
ADAPTIVE APPROACHES TO

DISTRIBUTED RESOURCE ALLOCATION

Balázs Csanád Csáji
Computer and Automation Research Institute,

Hungarian Academy of Sciences; and
Department of Mathematical Engineering,
Catholic University of Louvain, Belgium

balazs.csaji@sztaki.hu

László Monostori
Computer and Automation Research Institute,

Hungarian Academy of Sciences; and
Faculty of Mechanical Engineering,

Budapest University of Technology and Economics

laszlo.monostori@sztaki.hu

[Received March 2009 and accepted May 2009]

Abstract. The problem of allocating scarce, reusable resources over
time to interconnected tasks in uncertain and changing environments,
in order to optimize a performance measure, arises in many real-world
domains. The paper examines several recent distributed optimization
approaches to this problem and compares their properties, such as the
guarantees of finding (near-)optimal solutions, their robustness against
disturbances or against imprecise, uncertain models, with a special em-
phasis on adaptive capabilities. The paper also presents a reinforcement
learning based distributed resource control system and argues that this
method represent one of the most promising approaches to handling re-
source allocation problems in the presence of uncertainties.

Keywords : resource allocation, adaptive algorithms, distributed opti-
mization, stochastic processes, reinforcement learning

1. Introduction

Efficient allocation of reusable resources over time is an important problem in
many real-world applications, such as manufacturing production control (e.g.
production scheduling), fleet management (e.g. freight transportation), per-
sonnel management, scheduling of computer programs (e.g. in massively par-
allel GRID systems), managing a construction project or controlling a cellular
mobile network. In general, they can be described as optimization problems

 

Production Systems and Information Engineering 

Volume 5 (2009), pp. 3-18. 
 

 



B. Cs. Csáji and L. Monostori

which include the assignment of a finite set of scarce reusable resources to
interconnected tasks that have temporal extensions.

The resource allocation related combinatorial optimization problems, such as
the job-shop scheduling problem or the traveling salesman problem, are known
to be strongly NP-hard, moreover, they do not have any good polynomial time
approximation algorithm, either [1]. These problems have a huge literature,
e.g. [2], however, most classical approaches concentrate on static and de-
terministic variants and their scaling properties are often poor. In contrast,
real-world problems are usually very large, the environment is uncertain and
can even change dynamically. Therefore, complexity and uncertainty seriously
limit the applicability of classical solution methods.

In the past decades a considerable amount of research has been done to en-
hance decision-making, such as resource allocation, and several new paradigms
have appeared that handled the problem in large-scale, dynamic and uncer-
tain environments. Distributed decision-making is often favorable [3], not
only because it can speed up the computation, but also because it can result
in more robust and flexible solutions. For example, if we take a multi-agent
based point of view combined with a heterarchical architecture, it can present
several advantages [4], such as self-configuration, scalability, fault tolerance,
massive parallelism, reduced complexity, increased flexibility, reduced cost and
potentially emergent behavior [5].

The structure of the paper is as follows. First, a general Resource Allocation
Problem (RAP) is specified. Then, a few widespread distributed resource
allocation approaches are considered, and their key properties are investigated,
with a special emphasis on their adaptive capabilities. Finally, a Reinforcement
Learning (RL) based distributed RA system is presented and its properties are
demonstrated by experimental results. RL-based resource allocation is argued
to be one of the most promising approaches among the systems presented.

2. Resource Allocation Framework

First, a deterministic resource allocation problem is considered: an instance
of the problem can be characterized by an 8-tuple 〈R,S,O,T , C, d, e, i〉. In
detail the problem consists of a set of reusable resources R together with S that
corresponds to the set of possible resource states. A set of allowed operations O
is also given with a subset T ⊆ O, which denotes the target operations or tasks.
R, S and O are supposed to be finite and they are pairwise disjoint. There
can be precedence constraints between the tasks, which are represented by a
partial ordering C ⊆ T ×T . The durations of the operations depending on the
state of the executing resource are defined by a partial function d : S×O → N,

4



Adaptive Approaches to Distributed Resource Allocation

where N is the set of natural numbers, thus, we have a discrete-time model.
Every operation can affect the state of the executing resource as well, that is
described by e : S × O → S, which is also a partial function. It is assumed
that dom(d) = dom(e), where dom(·) denotes the domain set of a function.
Finally, the initial states of the available resources are given by i : R → S.

