
SEMANTIC REPRESENTATION OF NATURAL

LANGUAGE WITH EXTENDED CONCEPTUAL GRAPH

Erika Baksa-Varga
University of Miskolc, Hungary

Department of Information Technology

vargae@iit.uni-miskolc.hu

László Kovács
University of Miskolc, Hungary

Department of Information Technology

kovacs@iit.uni-miskolc.hu

[Received February 2009 and accepted May 2009]

Abstract. We intend to create an intelligent agent that is able to detect
the objects and relations in its environment, and based on the received
information is able to build up an internal knowledge base on the basis
of which linguistic expressions can be formulated. The present invest-
igations focus on modeling the agent’s ability to assign semantic rep-
resentations to its observations. For this purpose we have developed a
graphical conceptual modeling language. In this article we examine the
model’s expressive power, that is to what extent it is able to model nat-
ural language semantics. The analysis is performed in comparison with
predicate logic. In our view, first-order logic does not provide sufficient
means for the translation of natural language expressions and we will
argue that also higher-order logic needs some extensions.

Keywords : natural language semantics, semantic representation of lan-
guages, predicate logic, Extended Conceptual Graph

1. Introduction

The final goal of our research is to simulate a human agent who perceives
signals from the environment and after processing the received information, is
able to express the observations with linguistic symbols. We intend to create
an intelligent agent – having the cognitive abilities of pattern recognition,
association and generalization – that is able to detect the objects and relations
in its environment, and based on the received information is able to build up
an internal knowledge base on the basis of which linguistic expressions can be
formulated. The schematic design of the system can be found in Figure 1.

Production Systems and Information Engineering

Volume 5 (2009), pp. 19-39.

E. Baksa-Varga and L. Kovács

Figure 1. Operational system design of the agent

The project is strongly related to natural language processing (NLP). In NLP,
the inference and adequate representation of natural language (NL) semantics
is a crucial issue. A relatively new discipline, computational semantics has the
aim to find techniques for automatically constructing semantic representations
for expressions of human language. For this, the most basic issue is to agree
on a semantic representation language. Practically, this should be a formalism
with high expressive power and computational effectiveness. ”In philosophy
and linguistics the predicate calculus is used for analyzing the semantics and
logic of natural language. . . The way expressions and structures contribute to
the meaning of a natural language sentence is supposed to be determined and
shown by means of its translation into the calculus [1].” The advantages of
predicate logic (PL) are the use of a simple and exact notation and interpreta-
tion system, the standard formalism and general applicability, the ability for
reasoning and rule validation, and its convertability to other symbolisms.

Despite the extensive research on representing NL semantics with PL, the
relationship of the two systems is still not fully revealed. It is primarily a
consequence of the NL system’s complexity and ambiguity. Opinions in the
related literature are quite diverse in terms of the suitability of first-order
versus higher-order logic for NL representation. For example, [2] argues that
first-order predicate logic (FOPL) offers an attractive compromise between
the conflicting demands of expressivity and inferential effectiveness, and shows
techniques for translating away modalities from intentional and temporal lin-
guistic phenomena, as well as for handling plurals in FOPL. Also, [3] states

20

Semantic Representation of NL with ECG

that FOPL is sufficient, since higher-order logical statements can be converted
to FOPL formulas. On the other hand [4] and [5] prove the necessity of higher-
order predicate logic (HOPL) in the field of quantification, while [1] makes a
point on the unsuitability of FOPL in terms of representing plural referring
expressions. In our view, FOPL does not provide sufficient means for the
translation of NL expressions (see the analysis in Section 3) and in this article
we will argue that also HOPL needs some extensions.

The article is organized as follows. In Section 2 we give the formal definition
of the syntax and semantics of first-order predicate logic, then that of natural
language. In Section 3 we examine the semantic equivalence of the NL and PL
notation systems. For this purpose, we define first the semantic equivalence of
two statements introducing the notion of composition preserving transforma-
tion. After that we analyze the properties of a semantic equivalence assignment
between the two systems. In Section 4 we argue that first-order logic does not
provide sufficient means for the representation of NL semantics, therefore we
need to go beyond it. Higher-order logic is introduced, and we show that it also
needs some extensions. In Section 5 we define an extended HOPL model and
study the semantic equivalence assignment between this model and the NL
system. In Section 6 we introduce the Extended Conceptual Graph (ECG)
model as the graphical representation of the given extended HOPL model.
Finally, we sum up the results of the present investigations concerning the
expressiveness of the ECG model.

