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Abstract. The analysis of manufacturing and assembly dimension chains is 
indispensable for performing up-to-date part manufacturing and assembly. It will 
both reduce the manufacturing and assembly costs and will result in a well-
grounded body of knowledge and improved level of design. The paper deals with 
mathematical models for calculating spatial dimension chains and introduces the 
OpTol Tolerance Calculator software. This application is capable of calculating 
planar (2D) and spatial (3D) dimensional chains by using the classical worst-case 
and statistical methods, as well as applying the modern six-sigma tolerancing 
method. OpTol system also contains a CAD module in order to support engineers 
in analysing their existing assemblies. 

Keywords: 3D tolerance analysis, tolerance calculation, dimension chains, direct 
linearization method 

1. Introduction 

For performing up-to-date part manufacturing and assembly, the analysis of 
dimension chains for manufacturing and assembly is essential. Such an analysis will 
reduce the manufacturing and assembly costs, on the one hand, and will result in a 
well-grounded body of knowledge and improved level of design, on the other hand. 
The build-up and analysis of dimension and tolerance chains play an important role 
in periods of design, production planning and execution of the manufacturing 
process. The designer provides information by part drawings giving dimensions and 
tolerances for planning tasks for technology and material processing. 

Beyond determining the geometry of parts, the manufacturing dimension and 
tolerance chains give feasible manufacturing methods and the possible order of 
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manufacturing processes, as well as the costs of production of the part. The task of 
assembling dimension and tolerance chains is to determine the relative position of 
parts needing to be assembled to fulfil the requirements of operation (the function). 

2. Fundamentals of dimension and tolerance chains 

The dimension and tolerance chain – or simply dimension chain – consists of at least 
two toleranced dimensions connected together and the resultant dimensions derived 
from them. The chain used for tolerance calculation is always closed, i.e. comprises 
the open dimension chain in the dimension chain of the drawing and the resultant 
dimension. The dimension chain expresses: the chain of dimensions needed to define 
a part; the relation of a pair of toleranced dimensions; and the operational or 
assembly location produced by a series of toleranced dimensions. Dimensions 
occurring in dimension chains are called components. The closing or resultant 
dimension is the term that is worked out last. There can be only one resultant in each 
tolerance chain. 

2.1. Chain types 

Dimension chains can be: linear dimension chains, where all of the dimensions are 
parallel to each other; planar dimension chains, where the dimensions are partially or 
fully non-parallel but all of them lie in one or more parallel planes; spatial dimension 
chains, where the dimensions are partially or fully non-parallel and do not lie in one 
or more parallel planes; and angular dimension chains, where the dimensions are 
angular and the number of angle legs meet in one corner (see Figure 1). 
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Figure 1. a: linear dimension chain, b: planar dimension chain, c: spatial dimension chain  
 

In different assemblies, several different types of dimension chains can be found and 
these can connect to each other in different ways. The main characteristic of the 
serial type of connection is that if one link of the dimension chain changes, then the 
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basis of the next chain will be changed (see Figure 2a). It follows from this that a 
serial type of chains has a common basis. 

 

 
 

Figure 2. Connection types of dimension chains 

 

2.2. Assembly dimension and tolerance chains 

An assembly includes the joining of the connected components, the controlling of 
their allocation after fitting the corresponding basic surfaces and – if necessary – the 
correction of the allocation error. An assembly dimension chain is a sequence of 
dimensions which returns to itself in a determined order. This chain connects the 
surfaces of the components whose mutual positions are to be determined. The 
components of the dimension chain are characterized by their nominal values and 
permissible variations. 

2.3. Tolerance analysis and allocation 

In tolerance analysis all the component tolerances are known or prescribed and we 
have to calculate the resulting tolerance. In the case of tolerance allocation, 
construction requirements determine the assembly tolerance and the unknown 
component tolerances are to be calculated. We distribute the actual assembly 
tolerance corresponding to the appropriate components. The design application for 
tolerance analysis is based on analytical models, which take into account the stack up 
of tolerances in the assembled components.  
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3. Engineering calculation methods for assembly tolerances 

If the process of part manufacturing is known, the tolerances can be chosen from 
tables of standard tolerances according to the process elements. In addition to this, 
the industrial standards often provide useful data for our calculations. We introduce 
briefly the two current models (see [6]). 