The state of a resource can contain all relevant information about it, for ex-
ample, its type and current setup (scheduling problems), its location and load
(logistic problems) or its condition (maintenance and repair problems). Sim-
ilarly, an operation can affect the state in many ways, e.g., it can change the
setup of the resource, its location or its condition. The system must allocate
each task (target operation) to a resource, however, there may be cases when
first the state of a resource must be modified in order to be capable of executing
a certain task (e.g. a transporter may first need to travel to its loading/source
point, a machine may require repair or setup). In these cases non-task oper-
ations can be applied. They can modify the states of the resources without
directly serving a demand (executing a task). It may be the case that during
the resource allocation process a non-task operation is applied several times,
but other non-task operations are completely avoided (for example because of
their high cost). Nevertheless, finally all tasks must be completed.

A solution for a deterministic RAP is a partial function, the resource allocator
function, ̺ : R× N → O that assigns the starting times of the operations to
the resources. Note that the operations are supposed to be non-preemptive
(they must not be interrupted).

A solution to a RAP is called feasible if the following properties are satisfied:

1. Each task is rendered to exactly one resource and start time:

∀v ∈ T : ∃ ! 〈r, t〉 ∈ dom(̺) : v = ̺(r, t)

2. All resources execute at most one operation at a time:

¬∃u, v ∈ O : u = ̺(r, t1) ∧ v = ̺(r, t2) ∧ t1 ≤ t2 < t1 + d(s(r, t1), u)

3. The precedence constraints of the tasks are kept:

∀ 〈u, v〉 ∈ C : [u = ̺(r1, t1) ∧ v = ̺(r2, t2)] ⇒ [t1 + d(s(r1, t1), u) ≤ t2]

4. Every operation-to-resource assignment is valid:

∀ 〈r, t〉 ∈ dom(̺) : 〈s(r, t), ̺(r, t)〉 ∈ dom(d)

where s : R×N → S describes the states of the resources at given time points,

s(r, t) =







i(r) if t = 0
s(r, t − 1) if 〈r, t〉 /∈ dom(̺)
e(s(r, t − 1), ̺(r, t)) otherwise.

5



B. Cs. Csáji and L. Monostori

A RAP is called correctly specified if there exists at least one feasible solution.
In what follows it is assumed that the problems are correctly specified. The
set of all feasible solutions is denoted by S. There is a performance (or cost)
associated with each solution defined by a performance measure κ : S → R

that often depends on the task completion times only. Typical performance
measures that appear in practice include: maximum completion time or mean
flow time. The aim of resource allocation is to compute a feasible solution
with maximal performance (or minimal cost).

Note that the performance measure can assign penalties for violating release
and due dates or even reflect the priorities of the tasks.

So far our model has been deterministic, now we turn to stochastic RAPs.
The stochastic variant of the described general class of RAPs can be defined
by randomizing functions d, e and i. Consequently, the operation durations
become random, d : S × O → ∆(N), where ∆(N) is the space of probability
distributions over N. The effect of the operations is also uncertain, e : S ×
O → ∆(S) and the initial states of the resources can be stochastic as well,
i : R → ∆(S). Note that the elements in the domain sets of functions d, e and
i are probability distributions, we denote the corresponding random variables
by D, E and I, respectively. We use the notation X ∼ f to indicate that
random variable X has probability distribution f . Thus, D(s, o) ∼ d(s, o),
E(s, o) ∼ e(s, o) and I(r) ∼ i(r) for all s ∈ S, o ∈ O and r ∈ R.

In stochastic RAPs the performance of a solution is also a random variable.
Therefore, in order to compare the performance of different solutions we have
to compare random variables. There are many ways in which this comparison
can be made. For example, we can say that a random variable has stochastic
dominance over another random variable ’almost surely’, ’in likelihood ratio
sense’, ’stochastically’, ’in the increasing convex sense’ or ’in expectation’. In
different applications various types of comparisons can be suitable, however,
probably the most natural one is based upon the expected values of the random
variables. The paper applies this kind of comparison.

