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Abstract. Bayesian classifiers provide relatively good performance compared with other 
more complex algorithms. Misclassification ratio is very low for trained samples, but in the 
case of outliers the misclassification error may increase significantly. The usage of 
‘summation hack’ method in Bayesian classification algorithm can reduce the 
misclassifications rate for untrained samples. The goal of this paper is to analyze the 
applicability of summation hack in Bayesian classifiers in general. 
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1. Introduction 

The Bayesian classification method is a generative statistical classifier. Studies 
comparing classification algorithms have found that the simple or Naive Bayesian 
classifier provides relatively good performance compared with other more complex 
algorithms. Accuracy of classification is a very important property of a classifier, a 
measure of which can be separated into two parts: a measure of accuracy in case of 
trained samples and a measure of accuracy in case of untrained samples. Naive 
Bayesian classification is generally very accurate in the first case since all testing 
samples are trained before and have no outliers; in the second case the efficiency is 
worse due to outliers. In [1], the role of outliers is examined in classification 
methods, the Naive Bayesian classification is reactive to outliers, and they can 
cause misclassification. Usage of summation hack can reduce the effect of outliers. 
The goal of our research is to analyze the generalization capability of Bayesian 
classification using summation hack. In the second part a short summary about 
Naive Bayesian classification is given. In the third part the concept of summation 
hack is introduced and examined. In the fourth part the classification methods are 
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analyzed considering the misclassification error. Finally, the test results and 
conclusions have been summarized in the last section. 

It is assumed that the objects to be classified are described by n-dimensional 
pattern vectors x = (x1,…,xn) ∈ Rn. The dimensions correspond to the attributes of 
the objects. Every pattern vector is associated with a class label c, where the total 
number of classes is m. The class label ci denotes that the object belongs to the i-th 
class. Thus, a classifier can be regarded as a function 

},...,{:)( 1 m
n ccRg →x . (1.1) 

The optimal classification function is aimed at minimizing the misclassification 
risk [2]. The risk value R depends on the probability of the different classes and on 
the misclassification cost of the classes:  
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where P(cj | x) denotes the conditional probability of cj for the pattern vector x and 
b(ci→cj) denotes the cost value of deciding in favor of ci instead of the correct class 
cj. The cost function b has usually the following simplified form: 
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Using this kind of function b, the misclassification error value can be given by 
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The optimal classification function minimizes the value R(g(x) | x). As  

1)|( =
jc jcP x , (1.5) 

thus if 

max)|)(( →xxgP , (1.6) 

then the R(g(x)|x) has a minimal value. The decision rule which minimizes the 
average risk is the Bayes’ rule which assigns the x pattern vector to the class that 
has the greatest probability for x[3]. 
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2. Bayes classification 

A Bayesian classifier is based on Bayes’ theorem which relates to the conditional 
and marginal probabilities of two random events. Let A and B denote events. 
Conditional probability P(A|B) is the probability of event A, given the occurrence 
of event B. Marginal probability is the unconditional probability P(A) of event A, 
regardless of whether event B does or does not occur.  

The simplified version of Bayesian theorem can be written for event A and B as 
follows: 
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If  is the complementary event of A, called „not A”. Let A1, A2,A3,… be a partition 
of the event space. The general form of the theorem is given as: 
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Let C = {ck} denote the set of classes. The observable properties of the objects are 
described by vector x. An object with properties x has to be classified into the class 
for which the P(ck|x) probability is maximal. On the basis of Bayes’ theorem: 
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Since P(x) is the same for all k we have to maximize only the expression 
P(x|ck)P(ck). The value P(ck) is given a priori or can be appreciated with relative 
frequencies from the samples. According to the assumption of Naive Bayes 
classification the attributes in a given class are conditionally independent of every 
other attribute. So the joint probability model can be expressed as 
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Using the above equation the probability of class ck for an object featured by vector 
x is equal to 
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For the case where P(c*|x) is maximal the corresponding class label [5] is: 
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If a given class and feature never occur together in the training set, then the relative 
frequency will be zero. Thus, the total probability is also set to zero. One of the 
simplest solutions of this problem is to add 1 to all occurrences of the given 
attribute. In case of a large number of samples the distortion of probabilities is 
marginal and the information loss through the zero tag can be eliminated 
successfully. This technique is called Laplace estimation [4]. A more refined 
solution is to add pk instead of 1 to the relative frequencies, where pk is the relative 
frequency of kth attribute value in the global teaching set, not only in the set 
belonging to class ci. 

3. Summation hack 

Outliers in the classification can indicate faulty data which cause misclassification. 
The use of summation hack is an optional method to reduce the misclassification 
error. Summation hack is an ad-hoc replacement of a product by a sum in a 
probabilistic expression [1]. This hack is usually explained as a device to cope with 
outliers, with no formal derivation. This note shows that the hack does make sense 
probabilistically, and can be best thought of as replacing an outlier-sensitive 
likelihood with an outlier-tolerant one.  

