds to one 
consequent fuzzy set defined on output universe Y These relations are expressed by rules 
in the form of 

If / ^ ( x , ) And ^ 2(X2) And ... And ^ „ ( x „ ) Then y = fl. . (6) 
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Singleton consequent fuzzy sets p.. are defined by their location t i Setting up 

the antecedent fuzzy partitions to be Ruspini partitions, the explicit formula of the inference 
technique is (for more detailed explanation see [20]): 

'i N (7) 
/(x„x2 , . . . ,x„)= £ R K , 

SVD Based Fuzzy Rule Base Complexity Reduction: The formula of the order-0 Takagi-
Sugeno Fuzzy Inference method (7) can be equivalently written in tensor product form as: 

N 
f(xl,x2,...,xN) = B® m„> where the tensor B e and the vector mn respectively 

n=1 
contain elements bn , and n(xn)- This reduction can be conceptually obtained by 

reducing the size of the tensor B via Higher Order SVD (HOSVD). See more detailed 
description in [5], [19], [20]. The SVD based fuzzy rule base reduction transforms the 
structure of equation (7) to the form of: 

í J W>" (8) 

where VM : Jr
n < J is obtained as the main essence of the reduction. 

The reduced form (8) of (7) is obtained via HOSVD capable of decomposing B into 

B = Br<S U Having Br e 3 } ' 1 ' a n d its singular vectors the reduced form is 

determined as: f(xt,x2 xN) = Br ® m; , where m^ =m„U„. 
n= 1 

4.2. Adaptation of SVD based Approximation 

According to the previous sections the crucial concept of the reinforcement learning is 
based on the adaptivity of the action-value function. It was also concluded in the previous 
sections that the approximation accuracy of the action-value function is highly restricted by 
its computational complexity. For instance, the increase of the density of the approximation 
grid on Fig. 4 improves the approximation accuracy. Each learning step may insert a new 
gridline into dimension S. However, this may lead to a high complexity soon, since adding 
a grid-line exponentially increases the number of the approximation grid. Therefore, it is 
highly desired to reduce the complexity of the action-value function. However, one should 
note that a natural problem of typical complexity reduction is that it decreases the 
adaptivity property with the complexity in general. This disadvantage is also true for SVD 
based reduction technique discussed in the previous section. This implies that executing the 
SVD based reduction on the action-value function would destroy the effectiveness of the 
whole learning concept. Therefore, this paper proposes to utilize a "fast adaptation" 
technique, introduced in [6], capable of keeping the action-value function in SVD based 
complexity reduced form, but also capable of adapting the function without considerable 
computational effort. This method let us directly adapt the complexity compressed action-
function over any specified point of the learning space and add new approximation grid-
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lines, see Fig. 4. The key idea is that the fast adaptation technique transforms the given new 
grid-lines and corresponding values into the complexity reduced space of the action-
function where the adaptation can immediately be done. The ability of embedding new 
approximation points provides the practical applicability of the proposed dynamic partition 
allocation method discussed in the previous section. Therefore, the application of the fast 
adaptation method in the proposed reinforcement learning structure is twofold. On one side, 
it helps the dynamic partition allocation by increasing the grid density. On the other side, by 
the replacement of the previously fetched and modified values serves the adaptation of the 
approximated action-value function. 

Let the goal of the adaptation technique be specified in the followings: The goal is to 
insert a set of new rules included in A into the existing rule base B. Assume that the rule 
base B is already reduced into Br The new rules contained in A should directly be inserted 
into Br Directly means that without decompressing Br to B. Assume that the size of Br is 
fixed, it must not be increased with the adaptation. As a matter of fact, there may be such 
rules in A which require the increase of the size of Bi The fast adaptation technique 
discards these rules and inserts only those ones collected in A' which do not increase the 
size of B. In order to insert as much rules as possible the fast adaptation technique has a 
further option. Subject to a given threshold V, it is capable of modifying the discarded 
rules in order to insert them to Br If the rule bases are represented by tensors as discussed 
in the previous section then the adaptation can be defined as: only those sub-tensors A' of A 
are embedded into Br, which are linearly dependent from Br [6], An important advantage of 
the fast adaptation is that no SVD is needed during inserting the new rules. 

N mode fast adaptation [6J: 

"N mode" means in the present case that the rules, to be inserting, have new antecedents 
on dimension N. Namely, this means that the number the approximation grid-lines under 
the function, see Fig. 4, is increased in dimension N. 

Assume a reduced rule base defined by tensor Br e${JíxJí"~ and its corresponding 
matrices z e yiJ-"J- resulted from B by HOSVD as: 

Furthermore, let A e fR^"^" be given, that has the same size as B except in 
the H-th dimension where I may differ from jn. Let us have a brief digression here and 
explain A and B on Fig. 4. Tensor B, which is a matrix in the case of Fig. 4, consists of the 
values of the function over the grid-points defined by the orthogonal grid-lines located at 
values s. Tensor A, which is also a matrix in the present case, contains the values over the 
grid-points and the new grid-lines located on dimension N, that is S on Fig. 4. We can 
observe that the size of A is equivalent to the size of B except on that dimensions where the 
new gridlines are defined. If B is compressed to Br then we do not have this matrix point-
wise equivalency to the rectangular grid. In this case the inserting of the new grid-lines and 
their corresponding new approximation points is not trivial. 

