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Abstract. In this work the force sensor signals of an interrupted
metal cutting process were analyzed by continuous wavelets (CWT) and
Hilbert-Huang Transformation (HHT). The main purpose was to charac-
terize the signal through the typical behavior of its dominant frequencies
and, at the same time, to compare the performances of the two frequency
localizing methods applied. It was found that the low dominant frequen-
cies are approximately constant while the values of the high dominant
frequencies (above one kHz) show strong fluctuations. Here we show
that the fluctuations revealed by the CWT method are caused partly by
numeric effects of the method itself and partly by real variations in the
frequency values. These variations are responsible for the non-stationary
behavior of the signal. Regarding the methods applied, it was found that
the wavelet analysis method is capable of tracing fast varying frequencies
of the signal with values close to each other by the proper choice of the
central frequency parameter of the mother wavelet. In comparison with
the HHT, the wavelet method proved much more robust in this case.

Keywords : Continuous Wavelet Transform, Hilbert-Huang Transform,
interrupted cutting

1. Introduction

The analysis of vibration signals is a useful method in research on cutting
or other machining processes. A milling or a turning tool together with the
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T. Kovács, E. Csizmás, A. Szabó

work-piece form a complex mechanical system containing different vibrating
sub-systems, the frequencies of which carry relevant information about the
whole system. Fourier and wavelet transforms, and recently the Hilbert-Huang
Transform (HHT) are the main tools that can be applied in frequency deter-
mination. One of the the main motivations behind these examinations is the
possibility of tool wear monitoring, diagnostics of tool breakage or other dis-
functionalities of the machine. Application of wavelets can be found in various
areas of machining processes. In most cases wavelet-based low-pass, high-pass
or band filters are developed for signal processing or analyzing purposes. Shef-
fer and Heyns [1] applied wavelet decomposition of the force signal along with
Fourier transform for tool condition monitoring. Li et al. [2] and later Bhat-
tacharyya et al. [3] used wavelet spectrum coefficients for on-line monitoring of
the tool wear state in turning and milling processes. Recently Shi and Gindy
[4] proposed wavelets to decompose sensory signals into static and dynamic
components and extract features of tool malfunctions in various machining
processes. The possibilities of localizing varying frequencies in the signal were
investigated theoretically in details by Delprat et al. [5] and Torrésani [6].

The other motivation in the force signal analysis is related to the area of ac-
tive vibration control by a sensor-actuator system. Recently El-Sinawi and
Kashani [15] and later Al-Zaharnah [16] designed and implemented such a
control system by magnetostrictive actuators in the case of interrupted cut-
ting. Their system does not use any a priori information about the frequencies
or other characteristics of the vibration sources. If we had this information or
at least part of it, the performance of such a control system could be improved
by involving stochastic prediction of the vibration to be damped.

Figure 1. The truncated tube as work-piece

In this work the feed-force signal of an orthogonal interrupted cutting process
is studied. In such processes the cutting tool collides with the work-piece with
a certain frequency, and this launches the vibration modes of the sub-systems
of the whole machine. In addition to this, in the continuous cutting phase
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(between the entry and the exit of the cutting insert) there are various physi-
cal effects that similarly excite the vibration modes though with much smaller
energy. Because of these impulse-like or continuous excitations the force sen-
sor signal contains the frequencies of the activated vibration modes. Here we
propose a Continuous Wavelet Transform (CWT)-based analysis of the vibrat-
ing force signals that is capable of tracing the fast varying frequencies of the
different sub-systems, and, at the same time, it seems to be robust enough.
A Hilbert-Huang Transform-based analysis of the signal is also performed in
order to compare the two relevant methods.

