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Abstract. In the past few years, the effective management of inventory control 
problems has become an increasingly critical issue for supplier companies. In 
this paper, on the basis of the needs a major Hungarian mass production 
company, we present an extension of an analytical inventory control model 
considering the condition of global capacity constraint. In a previous paper [6] 
we elaborated a model regarding the one customer - one supplier relation. Our 
aim is to determine an optimal holding-production policy of the supplier, which 
makes a cost-optimum stockpiling policy possible for an arbitrary long 
production time. We intend to show that, on the basis of our former results, the 
global capacity constraint satisfying policy can be determined with a new 
heuristic method.  

Keywords: stockpiling policy, extended newsvendor model, global capacity 
constraint 

1. Introduction 

In the past 15 years, the business environment of companies in the field of mass 
production has changed. The demand for mass products has remained high but 
numerous new requirements have appeared on the market. Changes in the business 
environment influence engineering and logistic relations between companies and 
suppliers. The former, simple buying-selling (so-called ‘cool’) relation has become 
much ‘warmer’. This means that cooperative and collaborative methods and 
activities have become the main objectives in SCM development. Relations 
between marketing organizations, end-product manufacturers and supplier 
companies can be very complicated and diverse in practice. This motivates a wide 
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examination of the available models and further investigation of effective decision 
supporting and planning methods.  
The professional literature includes a wide variety of stockpiling models [6]. Later 
we will deal with one of the best known stochastic methods, the so-called 
‘newsvendor model’. The model is certainly among the most important models in 
the field of operations management. It is applied in a wide variety of stockpiling 
problems. In this paper we will examine an extended newsvendor model [7] on the 
basis of former results in a multi-product and capacity constraint case.  
The properties of our extended newsvendor model make it possible to solve the 
inventory control problem of an arbitrary length production horizon can be solved 
analytically, which opens up new opportunities to model multi-product capacity 
constraint problems. Capacity constraint problems appear in almost all larger or 
smaller manufacturing companies. These firms often produce several products 
meeting customer demands. In case of dynamically and stochastically changing 
demands, capacity problems often appear. The question is always the same: how 
much should be produced? Of course the question is very simple, but the solution 
always belongs to type NP-hard.  
The model conditions are identical to the conditions outlined in publications [5,6]. 
The larger part of the models solves the problem applying the dynamic 
programming or some kind of searching method (soft-computing). Due to the large 
searching space, these solutions require extremely long computing times in case of 
many products and long production time horizon. In our research we investigated 
capacity constraint problems ranging from one-product one-period to multi-
products and multi-periods. This paper aims to present only some of these methods. 
 
1.1 Related studies 

 

Modelling and solving inventory control problems demand for efficiently has been 
existed since the establishment of the first industrial companies, factories and 
enterprises. The first successful publications appeared at the beginning of the 
1950’s. Since then a great number of papers have been published on stockpiling, 
which proves that the subject is up-to-date. The most important events related to 
the evolution of inventory control models are fully summarized in the paper by 
Hans-Joachim Girlich and Attila Chikán [1999]. The main stream research results 
are concerned with one-product, one-period deterministic models. These models 
aim to give an optimum policy in an analytical way in accordance with the 
objective function of the modelled reality. Multi-period deterministic and 
stochastic models applying multi-products were developed only in later years. 

Another way of carrying out stockpiling policies is game theory approaches. Game 
theory provides effective methods for modelling the ‘warming-up’ process of the 
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supplier – end manufacturer and customer – vendor relations, which tend to be ever 
closer nowadays as well as for modelling their cooperation. Next the results of the 
past nearly 50 years are surveyed, an outstanding example being John von 
Neumann and Oskar Morgenster’s famous book, the “Theory of Games and 
Economic Behavior” [16], which gave a new direction to the approach of inventory 
problems. 