2. Formalizing Semantic Interpretation

2.1. Formal Definition of First-Order Predicate Logic

FOPL is a flexible, well-understood and computationally tractable approach
to knowledge representation [6], which uses a wholly unambiguous formal lan-
guage interpreted by mathematical structures. It is a system of deduction
that extends propositional logic by allowing quantification over individuals of
a given domain of discourse. The syntax of FOPL is built up of a vocabulary
consisting of non-logical and logical symbols over a Σ alphabet. The set of
non-logical symbols includes function symbols with a fixed arity ≥ 0, and the
collection of variable and constant symbols. The set of logical symbols com-
prises predicate symbols with a fixed arity ≥ 0, the boolean connectives (∧,
∨, ¬, →), and the quantifiers (∀ and ∃). As its name implies, FOPL is orga-
nized around the notion of predicate. Predicates are symbols that refer to the
relations that hold among some fixed number of objects in a given domain. Ob-
jects are represented by terms, which can be defined as constants, functions

21

E. Baksa-Varga and L. Kovács

or variables. FOPL constants refer to exactly one object, and are conven-
tionally depicted as single capitalized letters. Functions also refer to unique
objects, while variables, which are normally denoted by single lower-case let-
ters, allow us to make statements about unnamed objects (free variables) and
also to make statements about some/all objects in some arbitrary world being
modelled (bound variables in the scope of a quantifier). Formally,

– all variable symbols are terms;

– if t1, . . . , tn are terms and f is a function symbol with arity n, then
f(t1, . . . , tn) is also a term.

A statement is expressed in the form of formulas, which are defined as follows:

– If p is a predicate symbol with arity n, and t1, . . . , tn are terms, then
p(t1, . . . , tn) is an atomic formula.

– If t1 and t2 are terms, then t1 = t2 is an atomic formula.

– If α and β are formulas, then so are ¬α, (α∧β), (α∨β), and (α → β).

– If α is a formula, and x is a variable, then both ∀x.α and ∃x.α are
formulas.

– A sentence is a formula without free variables.

The syntax of FOPL defines the set of well-formed formulas (WFFs), while
the semantics of FOPL determines the truth value of an arbitrary formula
in a given model or interpretation (an abstract realization of a situation).
Formally, an interpretation I = < ∆, I > consists of a domain ∆ and an
assignment function I which assigns

– an f I function with arity n to every function symbol f with arity n,
where: f I : ∆× . . .×∆ 7→ ∆, and

– a pI relation with arity n to every predicate symbol p with arity n,
where: pI ⊆ ∆× . . .×∆.

With the aid of interpretation an element of ∆ can be assigned to every
variable-free expression. Similarly, a truth value can be assigned to every
sentence. For the interpretation of expressions with variables, and formulas
with free variables a variable assignment function is required. This ϕ function
assigns an element of ∆ to each variable symbol x, so that ϕ(x) ∈ ∆. Given
an interpretation I = < ∆, I > and a variable assignment ϕ, the tϕ,I meaning
of an arbitrary term t is defined as:

– If x is a variable, then xϕ,I = ϕ(x).

– If t1, . . . , tn are terms and f is a function symbol with arity n, then

f(t1, . . . , tn)ϕ,I = f I(tϕ,I
1 , . . . , tϕ,I

n).

22

Semantic Representation of NL with ECG

Given an interpretation I = < ∆, I > and a variable assignment ϕ, the truth
value of an arbitrary α formula is defined as I |=ϕ α, that is the interpretation
satisfies the formula. Regarding the different types of formulas this definition
is the following:

– I |=ϕ p(t1, . . . , tn) iff 〈d1, . . . , dn〉 ∈ pI and di = tϕ,I
i .

– I |=ϕ t1 = t2 iff d1, d2 ∈ ∆ and for both di = tϕ,I
i where d1 = d2.

– I |=ϕ ¬α iff not I |=ϕ α.

– I |=ϕ α ∧ β iff I |=ϕ α and I |=ϕ β.

– I |=ϕ α ∨ β iff I |=ϕ α or I |=ϕ β.

– I |=ϕ α → β iff not I |=ϕ α or I |=ϕ β.

– I |=ϕ ∀x.α iff for all d ∈ ∆ I |=ϕ[x 7→d] α.

– I |=ϕ ∃x.α iff for some d ∈ ∆ I |=ϕ[x 7→d] α.

Where ϕ[x 7→ d] is the variable assignment which assigns d ∈ ∆ to x, while
assigning the same value to every other variable as ϕ [7].

2.2. Formal Definition of Natural Language

The term ’natural language’ (NL) refers to human languages which are not
consciously invented, but naturally acquired by humans. All written natural
languages build up of sequences of words which are finite sequences of symbols
over a given alphabet. Syntax is the term which defines the set of rules telling
us how words may be combined to form sentences. Formally,

– the main building blocks of NLs are characters (symbols) c ∈ Σ,
where Σ denotes the finite character set (alphabet) of the language;

– words are finite sequences over Σ, that is every w ∈ W ⊆ Σ∗, where
W denotes the set of words;

– sentences are finite sequences over W , that is every s ∈ S ⊆ W ∗,
where S denotes the set of sentences.

NLs are infinite recursive systems, hence on the basis of understanding a finite
number of words we can understand and construct an infinity of sentences
recursively applying the rules of syntax [8].

NL semantics is concerned with the relation between language and the ’world’.
Hence, the meaning of a sentence determines the conditions under which it
is true. Since, by definition sentences are finite sequences of words (which
are the basic semantic units), and as a consequence of the recursive nature of
language, the meaning of a word will determine what contribution it makes
to the truth conditions of the sentences in which it occurs [2]. This is called

23

E. Baksa-Varga and L. Kovács

the principle of compositionality. For correct interpretation, however, we also
need to have world knowledge. Without context, that is without defining the
domain of discourse, many human language sentences could be assigned sev-
eral meanings. This ambiguity may result from the lexical ambiguity of words,
or from the syntactic ambiguity of sentences (word combinations). In other
words, NL sentences build up of word constituents bearing a set of possible
meanings which are made concrete by the actual context.