Now, we classify the basic types of resource allocation techniques. In determin-
istic RAPs, there is no real difference between open- and closed-loop control.
Thus, we can safely restrict ourself to open-loop methods. If the solution is
aimed at generating the resource allocation off-line in advance, then it is called
predictive. Thus, predictive solutions perform open-loop control and assume
a deterministic environment. In stochastic resource allocation there are some
data (e.g. the actual durations) that will only be available during the execu-
tion of the plan. According to the usage of this information, we identify two
basic types of solution techniques. An open-loop solution that can deal with
the uncertainties of the environment is called proactive. A proactive solution

6



Adaptive Approaches to Distributed Resource Allocation

allocates the operations to resources and defines the orders of the operations,
but, because the durations are uncertain, it does not determine precise start-
ing times. This kind of technique can be applied when only the durations of
the operations are stochastic, but, the states of the resources are known in full
(e.g. stochastic job-shop scheduling).

Finally, in the stochastic case a closed-loop solution to a RAP is called reactive.
A reactive solution is allowed to make the decisions on-line, as the resource
allocation process actually evolves and more information becomes available.
Naturally, a reactive solution is not a simple ̺ function, but instead a resource
allocation policy (a mapping from states to actions) which controls the process.
Predictive and proactive RA has been investigated extensively over the past
decades. The paper focuses on reactive resource allocation solutions only.

3. Distributed Resource Allocation

In this section a few widespread distributed resource allocation approaches
will be considered and their key properties, such as the guarantees of finding
an optimal (or a near optimal) solution, their robustness against different
disturbances, such as breakdowns, or against imprecise, uncertain models,
will be investigated, with a special emphasis on their adaptive capabilities.

A multi-agent system is a special distributed system with localized decision-
making and, usually, localized storage. An agent is basically a self-directed
(mostly software) entity with its own value system and a means to commu-
nicate with other such objects [4]. For a general survey on the application of
multi-agent systems in manufacturing, see [6].

3.1. The PROSA Architecture

A basic agent-based architecture for manufacturing systems is PROSA [7].
The general idea underlying this approach is to consider both the resources
(for example, machines and transporters) and the jobs (sets of interconnected
tasks) as active entities. The standard architecture of the PROSA approach
(see Figure 1) consists of three types of basic agents: order agents (internal
logistics), product agents (process plans), and resource agents (resource han-
dling). However, the PROSA architecture in itself is only a general framework
and it does not offer any direct resource allocation solutions.

PROSA is a starting point for the design and development of multi-agent man-
ufacturing control. Resource agents correspond to physical parts (production
resources in the system, such as factories, shops, machines, furnaces, convey-
ors, pipelines, material storages, personnel, etc.), and contain an information
processing part that controls the resource. Product agents hold the process

7



B. Cs. Csáji and L. Monostori

����������	


��	���������	����

������	�����	


�������������

�������������	


�����������������

��������	
�������


��������

	
�������


��������

��������
�

	
�������


����������

�����	��	���

Figure 1. The PROSA reference architecture

and product knowledge to ensure the correct making of the product. They act
as information server to other agents. Order agents represent a task or a job
(an ordered set of tasks) in the manufacturing system. They are responsible
for performing the assigned work correctly, effectively and on time.

3.2. Swarm Optimization

A great number of distributed optimization techniques were inspired by various
biological systems [8], such as bird flocks, wolf packs, fish schools, termite
hills or ant colonies. These approaches show up strongly robust and parallel
behavior.

The ant colony optimization algorithm [9] is, in general, a randomized algo-
rithm to solve Shortest Path (SP) problems in graphs. It can be shown that
RAs can be formalized as special SP problems.

The PROSA architecture can also be extended by ant-colony-type optimiza-
tion methods [10], in that case a new type of agent is introduced, called an
ant. Agents of this type are mobile and they gather and distribute informa-
tion in the manufacturing system. Their main assumption is that the agents
are much faster than the ironware that they control, and that makes the sys-
tem capable of prediction. Agents are faster and therefore can emulate the
system’s behaviour several times before the actual decision is taken.

The resource allocation in this system is made by local decisions. Each order
agent sends out ants (mobile agents), which are moving downstream in a
virtual manner. They gather information about the possible schedules from
the resource agents and then return to the order agent with the information.
The order agent chooses a schedule and then it sends ants to book the necessary
resources. After that the order agent regularly sends booking ants to re-book
the previously found best schedule, because if the booking is not refreshed, it

8



Adaptive Approaches to Distributed Resource Allocation

evaporates (like the pheromone in the analogy of food-foraging ants) after a
while. From time to time the order agent sends ants to survey the possible
new (and better) schedules. If they find a better solution, the order agent
sends ants to book the resources that are needed for the new schedule and the
old booking information will simply evaporate.