In the late 1950s, the problem of ‘Optimal Inventory Policy’ was analyzed by two 
important economists: Arrow and Marschak [13]. Karlin solved this problem with a 
dynamic programming method (The Structure of Dynamic Programing Models) 
[14]. Thirty-six years later, Alistair Milne [15] emphasized that one of the best 
papers in the area of production decisions and inventory analysis was the study by 
Arrow, Karlin and Scarf entitled ‘Studies in the Mathematical Theory of Inventory 
and Production’ [11]. Among the deterministic models, the Wagner-Within method 
minimizing the total cost plays an important role. It determines the optimal 
inventory level with O(n logn) calculation time for an n length finite time horizon.  

The paper by Dvoretzky, Kiefer and Wolfowitz [17] examined the (S,s) type policy 
in the case of a fixed time interval and penalty cost. Nowadays the analysis of 
inventory-holding problems has become an important part of the management of 
supply chains. Many excellent publications have appeared concerning this topic 
[9,10,12], which apply the deterministic demand model [5]. 

Nowadays, regarding supply chain problems, the most prominent results are linked 
with the name of G.P. Cachon [2,3]. Stockpiling plays an important role in the 
management of supply chains. With the rapid evolution of information technology, 
ERP (Enterprise Resource Planning) and SCM (Supply Chain Management) 
application systems are gaining significance. Dynamic systems with many products 
are manageable with operations research models or constraint programming 
methods. However, solutions based on analytical results and heuristics are decisive 
in ‘what if’ type investigations and in the case of quick decisions. 

   

1.2 An Extended Newsvendor Model 

The classic newsvendor model cannot be applied properly to solve the tasks of 
customized mass production. The reason for this is high setup costs that cannot 
tackle multi-period problems where customer demand can vary stochastically. 
During our research we developed a new inventory control method, which gives 
the optimal solution for the problem in an analytic way, and ensures efficient 
stockpiling for the supplier.  
Summarizing the main features of the model the objective function can be 
formulated as follows: 

97



 P. MILEFF, K. NEHEZ  

 

[ ] [ ] [ ]

[ ] [ ] ( )[ ]

( )[ ] [ ][ ][ ] ,......

......

...)(

12121

21121

211...123

+
−−−+

−

+++

++







−++++−++++

++−++−+−−−−+

++−−+−+−+=

qDDDpEqDDDpE

qDDpEqDpEDDDqhE

DDqhEDqhEIqccqK

nn

n

vfn

   (1.1) 

where the individual parameters are the following: 
cf  – fixed cost. This cost always exists when the production of a series is 

started. [Ft / production]   
cv  – variable cost. This cost type expresses the production cost of one 

product. [Ft /  product] 
p  – penalty cost (or back order cost). If there is less raw material in the 

inventory than needed to satisfy the demands, this is the penalty cost of 
the unsatisfied orders. [Ft / product] 

h    – inventory and stock holding cost. [Ft / product]  
D  – this means the demand by the receiver for the product, which is an 

optional probability variable. [number / period] 
E[D]    – expected value of the D stochastic variable. 
q  – product quantity in the inventory. The decision of the inventory control 

policy concerns the product quantity in the inventory after the product 
decision. This parameter includes the initial inventory as well. If nothing 
is produced, then this quantity is equal to the initial quantity, i.e. 
concerning the existing inventory.   

I – initial inventory level. We assume that the supplier possesses I products 
in the inventory at the beginning of the demand of the delivery period. 

n – number of periods 

The new method is robust and adequately elegant (detailed in papers [6][7]), 
because the solution is independent from the type of the distributed function: 

 
ph

qhFqhFqhFqhFcp
qF nv

n
+

−−−−−−
= − *)(...*)(*)(*)(

*)( 1...123123121
...123 , (1.2) 

where ()F  represents the joint distribution function in compliance with the number 
of periods drawn together. q*, which satisfies the equation, expresses how many 
finished products should be in the inventory at the time when customer demand 
appears with regard to n periods. Naturally, the critical inventory level, which was 
first mentioned by Herbert Scarf [1] for one-period production, can be applied in 
the case of joint production for n numbers of production cycles, as well. However, 
the present paper does not deal with this. 
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2. One Product, Multi-Period Model 

 
When applying the global capacity constraint for the multi-period extended 
newsvendor model we take the characteristic features of the model and the period-
based policy into consideration. Accordingly, two types of optimization methods 
can be distinguished: service-level-based policy and cost-based policy. Naturally, 
these policies are in contrast with each other. Only one of them can be considered 
in the stockpiling policy. 