Thus, analogously to FOPL syntax and semantics, the syntax of NL defines
the set of well-formed grammatical sentences (WGSs), while its semantics de-
termines the truth value of a WGS in a given interpretation. An interpretation
I = < DO, I > consists of a domain of objects DO and an assignment function
I which assigns

– an f I function with arity n to every function symbol f with arity n,
where: f I : DO1

× . . .×DOm
7→ DO, and

– a pI relation with arity n to every predicate symbol p with arity n,
where: pI ⊆ DO1

× . . .×DOm
.

With the aid of interpretation an element of DO can be assigned to every WGS
constituent.

3. Examining the Semantic Equivalence of NL and PL Systems

3.1. Formal Definition of Semantic Equivalence

By definition, two statements in the same system are logically equivalent if,
for all possible values of the variables involved, both statements are true or
both are false. If α and β are equivalent, we write α ≡ β. Formally, given
an interpretation I = < ∆, I > and a variable assignment ϕ, formula α and
formula β are equivalent if

– I |=ϕ α and I |=ϕ β, or

– not I |=ϕ α and not I |=ϕ β.

3.2. Semantic Equivalence of NL and FOPL Statements

In this section we intend to examine the semantic equivalence of NL and FOPL
statements with ’true’ logical value. Following from the definition of logical
equivalence, this examination requires an interpretation I = < ∆, I >, a vari-
able assignment ϕ and two formulas: an NL WGS and an FOPL WFF. Let
us suppose that the content words (those with lexical meaning) constituting

24

Semantic Representation of NL with ECG

the NL sentence comprise the interpretation domain. The proposition(s) ex-
pressed by the NL sentence will be the predicate(s) of the FOPL formula,
while the other constituents will be assigned to FOPL variables. It is easy to
see that without interpretation and variable assignment the equivalence of the
next two statements is undecidable.

1/a Jeg elsker deg.

1/b P(x, y).

Assuming you do not speak Norwegian (i.e. without interpretation), you are
not able to understand 1/a, and hence you are not able to find out its truth
value. Also, without interpretation and variable assignment 1/b can be ren-
dered into any two-place predicate. Now, if we give the interpretation of the
predicate and assign values to the variables, we get

2/a I love you.

2/b Love(I, you).

However, we are still not able to determine the statements’ truth value, and
hence their equivalence. This is because NL sentences are produced and per-
ceived in concrete communicative contexts. Thus, ”it is not just what a sen-
tence means, but the fact that someone utters it plays a role in determining
what its utterance conveys” [9]. In this case we need to specify who is referred
to as ’I’ and who is referred to as ’you’. Owning this knowledge then allows
us to decide whether the two statements are semantically equivalent or not.

Another important question in our discussion is to what extent rendering
NL sentences into logical notation should reflect the logical forms of those
sentences. That is to say, ”it is one thing for a sentence to be rendered
into a logical formula, and quite another for the sentence itself to have a
certain logical form” [9]. The difference is evident if we consider the following
examples.

3/a There are students.

3/b (∃x)S(x).

4/a Some students are foreigners.

4/b (∃x)(S(x) ∧ F (x)).

4/c (∃x)(F (S(x))).

3/b reveals the true structure of the existential proposition 3/a expresses.
Thus this logical form of the sentence shows inherent properties of the sen-
tence itself, therefore we can refer to it as a level of syntactic structure. On
the other hand, 4/a does not express existential proposition and it does not

25

E. Baksa-Varga and L. Kovács

contain any sentential constituent corresponding to the conjunction in 4/b.
On the other hand, 4/c is not a valid FOPL statement although its approach
mirrors the true structure of the NL sentence.

In our discussion, we restrict our attention to logical forms reflecting syntactic
structure. For handling discrepancies, we give the definition of the equivalence
of two different notation systems by introducing the definition of a composition
preserving transformation. Given two languages L1(F1, O1) and L2(F2, O2),
where F denotes the set of formulas and O denotes the set of operations over
F , the transformation τ : L1 → L2 is said to be composition preserving if

τ(o(f1, f2, ...)) ≡ τ(o)(τ(f1), τ(f2), ...), (3.1)

i.e. τ(o(f1, f2, ...)) and τ(o)(τ(f1), τ(f2), ...) are equivalent in all interpreta-
tions.

Without the criterion of composition preserving, an ST (w1, w2, ...) general
FOPL predicate could be assigned to any arbitrary s = w1, w2, ... NL sentence
(see example 5/c). In this case however, the semantic interpretation of the
FOPL formula is not easier than that of the NL sentence.

3.3. Semantic Equivalence Assignment

The previous section defines what we mean by the semantic equivalence of
two statements. If the two statements are in the same set of statements (A),
then semantic equivalence is a binary relation over the given set, denoted by
R ⊆ A × A. If R is reflexive, symmetric and transitive, then is said to be an
equivalence relation. In this section we consider two sets of statements: let NL
denote the set of well-formed grammatical NL sentences and FOPL denote
the set of well-formed FOPL formulas. Examine the properties of semantic
equivalence over both sets.