Swarm optimization methods are very robust, they can naturally adapt to
environmental changes, since the agents continuously explore the current situ-
ation and the obsolete data simply evaporates if not refreshed regularly. How-
ever, these techniques often have the disadvantage that finding an optimal or
even a relatively good solution cannot be easily guaranteed theoretically. For
example, the ant-colony-based extension of PROSA faces almost exclusively
the routing problem in resource allocation (how the tasks that belong to the
same job should be processes through the machines) and it mostly ignores se-
quencing problems (the efficient ordering of the tasks that belong to different
jobs). Therefore, the ant-colony-based extension of PROSA is very likely to
be strongly sub-optimal, despite its very nice adaptive capabilities.

3.3. Negotiation-Based Approaches

There are multi-agent systems which use some kinds of negotiation or market-
based mechanism in order to achieve efficient resource allocation [11]. In this
case, the tasks or the jobs are associated with order agents, while the resources
are controlled by resource agents, similarly to the PROSA architecture.

Market-based resource allocation is a recursive, iterative process with announce-
bid-award cycles. During RA the tasks are announced to the agents that con-
trol the resources, and they can bid for the available jobs. A typical market-
based system would work as follows: if a new job arrives at the system, a
new order agent is created and associated with that job. An order agent or a
group of cooperating order agents announces a sequence of operations and the
resource agents can bid for that sequence. Only resource agents being able to
do at least the first operation of that job are allowed to bid. Before an agent
bids, it gathers information about the possible costs of making that sequence.
If the sequence contains only one operation, the agent has all the information
it needs, however, if the sequence contains other operations as well, which
probably cannot be processed by the machine of the agent, it starts to search
for subcontractors. It becomes a partial order agent and announces the re-
maining part of the sequence. The other resource agents, which can do the
next operation, may bid for the remaining operation sequence. Consequently,
a recursive announce-bid process begins. In the end, when all the possible
costs of that (partial) job are known, the agent bids. If it made the highest
bid (in a given time-frame), the agent (and its subcontractors) get the job.

9



B. Cs. Csáji and L. Monostori

A disadvantage is that during this mechanism, the jobs or tasks are, usually,
announced one by one, which can lead to myopic behavior and, therefore,
guaranteeing an optimal or even an approximately good solution is often very
hard. Regarding adaptive behavior, market-based RA is often less robust than
swarm-optimization methods, since, e.g. if a resource breaks down it is very
likely that a large part of the negotiation process has to be restarted.

3.4. Problem Decomposition

The idea of divide-and-conquer is often applied in order to decrease computa-
tional complexity in combinatorial optimization problems. The main idea is to
decompose the problem and solve the resulting sub-problems independently.
In most cases calculating the sub-solutions can be done in a distributed way
[12].

These approaches can be effectively applied in many cases, however, defining
a decomposition which guarantees both efficient speedup together with the
property that combining the optimal solutions of the sub-problems results
in a global optimal solution is very demanding. Therefore, when we apply
decomposition, we usually have to give up optimality and be satisfied with
fast but sometimes far-from-optimal solutions. Moreover, it is hard to make
these systems robust against disturbances. Tracking environmental changes
can be often accomplished by the complete recalculation of the whole solution
only.

3.5. Distributed Constraint-Satisfaction

Resource allocation problems (at least their deterministic variants) can be
often formulated as constraint-satisfaction problems [13]. In this case, they
aim at solving the problem formulated as follows:

optimize f(x1, x2, . . . , xn),

subject to gj(x1, x2, . . . , xn) ≤ bj ,

where xi ∈ Ωi, i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Functions f and gj are real-
valued and so are bj ∈ R. Most resource allocation problems, for example,
resource constrained project scheduling, can be even formulated as a linear
programming problem, which formulation can be written as

optimize cT x,

subject to Ax ≤ b,

where A ∈ Rm×n, x, c ∈ Rn, b ∈ Rm and cT denotes the transpose of c. Then,
distributed variants of constrained optimization approaches can be used to

10



Adaptive Approaches to Distributed Resource Allocation

compute a solution. In that case, a close-to-optimal solution is often guar-
anteed, however, the computation time is usually large. The main problems
with these approaches are that they cannot take uncertainties into account
and, moreover, they are not robust against noises and disturbances.

4. Machine Learning and Resource Control

Machine learning techniques represent a promising new way to deal with re-
source allocation problems in complex, uncertain and changing environments.
These problems can be often formulated as Markov decision processes and they
can be solved by Reinforcement Learning (RL) algorithms [14, 15, 16, 17].