2. Experimental

In the experimental part an orthogonal cutting arrangement was set by turning
the free end of a structural steel tube, the end of which was truncated as
shown in Fig. 1. The external diameter and the wall thickness of the tube
was 102 mm and 4 mm, respectively. The machine applied was a general
purpose double engine (2x5.5 kW) lathe equipped with T25M coated cemented
carbide inserts. The geometry of the insert is characterized by a rake angle
5o and inclination angle 0o. The feed rate was 0.1 mm per revolution, and
the rotations per minute (RPM) of the machine was 270. The applied cutting
speed was calculated as

v = πDn, (2.1)

where D is the diameter of the tube and n is the RPM value. By means of
Equation (2.1) the value of v was approximately 85 m/min. The magnitude
of the force components was measured by a Kistler dynamometer, which was
connected to a PCI National Instruments data acquisition card. The sampling
frequency of the dynamometer was very high (200kHz) in order to get a
good resolution of the force signal. The data were processed by LabView 7.1
software. In Fig. 2 the signal produced by the feed force can be seen.

3. Stationarity of the signal

As mentioned above, the analysis of the force signal is important for inventing
proper stochastic prediction methods, which can help the vibration control
system. The aim of these methods could be summarized as predicting the
signal value a certain time in advance. In the present area this time should be
a few tenths of milliseconds, since the reaction times of the magnetostrictive or
piezoelectric actuators are in this order of magnitude. In the case of stochastic
signals the most common technique is the linear prediction method [13]. This
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Figure 2. The original and the filtered (see eq. (3.3)) feed force sig-
nal measured in the first 10 and 400 milliseconds (two whole turning
cycles) at the cutting speed 85 m/min and feed ratio 0.1 mm/rev.
The zero of the time axis is taken to be one millisecond before the
first workpiece-tool impact.

method assumes that the signal is at least weakly stationary. Among others,
the weak stationarity demands that the signal’s autocorrelation, defined by

X(t, L) = 〈F (t)F (t + L)〉 , (3.1)

is independent of time t and depends on only the time lag L. In the definition
above F (t) denotes the time dependent signal and the brackets 〈〉 stand for
the normalized mean value. In order to characterize the weak stationarity of
F (t) we calculate the approximate value of the autocorrelation inside any time
interval of length T , where T is large enough to get a reliable approximation.
In mathematical terms, we determine the function defined by

XT (t, L) = 〈F (t)F (t + L)〉[t−T/2,t+T/2] =

∫ t+T/2
t−T/2 F (t)F (t + L)dt

∫ t+T/2
t−T/2 (F (t))2dt

. (3.2)
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Figure 3. The autocorrelation function of the feed force signal at
cutting speed 85 m/min and feed 0.1 mm/rev measured during the
first 400 milliseconds (two whole turning cycles) for four different
values of the time lag. The time periods of the free running can be
seen as relatively constant plateaus in the autocorrelation graph.

By means of the condition mentioned, if the signal is weakly stationary then
XT (t, L) should be a constant function with respect to variable t at any fixed
value of L. Since we are interested in only the high frequency component of
the signal (in the order of 1 kHz), first the low frequency part is removed from
the signal by subtracting its sliding window average, that is

Ffiltered(t) = F (t) − 1

W

∫ t+W/2

t−W/2
F (τ)dτ, (3.3)

where the length of the averaging time window (W ) was chosen to be 0.1
milliseconds. The function XT (t, L) was calculated with the filtered feed force
signal of six consecutive turning cycles, which means about 600 milliseconds
net cutting time (i.e. omitting the free running time intervals), for the fixed
values of time lag L of 0.025, 0.05, 0.1 and 0.2 milliseconds. The length of time
segment T was chosen to be 10 milliseconds. The resulting four autocorrelation
functions (for the four different lag times) can be seen in Fig. 3. The time
segments of the free running of the tool were cut out from the signal. Since the
reaction times of the piezoelectric or magnetostrictive actuators are a few tenth
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of milliseconds, the last two graphs are the most interesting when L = 0.1 and
0.2 milliseconds. It can be seen that the graphed autocorrelation functions
are far from being constant at any values of the time lag, so the signal should
be considered non-stationary. In the case of the smallest lag (L = 0.025)
there are periodic sharp deflections at the transient phases when the tool
collides with the workpiece, but the fluctuations in other time intervals are also
remarkable though not so outstanding as in the transient phase. For higher
time lags the fluctuations became so intensive that the periodic deflections of
the transient phase cannot be observed. These results indicate that the linear
predictive methods with constant coefficients cannot be applied successfully
for such cutting force signals, moreover, because of the fast variation of the
autocorrelation value it is difficult to find even a time dependent adaptive
linear prediction method. What are the basic reasons of such a bad non-
stationary behavior of the signal? Since the normalized autocorrelation is
more or less independent of the variations of the amplitude [14], the answer
should be searched for in the variations of the dominant frequencies in the
high frequency domain.