2.1. Cost-Based Policy 

This approach models the type of supplier that is directly in connection with the 
market. In this policy, the main objective is to minimize the costs. It should be 
decided how many back-orders can be placed in the specified period of time. So 
the penalty cost is determined by the supplier itself [7]. Since in case of cost-based 
policy keeping the service level is not the main objective, the solution for the 
optimization of production costs can be reducing the number of setups or taking the 

risk of penalty. 
The reduction of the number of jointly produced periods is not definitely the best 
solution and does not result in the minimization of costs.  It is possible that paying 
a penalty cost is a cheaper way for the supplier.  
Theorem 1: if the sum of the penalty cost appearing at producing the quantity 
according to the capacity constraint and the holding cost of quantity of the 
truncated period storing from the beginning of the time horizon, is lower than the 
cost of preparing a new setup, then taking the risk of the penalty is the proper 
policy. 
We prove this theorem as follows. We denote the cost value of the back-orders by 
variable b. The following equation helps to decide what policy should be applied. 

 if 
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where h is a cumulative holding cost per product and qa< C is the quantity in 
compliance with the number of jointly produced periods. Variable a means the 
period number, qa value is even smaller than capacity constraint C. Then 

 ( )a

a

i

a qChqCah −⋅=−⋅⋅ 
=1

)(  (2.2) 
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represents the holding cost, which appears as the difference between the quantity of 
capacity constraint and quantity of the reduced jointly produced periods. The 
formula means: if the value of )( aqCahb −⋅⋅+  is lower than a new setup cost 

( fc ), the cost will be minimized, if the supplier chooses to pay the penalty and 

produces the quantity of the capacity constraint. Otherwise reducing the number of 
the jointly produced periods is a good policy. Figure 1 shows the method of cost 
based policy. 

q*=80

q

time
Period 

1

Period 

2
Period 

3

Capacity constraint (C)

Back-order

70

qa = 55

 
Figure 1. Applying capacity constraint in case of cost base policy 

 
2.2. Service Level Based Policy 

The main objective when choosing this policy is to ensure the predetermined 
Service Level. This level is determined in compliance with the objectives of the 
company. Applying capacity constraint means that the number of unsatisfied orders 
should be lower than the predetermined service level. Disregarding this important 
rule gets the relationship between the customer and the supplie at riskr. 
The reduction of jointly produced periods is the solution for this problem. If the 
optimal quantity calculated with the extended newsvendor model exceeds the value 
of capacity constraint, then the predetermined service level can only be maintained 
if we reduce the number of jointly produced periods until the quantity satisfies the 
capacity condition according to the reduced period. This solution is justified by the 
unit cost variation curve which is further detailed in paper [7]. 
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3. The Multi-Product, Multi-Period Model  

Concerning this model, to solution capacity of constraint problems is most 
complicated. As a rule the ABC method is widely offered to solve the problem. On 
the basis of the Pareto diagram about the ‘significance’ distribution of the elements 
of a product set [4], several conclusions can be drawn. But the method does not 
give a proper answer to the questions arising while calculating the optimal 
stockpiling quantities.  
Next we will present a new heuristic method to solve multi-product, multi-period 
and service-level-based capacity constraint optimization problems.  We assume a 
global capacity constraint, which means that different products share one common 
production capacity and that the decisions of the inventory control policy are made 
for a long period of time. 
We prefer in the solution presented the Service-Level-based policy. The objective 
is to determine the reduced number of jointly produced periods per product in a 
way that the sum of the total quantities should satisfy the capacity constraint 
condition.  
The main idea behind this heuristic solution is the specific property of the unit cost 
of the products. Figure 2 shows the changes in the unit cost of a product against 
jointly produced periods. 