Now, we propose an RL-based adaptive sampler to compute an approximately
optimal resource control policy in a distributed way. The sampling is done
by iteratively simulating the resource control process. After each trial the
policy is refined through recursive updates on the value function using the
actual result of the simulation. Thus, from an abstract point of view, the
optimization is accomplished through adaptive sampling. In order to achieve
this, the RAP must be reformulated as a controlled Markov process.

4.1. Markov Decision Processes

Sequential decision making under uncertainty is often modelled by MDPs.
This section contains the basic definitions and some preliminaries. By a
(finite, discrete-time, stationary, fully observable) Markov Decision Process
(MDP) we mean a stochastic system that can be characterized by an 8-tuple
〈X, T, A,A, p, g, α, β〉, where the components are: X is a finite set of discrete
states, T ⊆ X is a set of terminal states, A is a finite set of control actions.
A : X → P(A) is the availability function that renders each state a set of
actions available in that state where P denotes the power set. The transition
function is given by p : X×A → ∆(X) where ∆(X) is the space of probability
distributions over X. Let us denote by p(y|x, a) the probability of arrival at
state y after executing action a ∈ A(x) in state x. The immediate cost func-
tion is defined by g : X × A × X → R, where g(x, a, y) is the cost of arrival at
state y after taking action a ∈ A(x) in state x. We consider discounted MDPs
and the discount rate is denoted by α ∈ [0, 1). Finally, β ∈ ∆(X) determines
the initial probability distribution of the states in the stochastic system.

A (stationary, randomized, Markov) control policy is a function from states to
probability distributions over actions, π : X → ∆(A). The initial probability
distribution β, the transition probabilities p together with a control policy π
completely determine the progress of the system in a stochastic sense, namely,
it defines a homogeneous Markov chain on X.

11



B. Cs. Csáji and L. Monostori

The cost-to-go function of a control policy is Qπ : X×A → R, where Qπ(x, a)
gives the expected cumulative [discounted] costs when the system is in state
x, it takes control action a and it follows policy π thereafter

Qπ(x, a) = E

[

∞
∑

t=0

αtGπ
t

∣

∣

∣

∣

X0 = x,A0 = a

]

, (4.1)

where Gπ
t = g(Xt, A

π
t ,Xt+1), Aπ

t is selected according to control policy π and
the next state, Xt+1, has p(Xt, A

π
t ) probability distribution.

A policy π1 ≤ π2 if and only if ∀x ∈ X,∀a ∈ A : Qπ1(x, a) ≤ Qπ2(x, a). A
policy is called optimal if it is better than or equal to all other control policies.
The objective in MDPs is to compute a near-optimal policy.

There always exits at least one optimal (even stationary and deterministic)
control policy. Although there may be many optimal policies, they all share
the same unique optimal action-value function, denoted by Q∗. This function
must satisfy a (Hamilton-Jacoby-) Bellman type optimality equation [18]:

Q∗(x, a) = E

[

g(x, a, Y ) + α min
B∈A(Y )

Q∗(Y,B)

]

, (4.2)

where Y is a random variable with p(x, a) distribution.

From an action-value function it is straightforward to get a policy, for example,
by selecting in each state in a greedy way an action producing minimal costs.

4.2. Adaptive Sampling

General RAPs with stochastic durations can be formulated as MDPs, as shown
in [17]. Then, the challenge of finding a good policy can be accomplished by
approximate Q-learning. In that case, the possible occurrences of the resource
control process are iteratively simulated, starting from the initial stage of the
resources. Each trial produces a sample trajectory that can be described as
a sequence of state-action pairs. After each trial, the approximated values of
the visited pairs are updated by the Q-learning rule.

The one-step Q-learning rule is Qt+1 = TQt, where

(TQt)(x, a) = (1 − γt(x, a))Qt(x, a) + γt(x, a)(KQt)(x, a) (4.3)

(KQt)(x, a) = g(x, a, Y ) − Qt(x, a) + α min
b∈A(Y )

Qt(Y, b),

where Y and g(x, a, Y ) are random variables generated from the pair (x, a)
by simulation, that is, according to probability distribution p(x, a); the co-
efficients γt(x, a) are called the learning rate and γt(x, a) 6= 0 only if (x, a)
was visited during trial t. It is well-known [18] that if for all x and a:

12



Adaptive Approaches to Distributed Resource Allocation

∑

∞

t=1 γt(x, a) = ∞ and
∑

∞

t=1 γ2
t (x, a) < ∞, the Q-learning algorithm will

converge with probability one to the optimal value function in the case of
lookup table representation. Because the problem is acyclic, it is advised to
apply prioritized sweeping, and perform the backups in an order opposite to
which they appeared in during simulation, starting from a terminal state.