1. R is reflexive, if ∀a ∈ A (aRa) holds.

2. R is symmetric, if ∀a, b ∈ A (aRb ⇒ bRa) holds. Thus, if a is the
semantic equivalent of b, then the opposite is also true.

3. R is transitive, if ∀a, b, c ∈ A (aRb∧ bRc ⇒ aRc) holds. Thus, if a is
the semantic equivalent of b and b is the semantic equivalent of c, it
entails that a is the semantic equivalent of c.

Taking the sets of NL sentences and FOPL formulas all three properties evid-
ently hold, therefore semantic equivalence can be considered as equivalence
relation over both sets. An equivalence relation divides a set into a number
of non-empty, pairwise disjoint subsets (equivalence classes). The statement

26

Semantic Representation of NL with ECG

sets constructed from these semantic equivalence classes are denoted by NL/R
and FOPL/R, respectively. We define a semantic equivalence assignment n
between these two sets as n : NL/R → FOPL/R. Now we focus on study-
ing the properties of this assignment in view of the criterion of composition
preserving.

1. n is a mapping, if ∀s ∈ NL/R, ∃f ∈ FOPL/R so that (s, f) ∈ n,
and ∀s ∈ NL/R, ∀f1, f2 ∈ FOPL/R ((s, f1), (s, f2) ∈ n ⇒ f1 = f2).
Thus, every NL sentence should have a corresponding FOPL formula.

2. n is injective, if ∀s1, s2 ∈ NL/R, ∀f ∈ FOPL/R ((s1, f), (s2, f) ∈
n ⇒ s1 = s2). Thus, every FOPL formula can have only one corres-
ponding NL sentence (but it is not necessary to have any).

3. n is surjective, if ∀f ∈ FOPL/R, ∃s ∈ NL/R so that (s, f) ∈ n.
Thus, every FOPL formula should have one corresponding NL sen-
tence.

4. n is bijective, if n is injective and surjective.

First, we need to prove that n is a mapping. Consider the following examples.

5/a You know I like sports.

5/b Know(you, Like(I, sports)).

5/c KnowLike(you, I, sports).

Here, the logical counterpart 5/b of the NL sentence is not a valid FOPL
formula, because predicates are not allowed to be arguments of other predic-
ates. On the other hand, 5/c is a well-formed FOPL formula, but it is not
composition preserving.

6/a Most students like sports.

6/b (Most x: S(x)) Like(x, sports).

Although in this case the logical form respects the structural integrity of the
quantified noun phrase, it is not a standard FOPL statement. Barwise and
Cooper [5] have shown that the notation of FOPL is not adequate for symbol-
izing such quantificational expressions as ’most’, ’many’, ’several’, ’few’ (not
mentioning numerical quantifiers and more complex quantificational expres-
sions).

7/a Students travel home regularly.

7/b (∀x : S(x)) Happens(regularly, Travel(x, home)).

27

E. Baksa-Varga and L. Kovács

The logical form here is not a valid statement even in extended versions of
FOPL. The reason for this is that in FOPL it is not allowed to quantify over
predicates.

Although we have not considered all linguistic phenomena, we could find some
that cannot be represented in standard FOPL at all, or not with the precon-
dition that we would like to keep the structure of the NL sentence. Therefore
we can state that n : NL/R → FOPL/R is not a mapping. If we restrict
though the set of NL sentences to those that can be represented in FOPL,
we can prove that n′ is still not an unambiguous mapping. Consider the next
example.

8/a Every student read a book (over the vacation).

8/b (∀x)(∃y(S(x) ∧ B(y) ∧ R(x, y)).

8/c (∃y)(∀x(S(x) ∧ B(y) ∧ R(x, y)).

We can render the NL sentence either as ’every student read a separate book’
as in 8/b, or as ’every student read the same book’ as in 8/c. This phenomena
is known as scope ambiguity, and results from the fact that NL, in opposition
to FOPL, is structurally ambiguous [8]. As a consequence of the possibility
of these kinds of multiple assignments n′ is said to be a multivalued mapping.
On the other hand, n” : FOPL/R → restricted NL/R would be a surjective
mapping if we ignore the criterion of composition preserving. From this ana-
lysis we can conclude that the semantic content set FOPL/R is able to cover
is narrower than that of NL/R.

4. Higher-Order Logic

We can go beyond FOPL in two directions. On the one hand, we can intro-
duce calculuses of higher order, in which propositions or propositional func-
tions (and therefore sets) can appear as arguments to other functions. On the
other hand, we can use higher (constructive and nonconstructive) methods
like recursive numerical functions, symbolic structures, and semantic meth-
ods. In some ways intermediate between these are systems in which numbers
are explicitly introduced (as primitives) into the domain of arguments [10].
From the above examples and examinations it is clear that we emphasize the
introduction of higher-order calculus and numerical primitives.

4.1. Formal Definition of HOPL

The most obvious differences between HOPL and FOPL are that 1) HOPL
uses variables that range over sets instead of discrete variables; and 2) in

28

Semantic Representation of NL with ECG

HOPL predicates can be arguments of predicates and values of variables (i.e.
quantification over predicates is allowed). In other words, higher-order logics
allow for quantification not only of elements of the domain of discourse, but
subsets of the domain of discourse, sets of such subsets, and other objects of
higher type (such as relations between relations, functions from relations to
relations between relations, etc.). The semantics are defined so that, rather
than having a separate domain for each higher-type quantifier to range over,
the quantifiers instead range over all objects of the appropriate type. Although
higher-order logics are more expressive, allowing complete axiomatizations of
structures, they do not satisfy analogues of the completeness and compactness
theorems from first-order logic, and are thus less amenable to proof-theoretic
analysis [11].