The localized error interval of the adaptation is defined by V Localised means that V is 
a tensor whose elements are intervals and assigned to the grid-points like in the case of A 
and B. It defines the acceptable varying of the function over the grid-points. The goal is to 
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determine the reduced form E' of extended rule base E, defined by tensor E'= [.B A'\ • In 
the case of Fig. 4 £ is a matrix and contains the values of the function over all the new and 
the original grid-lines. E' contains the selected n mode sub-tensors of E according to the 
given interval V In the case of Fig. 4 E' contains the values over all the original grid-
points and over those grid-lines, which are accepted to be inserted. Only those grid-lines are 
accepted which do not increase the size of Br, or whose modified values are still in the 
intervals of V Thus 

F = ( V ® Z t ) x „ U . (10) 

and contains the selected n mode sub-tensors of A and let the 
corresponding sub-tensors 7"min/maK be selected from the corresponding rmjn/majl which define 
the maximal and minimal values of the elements of V For brevity let V'= W T 1 • J l min max J 

U = [z„ v ] e yi(J"*r)"-'-, / ' < / , where V is determined to satisfy (10) subject to 
É'-E' e, V'. e, means that the elements of tensor E'-E is in the interval defined by the 
corresponding elements of V' (the bound of the intervals are defined by the corresponding 
elements of rm i n and rm a x) . 

Inserting new gridlines on all dimensions is done in the same way. This means that the 
desnity of the hyper rectangular approximation grid can be incerased by the above 
algorithm even in case when the values assigned to grid are compressed into a reduced form 
where there is no structure which can be localised according to the grid-points. The more 
detailed description of the fast adaptation algorithm is given in [4] and [6], 

5. Practical use of the Proposed Reinforcement Technique 

For introducing the proposed application way of SVD based fuzzy rule based 
approximation techniques in reinforcement learning, a simple application example, where 
the state-transition function characterised by the following equation, was chosen: 

j*+1=2-(J4+«*)' (11) 

where s e S = [ - l,l] is the one dimensional state and a e A = [- 0.2,0.2] is the action. The 
reward is calculated in the following manner: r = 1 iff ie[-0.1,0.l] else r = 0 

The first experiment is related to the efficiency of the proposed dynamic partition 
allocation method (see results on Fig.7). Fig.7.b is introducing the two basic problems of 
fixed partition: The lack of universal approximation property in case of rough partition and 
the difficulties of the adaptation. 

The second experiment is related to the efficiency of the proposed SVD based complexity 
reduction and approximation adaptation (fast adaptation method). Fig.8. introduces three 
stages of a 20000 step iteration. On Fig.8.a the iteration process turns the action-value rule 
base to reduced form at the iteration step 1000, by applying the SVD Based Fuzzy Rule 
Base Complexity Reduction (introduced in Section 4.1.) From this step the iteration is 
continuing up to 20000 iterations using the fast adaptation method (introduced in Section 
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4.2.). Fig.8.b is the same experiment as Fig.8.a, except the turning the reduction is done 
earlier at the step 5000. 

6. Conclusions 

One of the possible difficulties of the reinforcement learning applications in complex 
situations is the huge size of the state-value- or action-value-function representation [17]. 
The case of continuous environment reinforcement learning could be even complicated, in 
case of applying dense partitions to describe the continuous universes, to achieve precise 
approximation of the basically unknown state-value- or action-value-function. The fine 
resolution of the partitions leads to high number of states, and handling high number of 
states usually leads to high computational costs, which could be unacceptable not only in 
many real time applications, but in case of any real (limited) computational resource. As a 
simple solution of these problems, in this paper the adoption of Higher Order SVD [5] 
based fuzzy rule base complexity reduction techniques and its fast adaptation method [6] is 
suggested. The application of the fast adaptation method [6] gives a simple way for 
increasing the rule density of a rule base stored in a compressed form directly. To fully 
exploit this feature, a dynamic partition allocation method is also suggested. Based on the 
application examples, the main conclusion of this paper is the reducibility of action-value 
function. It seems that in many cases the representation of the action-value function is 
considerably reducible. Moreover due to the fast adaptation method this reduction can be 
performed in an early stage of the adaptation and the iteration steps can be continued on an 
economic sized action-value function representation. 
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Fig. 7. The first experiment, the lack of universal approximation property 
in case of rough predefined fixed partition (difficulties in adaptation). 
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a, Reduction at iteration step 1000 b, Reduction at iteration step 5000 

Fig. 8. The effect of SVD based complexity reduction and approximation adaptation, 
where k is the iteration number and Size is the size of the reduced 

(Pi as it is stored) and the extended (B as its used) action-value rule base 
(e.g. Size:[14-126,14-15] means, that the original 126x15 sized 

action value rule base is stored and adapted in a 14x14 reduced format). 

k:20000; Size:[14-126,14-15] 

ft 

k:20000; Size:[15-75,15-15] 

1 
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