4. The tools of the frequency analysis

For accomplishing the wavelet analysis of the signal the symmetric Morlet
function was chosen as mother wavelet, defined by

φ(t) =
1√
2π

exp

(

−1

2
t2 + iω0t

)

. (4.1)

The mother wavelet is scaled by a parameter a so as to get a characteristic
frequency ω0/a, and it is shifted in the time domain by a parameter b. Thus
a set of wavelets (child wavelets) with different frequencies and time-positions
is obtained as follows

φa,b(t) =
1√
2πa

exp

[

−1

2

(

t − b

a

)2

+ iω0

(

t − b

a

)

]

. (4.2)

The coefficients of the CWT are obtained by calculating the convolution inte-
gral:

F̂ (a, b) =

∫

∞

0
φ∗

a,b(t) (F (t) + iH [F (t)]) dt, (4.3)

where H [F (t)] is the Hilbert transform of the signal and * stands for the com-
plex conjugation. The expression F (t)+ iH [F (t)] is generally addressed as the
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analytical form of F (t). The most simple way of determining the dominant
modes in the frequency and time scale is to find the local maximum places of
∣

∣

∣
F̂ (a, b)

∣

∣

∣

2
, which is regarded as the energy density function of the vibration

[5],[6],[7]. The choice of the parameter ω0 in the mother wavelet is crucial in
the present task. This parameter determines the number of observable periods
in the mother and also in the child wavelets. It can be easily seen that for big-
ger values of ω0 (many periods in the wavelet) the selectivity of the wavelets
in the frequency domain is better, i.e., the δω error of frequency localization is
smaller but the δt error of that in the time domain is bigger, and the contrary
case is true when we choose a small value of ω0 (few periods in the wavelet).
Unfortunately, the two errors cannot be small at the same time, similarly to
Heisenberg’s law in quantum mechanics. In this work the F̂ (a, b) spectra were
calculated with more different (small and big) parameter values so as to get
good resolution in the time and frequency domain, though not at the same
time.

The HHT is based on completely different theoretical methods. In the first
phase the so-called Empirical Mode Decomposition (EMD) decomposes the
signal into approximately monochromatic, though possibly frequency and am-
plitude modulated components [8]. Then the instant frequencies are obtained
by derivating the phase (argument) of the analytical components with respect
to time, that is

ωk(t) =
d

dt
arg (Ck(t) + iH [Ck(t)]) , (4.4)

where Ck(t) is the kth component. There are a number of improvements of
the original algorithm, especially regarding the EMD [9],[10],[11]. Here we
apply the algorithm recently proposed by Rilling et al. [10]. The HHT, being
a differential method, is able to give the instant frequency at a specific point
of the time-scale, while the ”instant” frequency obtained by CWT is localized
in a finite time interval, which the envelope of wavelet spans over. However,
a serious drawback of this method is that the EMD is of limited capability
when components with frequencies close to each other are to be decomposed
[8],[14].