According to [12], a common approach to describing the syntax of a higher-
order logic is to introduce some kind of typing scheme. One approach types
first-order individuals with ι, sets of individuals with 〈ι〉, sets of pairs of in-
dividuals with 〈ιι〉, sets of sets of individuals with 〈〈ι〉〉, etc. Such a typing
scheme, however, does not provide types for function symbols. A more gen-
eral approach to typing is that used in the Simple Theory of Types [13]. Here
again, the type ι is used to denote the set of first-order individuals, and the
type o is used to denote the sort of booleans: {true, false}. In addition to
these two types, it is possible to construct functional types: if σ and τ are
types, then σ → τ is the type of functions from objects of type σ to objects
of type τ . Thus, an expression of type ι → ι represents a function from in-
dividuals to individuals. Similarly, an expression of type ι → o represents a
function from individuals to the booleans. Using characteristic functions to
represent predicates, this latter type is used as the type of predicates whose
one argument is an individual. Similarly, an expression that is of type o is
defined to be a formula. Typed expressions are built by

– application, i.e. if M is of type σ → τ and N is of type σ, then their
application MN is of type τ , and

– abstraction, i.e. if x is a variable of type σ and M is of type τ , then
the abstraction λxM is of type σ → τ .

Propositional connectives can be added to these terms by introducing the
constants ∧, ∨ and ⊃ of type o → o → o and ¬ of type o → o. Quantifica-
tion arises by adding (for each type σ) the constants ∀σ and ∃σ both of type
(σ → o) → o. The intended denotation of ∀σ is the set that contains one
element, namely the set of all terms of type σ; while the intended meaning of
∃σ is the collection of all non-empty subsets of type σ.

29

E. Baksa-Varga and L. Kovács

Higher-order logic can be interpreted over a pair 〈{Dσ}σ, J〉, where σ ranges
over all types. The set Dσ is the collection of all semantic values of type σ
and J maps constants to particular objects in their typed domain. There are
two major ways to interpret higher-order logic. A standard model is one in
which the set Dσ→τ is the set of all functions from Dσ to Dτ . Such models
are completely determined by supplying only Dι and J . If Dι is denumerably
infinite, then Dι→o is uncountable, thus standard models can be very large. As
a consequence of Gödel’s incompleteness theorem, the set of true formulas in
such a model are not recursively axiomizable; i.e. there is no theorem proving
procedure that could (even theoretically) uncover all true formulas [14]. In
the general (or Henkin) model [15], however, it is possible for Dσ→τ to be a
proper subset of the set of all functions from Dσ to Dτ as long as there are
enough functions to properly interpret all expressions of the language of type
σ → τ . Hence this model is sound and complete.

4.2. Reasons for HOPL

The necessity of HOPL in representing NL semantics is proved in view of the
arguments against it. Firstly, reification [6] is a technique used for representing
all concepts that one wants to make statements about as objects in FOPL,
instead of using higher-order predicates. In this case, however, new relations
need to be introduced which in fact do not solve, but only shift the problem.
Moreover, the resulting valid FOPL formulas will not be in accordance with
the precondition of composition preserving. Secondly, [3] states that FOPL
is sufficient, since HOPL formulas can be converted into FOPL formulas. In
the proposed formalism, an arbitrary P1(P2(x)) second-order statement can
be transformed into a P1(y1) ∧ P2(y2) ∧ PR(y1, y2, x) FOPL formula; while
∀p.P (x) is rendered into ∀y.P (y) → PR(y, x). This solution formally results
in valid FOPL formulas, but the criterion of composition preserving is violated,
which leads to the following problems. First, consider the example under 5.
In 5/c we lose the syntactic structure of the NL sentence. This FOPL formula
ignores the subordination relation between the NL constituents: all elements
are at the same level, and the original structure is obscured. This problem can
be eliminated by the use of higher-order predicates. In general, a higher-order
predicate of order n takes one or more (n−1)th-order predicates as arguments,
where n > 1. Now, consider another example.

9/a I drink cold milk regularly.

9/b Happens(regularly, Drink(I, cold, milk)).

9/c Drink(I, regularly, cold, milk).

30

Semantic Representation of NL with ECG

In 9/c not only the criterion of composition preserving is violated but one may
draw the false conclusion that ’regularly’ refers solely to the predicate ’drink’.
In fact, it refers to the whole statement (see also example 7).

Example 6/b is another argument for the necessity of HOPL, since FOPL
restricts the use of quantifiers to ∃ and ∀. A contemporary theory of quan-
tification is the so-called Generalized Quantifier theory [4], [5]. This theory
introduces many primitive quantifier expressions, as well as symbols for hand-
ling counting quantifiers.

For further information about second-order logic and its comparison with first-
order logic we refer the reader to [16], [17] and [18]. For details about modal
logic [19], [20], many-valued logic and fuzzy logic see [21].