To balance between exploration and exploitation, and so to ensure the conver-
gence of Q-learning, we can use the standard Boltzmann formula [18].

4.3. Cost-to-Go Approximation

In systems with large state spaces, the action-value function is usually ap-
proximated by a (typically parametric) function. Let us denote the space
of action-value functions over X × A by Q(X × A). The method of fitted
Q-learning arises when after each trial the action-value function is projected
onto a suitable function space F with a possible error ǫ > 0. The update rule
becomes Qt+1 = Φ T Qt, where Φ denotes a projection operator to function
space F . In [17] support vector regression is suggested to effectively maintain
the cost-to-go function. The value estimation then takes the form as follows

Q̃(x, a) =

l
∑

i=1

(w∗
i − wi)K(yi, y) + b , (4.4)

where K is an inner product kernel, y = φ(x, a) represents some peculiar
features of x and a, wi, w∗

i are the weights of the regression and b is a
bias. As a kernel the usual choice is a Gaussian type function K(y1, y2) =

exp(−‖y1 − y2‖
2 /σ2) where σ > 0 is a user-defined parameter.

Partitioning the search space by decomposing the problem and applying limited-
lookahead rollout algorithms in the initial stage can also speed up the compu-
tation of a near-optimal cost-to-go function considerably [17].

4.4. Distributed Sampling

In this section we investigate how the sampling presented can be distributed
among several processors even if the value function is local to each processor.

If a common (global) storage is available to the processors, then it is straight-
forward to parallelize the sampling-based approximate cost-to-go function
computation: each processor can search independently by making trials, how-
ever, they all share (read and write) the same global cost-to-go function. They
update the value function estimations asynchronously.

A more complex situation arises when the memory is completely local to the
processors, which is realistic if they are physically separated, e.g., in a GRID.

13



B. Cs. Csáji and L. Monostori

A way of dividing the computation of a good policy among several processors
is possible when there is only one ’global’ value function, however, it is stored
in a distributed way. Each processor stores a part of the value function and
it asks for estimations which it requires but does not have from the others.
The applicability of this approach lies in the fact that the underlying MDP
is acyclic and, thus, it can be effectively partitioned, for example, by starting
the trials of each processor from a different starting state.

If the processors have their own completely local value functions, they can
have widely different estimates on the optimal state-action values. In order to
effectively compute a global value function, the processors should count how
many times they updated the estimates of the different pairs. Finally, the
values of the global Q-function can be combined from the individual estimates
by a Boltzmann formula.

5. Experimental Results

In order to investigate our RL-based distributed resource control approach,
numerical simulations were initiated and carried out.

First, the proposed approach was tested on Hurink’s benchmark dataset [19].
It contains Flexible Job-Shop (FJS) scheduling problems with 6–30 jobs (30–
225 tasks) and 5–15 resources. The performance measure is make-span, thus,
the total completion time has to be minimized. These problems are ’hard’,
which means, e.g. that standard dispatching rules or heuristics perform poorly
on them. This dataset consists of four subsets, each subset containing about
60 problems. The subsets (sdata, edata, rdata, vdata) differ in the ratio of
resource interchangeability, shown in the ’flexib’ column in Table 1. The other
columns show the average error (avg err) and the standard deviation (std dev)
after carrying out N iterations. The execution of 10 000 simulated trials (after
on the average the system has achieved a solution with less than 5 % error)
takes only a few seconds on an ordinary computer of today.