5. Results and discussion

The results of the CWT and HHT analysis of the signal in Fig. 2 are presented
here. The Fourier Transform of the signal measured during a complete turning
cycle (approximately 80 ms) is seen in Fig. 4. There are four dominant
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Figure 4. Fourier Transform of the analytical form of the feed force
signal at cutting speed 85 m/min and feed 0.1 mm/rev measured
during a complete turning cycle (80 milliseconds)

peaks in the region of higher frequencies at f1 = 1.0, f2 = 2.8, f3 = 3.2 and
f4 = 3.7 kHz, where the frequency f is related to the angular frequency ω
as f = ω/(2π). The latter three values are relatively close to each other, all
of them being in the band of 2.5–4 kHz. Separating frequencies with values
close to each other is a hard task for any known time-frequency localization
methods [8]. In the case of a signal that consists of several components with
frequency values constant but close to each other the CWT, because of the
imperfect resolution in the frequency domain, leads to more or less fluctuating
time-frequency functions. Therefore, in the case of the present force signal we
should expect some fluctuations in the frequency values, which is not ’real’
but a purely numeric effect.

In order to get a qualitative picture about this kind of numeric effect, an
Ftest(t) test signal is constructed as a sum of three harmonic signals with the
constant frequencies f1, f2, f3 and f4, and the ratios between their amplitudes
are chosen to be the same as those of the FFT coefficients in Fig. 4, i.e.

Ftest(t) =
∑

i=1,2,3,4

aicos(2πfit), (5.1)

where a1 = 1.9, a2 = 1.0, a3 = 1.4 and a4 = 1.2. This signal belongs to a dy-
namic system of four undamped harmonic subsystems without coupling. Fig.
5 shows the results obtained by applying the CWT-based method detailed in
the previous section on the test signal with the ω0 values of 10, 15, 20 and 25.
The CWT results are generally given by a level curve or color-coded graph of
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Figure 5. Local maximum places (at each fixed time value) of the
energy density function obtained by CWT of the test signal given by
(5.1) for four different values of ω0. The tone of the marker specs is
linearly proportional to the logarithm of the local energy density.

the energy density function
∣

∣

∣
F̂ (a, b)

∣

∣

∣

2
. In the present work, however, only the

places of the local maxima belonging to a fixed value of time are plotted in
the time-frequency plane indicating the energy density at the local maxima
by the darkness of the marker. To be more specific, the tones of the marker
specs are linearly proportional to the logarithm of the local energy density, the
highest and the lowest energy peaks corresponding to pitch black and white
tones. Though this way of the presentation carries poorer information com-
pared to the conventional ones, it gives a clearer picture about the behavior
of the dominant frequencies. The fluctuations of the frequency values in these
graphs are obviously caused by the numeric effect described above. However,
these numeric fluctuations almost vanish when the value of the ω0 parameter
is increased to 20, and there is no considerable change for the further increase
of ω0. Therefore, for the value of 20 of ω0 the resolution is satisfactory in
separating the present dominant frequency values with the measured ratios of
the amplitudes. However, the case is different for the lowest frequency com-
ponent. Since it is far enough from the other three in the frequency scale,
its frequency is measured to be approximately constant even for the smallest
value of ω0. Besides, false components appear for any values of ω0 above the
frequency f1, which is due to an aliasing effect. The higher ω0 is, the more
pronounced this effect is.
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Figure 6. Local maximum places (at each fixed time value) of the
energy density function obtained by CWT of the measured signal in
the first 10 and 400 milliseconds for two different values of ω0. The
chosen frequency region in the present case was 2.5-4.5 kHz. The
tone of the marker specs is linearly proportional to the logarithm of
the local energy density.

The feed force signal investigated was subject to the same CWT calculations
with values of 10 and 20 of the self frequency parameter ω0. Fig. 6 and Fig.
7 show the results of the calculations for the higher and lower frequency re-
gions. The figures were constructed by the same method as that applied in
the case of Fig. 5. By means of experiences learned from the CWT of the test
signal, the graphs of ω0 = 10 are contaminated by numerical fluctuations if
there are frequency values close to each other, and, in addition to this, there
can be ’real’ variations of the frequency values. Nevertheless, the numeric
fluctuations almost vanish when the ω0 self frequency parameter is increased
to 20. In the figure of the lower frequency region (Fig. 7) we can discover the
dominant frequency of f1 = 1.0 kHz together with false aliasing frequencies.
There are no serious fluctuations of any kind, which means that there are no
real dominant frequencies close to f1, and this component of the signal has
approximately constant frequency. Regarding the higher frequency region the
case is completely different: there are large fluctuations of the three dominant
frequency values for both cases of ω0 = 10 and ω0 = 20. The false (only
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Figure 7. Local maximum places (at each fixed time value) of the
energy density function obtained by CWT of the measured signal for
two different values of ω0 in the frequency region 0.6-1.4 kHz. The
tone of the marker specs is linearly proportional to the logarithm of
the local energy density.
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Figure 8. Frequencies of the four relevant components in the first
20 millisecond segment of the test and the measured signals obtained
by HHT (continuous and dashed lines)