 
Figure 2. Unit cost changes in case of seven-period length time 

Each product has a similar unit curve [7]. If the sum of the quantities of n number 
of products is larger than the value of capacity constraint then the solution should 
be changed. If  

 
=

≤−⋅

n

i

ii
opt

i CIqu
j

1

* )( , the solution is optimal.  (3.1) 

In the equation i (i=1,…,n) means the number of products,  *i
opt j

q  is the optimal 

quantity of the product i: optj means the number of jointly produced periods and ui 
represents the capacity usage of the product. Ii denotes the initial inventory of 
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product i. We should determine the number of setups to satisfy the minimal cost 
conditions. 
First we should start examining the unit cost curve. The following figure shows the 
changes in the unit cost for 4 periods, as a modification of Figure 2. 

Period4

Per-Unit 

cost

Period 3Period 2Period 1 Period 3 Period 4

Per-Unit 

cost

Per-Unit 

Cost 

variationq*opt

q*opt

q*opt-1

 
Figure 3. Increase in unit cost  against jointly produced weeks 

In Figure 3 it is easy to see, if the optimal number (4) of jointly produced periods is 
reduced to three periods, the value of the unit cost is bound to increase. This 
observation suggests the following: 
Theorem 2: the capacity constraint can be regarded as the optimum solution when 
it is due to the reduction of jointly produced periods; there is a sum of minimum 
increases in the sum of the unit cost. 
 

FKVi denotes the sum of unit cost changes for product i. Then: 

 min
1

⎯→⎯
=

n

i

iFKV .  (3.2) 

Theorem 2 helps to find the optimal solution, but a searching method is necessary, 
with which we can calculate the sum of unit cost changes fast in a multi-product, 
multi-period environment. In the following we present a new and suitable 
algorithm. 

3.1 Algorithm and Other Parts of the Method 

The basic idea behind our algorithm is the existence of the optimal solution per 
product without the capacity constraint condition. The objective of the method is to 
move the searching space along the minimal unit cost changes, because as we have 
mentioned before, the optimal solution means the minimal sum of per-unit 
variation costs. The algorithm can be divided into three main parts: (1) checking 
the capacity constraint condition (2) selecting optimum modifications possible and 
(3) choosing a combination to obtain a better solution. 

Unit 

cost 
Unit

cost 

Unit
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While searching for the proper solution, these steps are continually repeated until 
the optimal supplier policy can be found in compliance with the capacity constraint 
conditions. 

3.1.1 Capacity constraint condition test 

The first step of the method is to determine the optimal number of jointly produced 
periods based on the introduced unit cost model [8]. This operation is performed 
only once during the running at the beginning. After that it should be investigated 
if there are any products the production of which can be ‘shifted’. This can be 
achieved by comparing the quantities in the inventory and the optimal quantities 
according to the jointly produced periods. Regarding the first period: 

 ( ) 01
*

≤−
ii

jv Iqc , mj ,...,2,1= , ni ,...,2,1=  (3.3) 

If a product can be found for which this equation is true during the calculation of 
the unit costs, then its production can be shifted forward along the time. After this, 
these products do not take part in the further steps. 
The next step is the evaluation of the following capacity constraint condition.  

 
=

− ≤−
n

j

ii

Lopt

i CIqu
ij

1

.  (3.4) 

If the condition is satisfied, then we have the optimum solution. The equation has a 
new element Li , which modifies the optimal number of jointly produced periods. Li 

represents the solution vector and means the reduced jointly produced periods of 
the products in the iteration steps of the algorithm. At the beginning of the 
iteration, this is a zero vector. If the equation is not fulfilled the next step follows. 

3.1.2 Selecting the optimum modifications possible 

If the solution in the first step or in a previous iteration does not satisfy the capacity 
constraint, then a modification of the solution is required. In the second step of the 
algorithm we will choose the products which can be suitable in determining the 
optimal solution. Choosing the optimum modification possible always means the 
product which has a minimum unit cost variation. To determine this product the 
following steps must be taken: the formerly calculated optimal number of jointly 
produced periods is reduced virtually by one period considering the current 
modifications (Li). For product i it means: ( )1+− ij Lopt . 