Let us define a vector x with components x1,x2,…,xn and a class c. In Bayes 
classification where the vector values are conditionally independent: 

∏
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In this case the probability is sensitive to outliers in individual dimensions so if any 
P(xi|c) value is equal to 0, the product will be zero. Using summation hack we get 
the following: 
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In this case the result will be zero if and only if all p(xi|c) values are equal to 0. 
Using (2.9) and (3.2) the computing of winner class is based upon the following 
formula: 
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Applying summation hack the error of classification can be reduced. In every 
equation above the frequency probabilities are replaced with their approximated 
values, where 
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and nt is the total number of trials and ne is the number of trials where event e 
occurred. If the number of test events approaches infinity, the relative frequency 
value will converge to the probability value. In many classification tasks; a small 
number of samples is given [6], the number of tests is low, so a larger 
approximation error will arise in the calculations. We can write the probability as 
follows: 
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where  means the error of approximation. The cumulated classification error in 
case of summation hack can be computed by the summation of the error elements. 
This error value differs from the classification error for the product of probabilities 
as it is calculated by the following form: 
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4. Analysis of approximation error 

The main cause of misclassification is the error of the approximated probability 
values shown in formula (3.4). To calculate the error value, the following model is 
applied. Let {c} be the set of classes, and {a’} the set of attributes where an 
attribute may be of vector value. A test case is described by a (a’,c) pair where c 
denotes the class related to the a’ attribute. The unknown probability that ai 
belongs to cj is denoted by pij. The relative frequency of the event that ai belongs to 
cj is denoted by gij. In the calculations pij are approximated by gij. The classification 
of the attribute can be regarded as a stochastic event, where P(pij, gij) denotes the 
probability that gij will be used in the calculations instead of  gij. 

Let X(xi) be a k-dimensional stochastic variable, where xi denotes the number of 
attributes classified as ci. X has a polynomial distribution: 
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A given g(n1,n2,…,nr) frequency value has different P probabilities for the different 
p(p1,p2,…,pr) probability tuples. The p(p1,p2,…,pr) with maximal P value is 
assumed to be the real probability value tuple. As the maximum likelihood 
approximation of the probability is the frequency value, the relative frequencies are 
the best approximations of real probabilities: 

N

n
P in

i
i ≈ . (4.3) 

The probability of other p vectors can also be calculated with this formula. For the 
case n = 2 the resulting P distribution function is shown in Fig. 1.  

In the next step, the approximation error of product ∏ Pi is calculated. It is clear  
that the larger the difference between p and g, the higher the error value is. On the 
other hand, the lower the difference between p and g, the higher probability of this 
pair is. In the investigation, the average error value is calculated in the following 
way: 
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where ε denotes the error value, where 

ε(p,g): the error value of matching p with g, 

P(p,g): the probability of matching p with g and 

ε(g): the average error related to frequency vector g. 

 

,  
Figure 1. Probability function for the case n=2 

In the test case, the error formula for pi and the mean value of error can be 
computed as follows: 

)1()1(),( 11
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Fig. 2 shows the error function for the test binomial case. The number of attempts 
is 100 where the number of attributes belonging to class c1 is 30. In the Figure, can 
be seen the minimum error is in case of p=0.3. Since the function is symmetric, 
another minimum point can be found at p=0.7.  
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,  
Figure 2. Error function for the case p=0.3 

In Naive Bayesian classifier the accuracy depends strongly on the number of 
attempts. The larger the test pool, the better the accuracy is. In Fig. 3 the mean 
value error function can be seen for different N values. The results show that for a 
small number of N values the use of summation hack can improve the accuracy but 
for a larger test pool the Naive Bayesian classifier is the dominant one. 

 

5. Test results 

In first tests [7] the reference points were generated with uniform distribution in 
space. The winner was the Naive Bayesian classifier in teaching and testing phase 
equally. The teaching accuracy had values from 80% to 100% depending on 
environment parameters. Using summation hack this accuracy decreased by about 
10%. The testing accuracy is far lower, it is between 40 and 70 percent in case of 
Naive Bayesian classifier and lower using summation hack. The relatively large 
range of result values can be explained by the overtraining of the model which can 
be controlled by the correct choice of environment parameters. 
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In later tests the reference points were generated sparsely, so the space has a small 
region with a relatively large number of reference points and outside this region 
there are only a few reference points. 

 

,  
Figure 3. Mean value error function for different (n1, N) values 

In the case of this distribution, the accuracy of classifiers has changed. The 
teaching accuracy of Naive Bayesian classifier remained highly similar to other 
cases and the use of summation hack brought up the accuracy to the Naive 
Bayesian. In the testing phase the experience shows that in some cases the 
summation hack solution can improve the efficiency of classification and in many 
cases it exceeds the Naive Bayesian. It confirms the assumptions that the usage of 
summation hack in Bayesian classification can increase accuracy when the samples 
contain a great number of untrained attribute values. 

The accuracy of classification depends on many parameters of the environment. 
One of the most important factors is the maximum attribute value parameter. Fig. 4 
shows the accuracy functions for the following maximum attribute parameter 
values: 20 (NB20,SH20), 100 (NB100,SH100) and 500 (NB500,SH500). The 
notation NB is for Naive Bayesian algorithm and SH for the modified Bayesian 
algorithm. The accuracy of both algorithms has increased with increasing the size 
of the training set. 
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Figure 4. Relative accuracy of algorithms according to number of teaching samples 

6. Conclusions 

Summation hack is an alternative for the Naive Bayesian classifier with larger 
probability approximation errors. Taking a decision tree as a reference classifier, 
we have compared the Naive Bayesian classifier with the Bayesian classifier using 
summation hack. The test results show that both methods can yield the same 
accuracy as the decision tree method has in the case of large training sets. 
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