Since variables are connected to domains in PL, HOPL expressions need to be
embedded (see 5/b, 7/b). However, if we consider 9/b we can see that HOPL
is not an adequate formalism either, because the structure under the predicate
’drink’ is obscured: one may improperly conclude that ’cold’ refers to ’drink’
rather than ’milk’. Consequently the formalism needs further extensions.

5. Extension of HOPL

As we have declared previously, our project aims at developing an intelligent
agent (see Figure 1) that is able to express its observations and states in NL
sentences. In the first stage, we restrict the expressions to the observations
which are related to definite, unambiguously interpretable situations. Conse-
quently, the sentences describing these situations are factual assertions with
true logical value. Therefore the following linguistic phenomena are beyond
the scope of our investigations:

– if-then structures and conditionals,

– imperative, optative, exclamatory and interrogative sentences,

– probability and other certainty/uncertainty factors,

– intentional secondary meaning (pragmatics).

On the other hand, linguistic phenomena that need to be studied are as follows:

– domain types,

– referring expressions,

– adverbs,

– adjectives,

31

E. Baksa-Varga and L. Kovács

– numerical expressions and cardinality,

– quantification,

– logical connectives,

– historical (temporal) sequences, and

– causality.

For the composition preserving logical representation of the examined linguist-
ic phenomena we propose the following HOPL extensions.

1) Arbitrary predicates (relations) are allowed, denoted by capitalized words.
Domain types are assigned to the arguments of predicates, which specify the
semantic roles these arguments play. The fixed set of roles (analogously to
thematic roles [22] in linguistics) are associated with and determined by the
predicate.

1.1/a Peter loves Mary.

1.1/b Love(Subject: Peter, Object: Mary).

2) Concepts are regarded as sets. Constants referring to specific objects (con-
cepts) are single-element sets denoted by capitalized words, while constants
referring to abstract concepts are multiple-element sets denoted by lower-case
words. An element of a set a is denoted by the isa(a) function (functions are
denoted by lower-case words). We can refer to an object by the : operator.

2.1/a Peter reads a book.

2.1/b Read(Subject: Peter, Object: isa(book)).

2.2/a Peter reads a/the book Tom likes.

2.2/b Read(Subject: Peter, Object: isa(book):x |
Like(Subject: Tom, Object: x)).

From the set-based treatment of concepts follows that plural forms, when
used for referencing objects in general, are represented as abstract concepts,
i.e. multiple-element sets.

2.3/a Peter likes books.

2.3/b Like(Subject: Peter, Object: book).

3) By the representation of adverbs we should make a distinction between
those that describe the circumstances of the action or state expressed by the
predicate, and those that add extra conditions connected with the basic as-
sertion. The latter is represented by the use of the Happens relation. The
difference is clearly seen in the second example.

3.1/a Peter travels by train.

32

Semantic Representation of NL with ECG

3.1/b Travel(Subject: Peter, Instrument: isa(train)).

3.2/a Peter often travels by train.

3.2/b Happens(Subject: Travel(Subject: Peter, Instrument: isa(train)),
Time: Often).

3.2/c Travel(Subject: Peter, Instrument: isa(train), Time: Often).

The logical form in 3.2/c is incorrect, because from its truth does not follow
that Travel(Subject: Peter, Time: Often) is true.

The following example is an illustration for the ambivalent nature of NL, where
we cannot decide which predicate the adverb is linked to.

3.3/a I see you running today.

3.3/b See(Subject: I, Object: Run(Subject: You, Time: Today)).

3.3/c See(Subject: I, Object: Run(Subject: You), Time: Today).

4) Adjectives can be added to the assertion by the use of the Property relation.

4.1/a Peter reads a scientific book.

4.1/b Read(Subject: Peter, Object: isa(book):x | Property(Subject: x,
Object: Scientific)).

5) For the treatment of numerical expressions we need to introduce numerical
relations and numerical primitives, as well as the some(a) function for creating
a group of objects.

5.1/a Peter reads two books.

5.1/b Read(Subject: Peter, Object: some(isa(book)):x
| Property(Subject: x, Object: Two)).

5.2/a Peter reads more books than magazines.

5.2/b Read(Subject: Peter, Object: (some(isa(book)):x,
some(isa(magazine)):y) | More(Subject: x, Object: y)).

5.3/a Peter reads more books than Tom.

5.3/b (Read(Subject: Peter, Object: some(isa(book)):x),
Read(Subject: Tom, Object: some(isa(book)):y)
| More(Subject: x, Object: y)).

6) Existential and universal quantifiers are defined similarly by means of the
some(a) and all(a) functions, respectively.

6.1/a There is a book on a/the table.

6.1/b Is(Subject: isa(book), Location: isa(table)).

33

E. Baksa-Varga and L. Kovács

6.2/a There are some books on a/the table.

6.2/b Is(Subject: some(isa(book)), Location: isa(table)).

6.3/a All books are on a/the table.

6.3/b Is(Subject: all(isa(book)), Location: isa(table)).

7) Logical operators can be applied to predicates or to arguments of predicates.
When they refer to predicates we should note, that and means the presence
of multiple predicates (they can be connected with the , operator), while or
means the uncertainty of the observation (which is beyond the scope of our
investigations).