Before and after the reduction, we can calculate both the unit cost and changes in 
the unit cost variation. 
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We will choose only one product which has the minimum unit cost variation in this 
iteration step. If we have chosen product i, then we will increase the i.th element of 
the solution vector: 1+= ii LL . The following figure shows this reduction method. 

optj

optj-Li

optj-1

Per-Unit 

cost

Time 

horizon

(period)

 

Figure 4. Reduction of the jointly produced periods against the solution vector  

The product with the maximum unit cost variation will also be chosen if the 
combination was performed in the previous iteration. This choice constitutes the 
basis for the last step of the algorithm, which forbids infinite iteration loops 
(detailed in step 3). 

3.1.3 Selecting a combination for a better solution 

Selecting the minimal setup cost is not enough to find the best solution. There can 
be cases, when the sum of setup cost variation of two products can be substituted 
for per-setup cost variation of another product in order to achieve a better solution. 
Figure 5 presents changes in the setup cost of three products and the possibility of 
substitution.  
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Figure 5. Comparison and substitution of setup cost increases 
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Explanation of Figure 5: because the originally computed solution does not meet 
the capacity constraint condition, the number of jointly produced periods is reduced 
by this algorithm. According to the first step of the algorithm, the product with the 
minimal variation value of unit cost will be chosen. We will choose the first 
product. Let us suppose that the solution after the reduction of jointly produced 
periods from six to five still does not meet the capacity constraint. In case of one 
product, the substitution phase cannot be explained, so the algorithm runs on. In the 
second step we will choose another product, with the minimal variation value of 
unit cost, which will be the second product now.  
It is not sure that the reduction of jointly produced periods of the two chosen 
products is the optimal solution. Therefore we should examine if the sum of the 
increase of unit cost variations, resulting from the reduction of the jointly produced 
periods of the two chosen products, can be substituted for a smaller variation of 
unit cost. Figure 5 shows that the value of unit cost of product three is lower than 
the variations sum of product one and two. 
This means that the variations sums regarding products one and two can be 
substituted by a reduction of jointly produced periods at product three.  Let us 
examine what will happen if there are four products. In the next figure, the unit 
cost variations of product three and four can be seen. The situation shows one 
period decrease of its jointly produced periods. 
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Cost variation 
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Cost variation 
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Figure 6. Substitution phase in case of more than three products 

In case of more than three products, the question arises: which product should be 
chosen for substitution. In Figure 6 we can see that both variations of unit costs for 
product three and four are smaller than the variations sum for the first two 
products. 
In this case the product should be chosen, where the variation is the farthest from 
the variations sum. The main reason for this is following: if the result of the 
substitution does not meet the capacity constraint, the algorithm in the next step 
chooses another product, with the minimal unit cost variation. In this example, the 
first product satisfies the condition. Let us suppose that this is the optimum 
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solution. If we choose product four, then the sum of unit cost variations is certainly 
smaller if we choose product three for substitution. 
During the substitution process we use the product with maximum unit cost 
variation value found in the second step. This value and product constitute the basis 
of reference in the investigation of the unit cost variations. We will examine as 
reference the possibility of merging according to this value because it cannot be the 
chosen product.  
If the substitution is carried out successfully it is necessary to prepare the next 
iteration. The first step is to modify the solution vector. The value in the vector 
belonging to the selected product should be set to zero. This ensures that the 
algorithm can move the search space along the changes in the minimal unit cost.  
After this process the next iteration comes until the solution meets the capacity 
constraint condition. 
Calculations in practice show clearly that to find the optimal solution we do not 
need a lot of iteration steps. In case of a product, the optimal number of jointly 
produced periods is about 7-8 periods. The analytic solution for the extended 
newsvendor model ensures high-performance calculation in an optional multi-
product, multi-period environment for a long period of time. 

4. Conclusion 

In this paper we extended the previously elaborated and modified newsvendor 
model [6][7] with the condition of global capacity constraint. Based on the periodic 
feature of the model, two problem groups were distinguished and presented. For 
the most complex, multi-period, multi-product case a new heuristic method was 
elaborated. This model enables the determination of a cost-optimal stockpiling 
policy applying capacity constraint in case of an arbitrary product number and an 
arbitrary length of production time. Because of the specific approach of the new 
model, it can be used effectively in practice compared with other models.    