benchmark 1000 iterations 5000 iterations 10 000 iterations

dataset flexib avg err std dev avg err std dev avg err std dev

sdata 1.0 8.54 % 5.02 % 5.69 % 4.61 % 3.57 % 4.43 %

edata 1.2 12.37 % 8.26 % 8.03 % 6.12 % 5.26 % 4.92 %

rdata 2.0 16.14 % 7.98 % 11.41 % 7.37 % 7.14 % 5.38 %

vdata 5.0 10.18 % 5.91 % 7.73 % 4.73 % 3.49 % 3.56 %

average 2.3 11.81 % 6.79 % 8.21 % 5.70 % 4.86 % 4.57 %

Table 1. Performance (average error and deviation) on benchmark datasets

14



Adaptive Approaches to Distributed Resource Allocation

We initiated experiments on a simulated factory by modelling the structure
of a real plant producing customized mass-products. We used randomly gen-
erated orders (jobs) with random due dates. The tasks and the process-plans
of the jobs, however, covered real products. In this plant the machines re-
quire product-type dependent setup times, and another specialty of the plant
is that, at some previously given time points, preemptions are allowed. The
performance measure applied was to minimize the number of late jobs and an
additional secondary performance measure was to minimize the total cumu-
lative lateness, which can be applied to comparing two situations having the
same number of late jobs. In Table 2 the convergence speed (average error and
standard deviation) relative to the number of resources and tasks is demon-
strated. The workload of the system was approximately 90 %. The results
show that the suggested resource control algorithm can perform efficiently on
large-scale problems, e.g. with 100 resources and 10 000 tasks.

configuration 1000 iterations 5000 iterations 10 000 iterations

machs tasks avg err std dev avg err std dev avg err std dev

6 30 4.01 % 2.24 % 3.03 % 1.92 % 2.12 % 1.85 %

16 140 4.26 % 2.32 % 3.28 % 2.12 % 2.45 % 1.98 %

25 280 7.05 % 2.55 % 4.14 % 2.16 % 3.61 % 2.06 %

30 560 7.56 % 3.56 % 5.96 % 2.47 % 4.57 % 2.12 %

50 2000 8.69 % 7.11 % 7.24 % 5.08 % 6.04 % 4.53 %

100 10000 15.07 % 11.89 % 10.31% 7.97 % 9.11 % 7.58 %

Table 2. Performance relative to the number of machines and tasks

We also investigated the parallelization of the method, namely, the speedup
of the system relative to the number of processors. The average number of
iterations was studied until the system could reach a solution with less than 5 %
error on Hurink’s dataset. We treated the average speed of a single processor
as a unit (cf. with the data in Table 1). In Figure 2 the horizontal axis
represents the number of processors applied, while the vertical axis shows the
relative speedup achieved. We applied two kinds of parallelization: in the first
case (dark gray bars), each processor could access a global value function. It
means that all of the processors could read and write the same global action-
value function, but otherwise, they searched independently. In that case the
speedup was almost linear. In the second case (light gray bars), each processor
had its own, completely local action-value function and, after the search was
finished, these individual functions were combined. The experiments show that
the computation of the RL-based resource control can be effectively distributed

15



B. Cs. Csáji and L. Monostori

even if there is not a commonly accessible action-value function available and
each processor works locally with its own estimates.

Figure 2. Distributed sampling: speedup relative to the number of processors

6. Concluding Remarks

Efficient allocation of scarce, reusable resources over time in uncertain and
dynamic environments is an important problem that arises in many real world
domains, such as production control. The paper examined some distributed
RA approaches and presented an RL-based adaptive solution as well. The
effectiveness of the latter approach was demonstrated by results of numerical
simulation experiments on both benchmark and industry-related data.

There are several advantages why RL-based solutions are preferable to other
kinds of distributed approaches described above. These favorable features are:

1. RL methods are robust, they essentially handle the problem under the
presence of uncertainties, since they apply the theory of MDPs.

2. They can quickly adapt to unexpected changes in the environmental
dynamics, such as breakdowns. This property can be explained by
the Lipschitz type dependence of the optimal value function on the
transition-probabilities and the immediate-cost function [20].

3. There are theoretical guarantees of finding optimal (or approximately
optimal) solutions, at least asymptotically, in the limit.

4. Moreover, the actual convergence speed is usually high, especially in the
case of applying distributed sampling or problem decomposition.

5. Additionally, the resulting distributed RL-based resource allocation scales
well with the size of the problem. It can effectively handle large-scale
problems without dramatic retrogression in the performance.

6. Finally, the proposed method constitutes an any-time solution, since
the sampling can be stopped after any number of iterations.

16



Adaptive Approaches to Distributed Resource Allocation

Consequently, RL approaches have great potentials in dealing with real-world
RAPs, since they can handle large-scale problems even in dynamically chang-
ing and uncertain environments. They seem to be one of the most promising
approaches for distributed resource allocation in real-world domains.