7.1/a Peter reads and laughs.

7.1/b (Read(Subject: Peter), Laugh(Subject: Peter)).

7.2/a Peter reads not laughs. ≡ Peter reads.

7.2/b Peter does not read.

7.2/c NotRead(Subject: Peter).

In the latter example, case (a) demonstrates that we restrict our examinations
to observations and the addition of extra information is not allowed. Case
(b) states that Peter is not doing something without stating what he is doing.
As a result, case (c) shows that an observation is uninterpretable without a
specific predicate, thus not can only be allowed if included in the predicate.

The same applies when logical operators are related to arguments of predicates.
Here and is represented by the grouping of the corresponding arguments, and
or means uncertainty which is not covered by our investigations. Also, nega-
tion either expresses that an argument is not something without saying what
it is, which is uninterpretable in our framework; or it states what the argument
is, in which case the negation is an extra piece of information (e.g.: Peter reads
not a book but a magazine. ≡ Peter reads a magazine.).

8) Temporal aspects can only be studied when several observations are com-
pared on a historical basis. In this case the former observation(s) must have
a tense preceding the latter observation(s). The observation at the end of the
history demonstrates the actual (present) state of the system.

8.1/a Peter gives Tom a book. Tom reads the book.

8.1/b Give(Subject: Peter, Object: isa(book):x, Recipient: Tom) →
Read(Subject: Tom, Object: x).

8.1/c Tom reads the book that Peter gave him.

34

Semantic Representation of NL with ECG

9) The examination of causes and results leads us back again to the Happens
relation.

9.1/a Peter cannot sleep because Tom is dancing.

9.1/b Happens(Cause: Dance(Subject: Tom),
Result: NotSleep(Subject: Peter)).

From this analysis we can see that, in view of the criterion of composition pre-
serving, the extended HOPL approximates NL better than the one without
these extensions. Therefore, considering the assignment m′ : EHOPL/R →
NL/R (where EHOPL/R denotes the set of extended HOPL statements con-
structed from semantic equivalence classes) we can state, that m′ is a surjective
mapping.

6. ECG: Graphical Representation of EHOPL

The present investigations concerning our project (see Figure 1) focus on mod-
eling the agent’s ability to assign semantic representations to its observations.
For this purpose we have developed the Extended Conceptual Graph (ECG)
model [23], a graphical conceptual modeling language that can be used to de-
scribe the semantics of an agent’s internal knowledge model. In our model,
the process of conceptualization occurs at two levels. At the primary level the
direct and static mapping of the objects and relations within an observation
takes place. At the extended or abstract level temporal and other complex re-
lationship types are also managed. The main building blocks of the model are
concepts, relationships, and containers which serve for structuring the model.
The graphical representation of model elements is shown in Figure 2. The
’world’ is built up of interconnected ECG model fragments representing sepa-
rate observations, containing exactly one kernel predicate (denoted by *) and
having ’true’ truth value. The model is characterized by

– a predicate-centered schema language,

– the fine distinction between the different categories of concept and
relationship types,

– the fixed set of elements with flexible semantic assignment, and

– the generality and reusability of basic model structures.

In the present article we examine the expressiveness of primary level ECG.
Consequently, we will go through the linguistic phenomena identified in the
previous section (except for temporal aspects, because they can only be studied
at the extended level) and show that all of them can be represented in our
model. In Equation 3.1 we defined a composition preserving transformation,
and stated that two statements from different notation systems are said to

35

E. Baksa-Varga and L. Kovács

Figure 2. Components of the ECG model

be equivalent if there exists a composition preserving transformation between
them by means of which the two formulas are equivalent in all interpretations.
The following analysis specifies the composition preserving transformation of
EHOPL formulas into graphical ECG structures.

Figure 3. Basic ECG structures

Figure 3 shows the identified basic ECG structures. 1) illustrates a predicate
with a typed argument, where types correspond to semantic roles. Arguments
can be arbitrary ECG concepts, including predicate concepts as well. Ob-
jects are represented by different types of category concepts (see Figure 2).

36

Semantic Representation of NL with ECG

Accordingly, we make a distinction between concepts referring to concrete ob-
jects (FICR), concepts referring to a collection of objects (FMCR), concepts
referring to unreferenced unnamed objects (FICN), and concepts referring to
referenced unnamed objects (FICT). The two latter serve for making a dis-
tinction between the use of indefinite and definite articles, respectively. 2)
shows how an unnamed object is associated with a collection of named ob-
jects through the isa() relationship. Adverbs connected to the predicate are
considered extra arguments of the predicate. On the other hand, 3) demon-
strates how adverbs associated not only with the predicate itself but with the
whole assertion are handled. Similarly, 4) displays the treatment of adjectives
as arguments of the Property predicate. 5) shows how groups of objects can
be composed. If an adjective indicating the cardinality of the group is also
present then a Property predicate with an argument needs to be added to the
construction. The handling of quantifiers and logical connectives originates in
the previously discussed basic structures with the extension that also pred-
icates can comprise a group. Causality can be traced back to 3) where the
Happens predicate has a Cause-type and a Result-type predicate argument.

From these basic structures an ECG model, which is actually a semantic net-
work, with arbitrary complexity can be built. For illustration, see Figure 4,
which shows the ECG fragment for the observation ”A black circle is in the
white triangle”.