Acknowledgements 

 
The research and development summarized in this paper have been carried out by 
the Production Information Engineering and Research Team (PIERT) established 
at the Department of Information Engineering. The research is supported by the 
Hungarian Academy of Sciences and the Hungarian Government with the NKFP 
VITAL Grant. The financial support of the research by the aforementioned sources 
is gratefully acknowledged. Special thanks to Ferenc Erdélyi for his valuable 
comments and review work. 

 

106



 SOLVING MULTI-PERIOD, MULTI-ITEM CAPACITY PROBLEMS  

 
REFERENCES 

[1]  HAYRIYE, A., JIM, D., FOLEY, R. D., JOE, W.: Newsvendor Notes, ISyE 3232 
Stochastic Manufacturing & Service Systems, 2004. 

[2]  CACHON, G. P.: Competitive Supply Chain Inventory Management, Quantitative 

Models for Supply Chain Management, International Series in Operations Research & 
Management Science, 17), Chapter 5, 2003. 

[3]  CACHON, G. P.: Supply Chain Coordination with Contracts. In de Kok, A. G., Graves, 
S. C. (eds): Supply Chain Management: Design, Coordination and Cooperation. 
Handbooks in Op. Res. and Man. Sci., 11, Elsevier, 2003, pp. 229-339. 

[4]   TAYLOR, A. D.: Supply Chains A Managers Guide, Addison Wesley, 2003. 

[5]  HANS-JOACHIM,  G., CHIKÁN, A.: The Origins of Dynamic Inventory  Modelling under 

Uncertainty, International Journal of Production Economics Volume 71, Issues 1-3, 
1999, pp. 25-38. 

[6]  MILEFF, P.:  Kiterjesztett újságárus modell alkalmazása az igény szerinti tömeggyártás 

készletgazdálkodási problémáiban, PhD thesis at Hatvany József Informatikai 
Tudományok Doktori Iskola, 2008. 

[7]  MILEFF, P., NEHEZ, K.: An Extended Newsvendor Model for Customized Mass 

Production, AOM - Advanced Modelling and Optimization. Electronic International 
Journal, Volume 8, Number 2, 2006, pp 169-186. 

[8]  MILEFF, P., NEHEZ, K.: A new inventory control method for supply chain 

management, UMTIK-2006, 12th International Conference on Machine Design and 
Production, Istanbul – Turkey, 2006, pp. 393-409. 

[9]   BRAHIMI, N., DAUZERE-PERES, S., NAJID, N. M., NORDLI, A.: Single Item Lot 

Sizing Problems, European Journal of Operational Research, 168, 2006, pp. 1-16. 

[10] LEE, C. C., CHU, W. H. J.: Who Should Control Inventory in a Supply Chain?, 
European Journal of Operational Research, 164, 2005, pp. 158-172. 

[11]  ARROW, K.J., KARLIN, S., SCARF, H., Studies in the Mathematical Theory of 

Inventory and Production, Stanford University Press,1958. 

[12] JULIEN, B., DAVID, S.: The Logic of Logistics: Theory, Algorithms, and Applications 

for Logistics Management, Springer PLACE of publication, Chapter 8-9, 1997. 

[13] ARROW, K.J., HARRIS, T., MARSCHAK, J.: Optimal inventory policy, Econometrica 19: 
250 – 272, 1951. 

[14]  KARLIN, S.: The structure of dynamic programing models, Naval Research Logistics 
Quarterly 2: 285 – 294, 1955. 

[15]  MILNE, A.: The mathematical theory of inventory and production: The Stanford        

Studies after 36 years, In Workshop, August 1994, Lake Balaton. ISIR, Budapest, 
1996, 59 - 77. 

107



 P. MILEFF, K. NEHEZ  

 
[16]  VON NEUMANN, J. AND MORGENSTERN, O.: Theory of Games and Economic Behavior, 

Princeton University Press, 1944. 

[17]  DVORETZKY, A., KIEFER, J., WOLFOWITZ, J.: On the optimal character of the (s; S) 

policy in inventory theory, 1953, Econometrica 21: 586 - 596. 

 

 

108