numeric) fluctuations were expected for ω0 = 10 because of the frequency
values being relatively close to each other, however, when ω0 = 20 there are
still serious fluctuations. This means that the vibration modes in the upper
frequency region have physically varying frequencies. This real variation in
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the frequency values can cause the non-stationary behavior of the force signal.
It is also interesting that the energy seems to flow between the main vibration
modes (remember, the black line segments are the high energy parts). This
indicates that there are couplings between the three vibration modes. This
can be one of the causes of the frequency modulations. Obviously, there may
be other non-linear physical phenomena behind the frequency modulations as
well. The investigation of the specific physical causes is beyond the scope of
this paper.

For the sake of the comparison of the two relevant methods the HHT transform
of the test and the measured signal at hand were calculated as well. The
algorithm published electronically as a MATLAB package by Rilling et al. [10]
was used here with stopping error limits ten times smaller than the default
values set in the program package. Fig. 8 shows the time-frequency functions
of the four components obtained by the HHT in the frequency region above
1 kHz. The fluctuations of the frequencies given by this method are much
higher, which is partly due to the high precision local property of the HHT.
In other words, this method is much more sensitive to the different kinds
of noises and therefore seems to be much less robust than the CWT. It is
to be noted that the HHT method does not give constant frequency-time
functions even for the constant frequencies of the test signal (upper figure).
Recently Rilling and Flandrin [12] investigated the theoretical limitations of
EMD and they found that this method in its present form cannot separate
two harmonic signals if the frequencies are close to each other or the lower
frequency component has a considerably bigger amplitude than the higher
one. This is the other reason for the wide fluctuations of the frequency values
detected by the HHT. In the case of the test signal the two lower frequencies
are distinguishable while the upper two are not. The reason for this is that
the upper two frequencies are relatively too close to each other to apply the
EMD method successfully (for a quantitative analysis see [12]). In addition
to this, in the graph corresponding to the measured signal it is impossible to
discover the dominant separate frequency peaks observed in the FFT graph,
while the CWT method can identify these dominant frequencies.

6. Conclusions

The measured interrupted cutting force signal proved to be non-stationary
with relatively fast varying autocorrelation, and this can be a serious drawback
in the stochastic prediction of the signal. The CWT examinations showed that
non-stationarity is caused by the considerable frequency modulations of the
vibration modes in the frequency region above 2 kHz. An effective prediction
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of the signal in this frequency region can be successful only if the physical rea-
sons of the frequency fluctuations are analyzed in details. The CWT method
proposed in the present work can be a helpful tool for such a physical analysis,
since with its help the time evolution of the main frequency values and the
energy content of the different modes can be monitored effectively. Naturally,
to obtain a complete picture about the dynamics of the system, other types
(acoustic and accelerometer) of measurements are also needed. This is left to
a future work.

From the point of view of the numerical methods the results led us to the
conclusion that the CWT should remain an important tool in time-frequency
analysis problems, especially when the signal contains frequency and ampli-
tude modulated vibrations in a relatively narrow frequency band. Besides,
calculating the wavelet spectrograms for higher values of the self frequency
parameter (ω0) of the mother wavelet proved to be useful in separating real
(physical) frequency variations from numeric fluctuations.
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T. Kovács, E. Csizmás, A. Szabó
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