Figure 4. ECG fragment for an observation

This analysis proves that the assignment e : EHOPL/R → ECG (excluding
temporal aspects) is a bijective function, therefore e−1 : ECG → EHOPL/R
also exists. Thus we can state that the two formalisms are semantically equi-
valent, that is the same semantic content can be represented by both symbol-
isms. Therefore the ECG model can be viewed as the graphical counterpart of

37

E. Baksa-Varga and L. Kovács

the EHOPL language. As a consequence, the assignment f ′ : ECG → NL/R
is a surjective mapping (just like m′). Note here that the set of ECG state-
ments needs not be restricted to a set of semantic equivalence classes, because
the ECG model is a semantic model constructed for representing the semantic
content of a given situation.

7. Conclusion

The aim of the present article was the examination of primary level ECG’s
expressive power. In other words, we have been looking for an answer to the
question: to what extent primary level ECG is able to model natural language
semantics. Since the analysis was performed on a logical basis, this exam-
ination covered not less than the semantic comparison of natural language
statements and logical formulas. We were interested in logically significant
natural language expressions, and we have considered to what extent their
semantics is captured by the logical behavior of their formal counterparts.

We can now draw the conclusion that the ECG model is able to grasp the se-
mantic content of situations, and from the article we can see that every ECG
statement can be rendered into an NL sentence. This assignment is unam-
biguous, that is every ECG statement can have only one corresponding NL
formulation (with the assumption that semantically identical NL sentences are
considered to be one). On the other hand, we can also state that every NL
sentence can be approximated by an ECG model, if the pragmatic level of lan-
guage is not taken into account. The ECG model is a recursive, compositional
system: that is infinitely many statements can be constructed from the small
finite set of model elements. Consequently, the more extended an ECG model
is, the better it is able to approximate NL.

REFERENCES

[1] Ben-Yami, H.: Logic & Natural Language. Ashgate, 2004, ISBN 0-7546-3743-3.

[2] Blackburn, P. and Bos, J.: Computational semantics. Theoria, 18, (2003),
27–45.

[3] Peregrin, J.: What does one need when she needs ’higher-order’ logic? In
Filosofia, LOGICA’96, Praha, 1997.

[4] Higginbotham, J. and May, R.: Questions, quantifiers and crossing. Linguistic
Review, 1, (1981), 41–79.

[5] Barwise, J. and Cooper, R.: Generalized quantifiers and natural language.
Linguistics and Philosophy, 4, (1981), 159–219.

38

Semantic Representation of NL with ECG

[6] Jurafsky, D. and Martin, J. H.: Speech and Language Processing: An Intro-
duction to Natural Language Processing, Speech Recognition, and Computational
Linguistics. Prentice-Hall, 2nd edn., 2008.

[7] Szeredi, P.: Az ontológiakezelés matematikai alapjai. Ontosz Klub, 2008.

[8] Keenan, E.: How much logic is built into natural language? In Fifteenth Ams-
terdam Colloquium, ILLC, University of Amsterdam, 2005, pp. 39–45.

[9] Bach, K.: A Companion to Philosophical Logic, chap. Language, logic, and
form. Blackwell Publishers, 2002.

[10] Curry, H. B.: Foundations of Mathematical Logic. Dover Publications, Inc.,
New York, 1977, ISBN 0-486-63462-0.

[11] Shapiro, S.: The Blackwell Guide to Philosophical Logic, chap. Classical logic
II: Higher order logic. Blackwell Publishers, 2001.

[12] Miller, D.: Encyclopedia of Artificial Intelligence, chap. Logic, Higher-order.
1991.

[13] Church, A.: A formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5, (1940), 56–68.

[14] Andrews, P.: An Introduction to Mathematical Logic and Type Theory. Aca-
demic Press, 1986.

[15] Henkin, L.: Completeness in the Theory of Types. Journal of Symbolic Logic,
15, (1950), 81–91.

[16] Hinman, P. G.: Fundamentals of Mathematical Logic. A K Peters, 2005, ISBN
1-56881-262-0.

[17] Väänänen, J.: Second-order logic and foundations of mathematics. The Bul-
letin of Symbolic Logic, 7(4), (2001), 504–520.

[18] Rossberg, M.: First-order logic, second-order logic, and completeness. In First-
Order Logic Revisited, Logos Verlag Berlin, 2004, pp. 303–321.

[19] Gamut, L. T. F.: Logic, Language, and Meaning. Volume 2. Intensional Logic
and Logical Grammar. The University of Chicago Press, 1991.

[20] van Benthem, J.: The Logic of Time. Kluwer Academic Publishers, 2nd edn.,
1991.

[21] Jacquette, D. (ed.): A Companion to Philosophical Logic. Blackwell Publish-
ers, 2002, ISBN 0-631-21671-5.

[22] Fillmore, C.: Universals in Linguistic Theory, chap. The Case for Case. New
York: Holt, Rinehart and Winston, 1968.

[23] Baksa-Varga, E. and Kovács, L.: Knowledge base representation in a gram-
mar induction system with Extended Conceptual Graph. Scientific Bulletin of
’Politehnica’ University of Timisoara, Romania, 53(67), (2008), 107–114.

39