Acknowledgements

The research presented was partially supported by the Hungarian Scientific
Research Fund (OTKA) through the project “Production Structures as Com-
plex Adaptive Systems”. The paper also presented research results of the
Belgian Programme on Interuniversity Attraction Poles, initiated by the Bel-
gian Federal Science Policy Office, and a grant Action de Recherche Concertée
(ARC) of the Communauté Française de Belgique. The scientific responsibil-
ity rests with its authors. Balázs Csanád Csáji acknowledges the postdoctoral
fellowship of the Université catholique de Louvain. The authors express their
thanks to Tamás Kis for his contribution to the tests on industrial data.

REFERENCES

[1] Williamson, D. P., A., H. L., Hoogeveen, J. A., Hurkens, C. A. J.,
Lenstra, J. K., Sevastjanov, S. V., and Shmoys, D. B.: Short shop sched-
ules. Operations Research, 45, (1997), 288–294.

[2] Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, 2002.

[3] Perkins, J. R., Humes, C., and Kumar, P. R.: Distributed scheduling of
flexible manufacturing systems: Stability and performance. IEEE Transactions
on Robotics and Automation, 10, (1994), 133–141.

[4] Baker, A. D.: A survey of factory control algorithms that can be implemented
in a multi-agent heterarchy: Dispatching, scheduling, and pull. Journal of Man-
ufacturing Systems, 17, (1998), 297–320.

[5] Ueda, K., Márkus, A., Monostori, L., Kals, H. J. J., and Arai, T.:
Emergent Synthesis Methodologies for Manufacturing. Annals of the CIRP –
Manufacturing Technology, 50, (2001), 535–551.

[6] Monostori, L., Váncza, J., and Kumara, S. R. T.: Agent-based systems
for manufacturing. Annals of the CIRP, 55(2), (2006), 697–720.

[7] Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., and
Peeters, P.: Reference architecture for holonic manufacturing systems:
PROSA. Computers in Industry, 37, (1998), 255–274.

[8] Kennedy, J. and Eberhart, R. C.: Particle swarm optimization. IEEE In-
ternational Conference on Neural Networks, 4, (1995), 1942–1948.

[9] Moyson, F. and Manderick, B.: The collective behaviour of ants: an exam-
ple of self-organization in massive parallelism. In Proceedings of AAAI Spring
Symposium on Parallel Models of Intelligence, Stanford, California, 1988.

17



B. Cs. Csáji and L. Monostori

[10] Hadeli, Valckenaers, P., Kollingbaum, M., and Van Brussel, H.: Multi-
agent coordination and control using stigmergy. Computers in Industry, 53,
(2004), 75–96.

[11] Márkus, A., Kis, T., Váncza, J., and Monostori, L.: A market approach
to holonic manufacturing. Annals of the CIRP, 45, (1996), 433–436.

[12] Wu, T., Ye, N., and Zhang, D.: Comparison of distributed methods for
resource allocation. International Journal of Production Research, 43, (2005),
515–536.

[13] Modi, P. J., Hyuckchul, J., Tambe, M., Shen, W., and Kulkarni, S.:
Dynamic distributed resource allocation: Distributed constraint satisfaction ap-
proach. In Pre-proceedings of the 8th International Workshop on Agent Theories,
Architectures, and Languages, 2001, pp. 181–193.

[14] Zhang, W. and Dietterich, T.: A reinforcement learning approach to job-
shop scheduling. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence, 1995, pp. 1114–1120.

[15] Ueda, K., Hatono, I., Fujii, N., and Vaario, J.: Reinforcement learning
approaches to biological manufacturing systems. Annals of the CIRP – Manu-
facturing Technology, 49, (2000), 343–346.

[16] Aydin, M. E. and Öztemel, E.: Dynamic job-shop scheduling using reinforce-
ment learning agents. Robotics and Autonomous Systems, 33, (2000), 169–178.

[17] Csáji, B. C. and Monostori, L.: Adaptive stochastic resource control: A
machine learning approach. Journal of Artificial Intelligence Research (JAIR),
32, (2008), 453–486.

[18] Bertsekas, D. P.: Dynamic Programming and Optimal Control. Athena Sci-
entific, 2nd edn., 2001.

[19] Hurink, E., Jurisch, B., and Thole, M.: Tabu search for the job-shop sched-
uling problem with multi-purpose machines. Operations Research Spectrum, 15,
(1994), 205–215.

[20] Csáji, B. C. and Monostori, L.: Value function based reinforcement learning
in changing Markovian environments. Journal of Machine Learning Research
(JMLR), 9, (2008), 1679–1709.

18