3.1. Worst-case model 

This model is often called the model of total changeability or calculation of 
maximum-minimum. The purpose of this method is to determine the assembly 
tolerance (TΔ) by means of the summarization of the component tolerances. Each 
component is assumed to be at its greatest or least dimension; hereby we have the 
worst assembly limits. 

In the case of a one-dimensional (linear) dimension chain we have: 
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For a multidimensional (nonlinear) dimension chain: 
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where Xi  means the nominal component dimension, f(Xi) is the assembly function 
describing the resulting dimension of the given assembly and Ti denotes the width of 
the tolerance zone for the i-th dimension. The partial derivatives represent the 
sensitivity of the assembly tolerance regarding the changes in the independent 
component dimensions. 

Equation (2) is not obvious at all. First observe that there is a well defined, analytical 
connection between the nominal component dimensions and the resulting dimension 
(closing component): 
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Components 121 ...,...,, ni XXXX are made with tolerances T1, T2,…, Ti…, Tn-1 , so 

the resulting dimension LΔ will have tolerance TΔ : 
 

)...,...,,( 112211   nnii TXTXTXTXfTL .               (4) 

 

The (n-1) variables function LΔ in Eq. (4) is assumed to have an expansion into the 
Taylor series, so it is differentiable at any time with respect to each independent 

variable in the neighbourhood of the point 121 ...,...,, ni XXXX : 
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(5) 

 

In Eq. (5) the members of second, third, etc. order in the Taylor series can be 
neglected, because the tolerances Ti are small, and their squares and higher powers 
are smaller. Subtracting both sides of Equation (5) from (3) we obtain: 
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Since tolerances Ti are the width of the tolerance zone for the component Xi and TΔ is 
the width of the resulting tolerance zone, these numbers must be positive by 
definition. Multiplying both sides of Equation (6) by (-1) we have to use the modulus 
of partial derivatives because they can take negative numbers. In this way we have 
the equation: 
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which is the same as Equation (2). 
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3.2. Statistical tolerance analysis 

In this case the stack up of tolerances shows an analogy with random variations. The 
measured values Xi belonging to the function y = f(Xi) (this function was described 
above) contain random errors δXi. These errors have unknown signs and they vary 
their dimensions in given bounds. The linear addition of the greatest values of the 
errors δXi would result in a too-high stack up. It is quite unlikely that the errors have 
the same signs and that they take their greatest value at the same time. Deviations can 
compensate for each other in the summation. Due to this observation we calculate the 
uncertainty factor δy in terms of Gauss summation law of random errors (instead of 
linear addition): 

 

.

2
1

1
















n

i

i

i

X
X

f
y       (7) 

 

For application of the law errors must be independent, and within their bounds the 

partial derivatives 
iX

f




 can be considered to be constant values. The practical 

tolerance limit TΔ  assumes that the components of the dimension chain join each 
other with the value of the greatest probability within their tolerance area. If the 
extreme tolerance limits meet, the tolerance limit can be exceeded and we have a 
rejected assembly. 

In the discrete processes of the machine industry the errors of measurements follow a 
typical discrete distribution. This is binomial distribution [2]. Adding numerous 
independent random variables where the variances of the components are negligible 
compared with the variance of the sum, we always get a variable of normal 

distribution independently of the distribution of the components. 

From the viewpoint of the machine industry the most important distribution is the 
normal or Gaussian distribution. Although it is a continuous distribution, it is suitable 
for building a mathematical model of the variation of measurements (instead of using 
binomial distribution). The most typical example of normal distribution arises by 
measuring, in the case of random errors [2]. The general form of the density function 
of Gaussian normal distribution is the following: 
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where x denotes expected value (mean of an infinite number of measured data) and σ 
is the standard deviation. The graph of the density function (8) is shown in Figure 3. 
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Figure 3. Density function f(X) and distribution function F(X) in the case of normal 
distribution. The points denoted by (1), (2) and (3) are inflections [9] 

 

The domain of a normal distributed variable is the real line so an ideal Gauss-curve is 
situated above the interval [-∞, +∞]. In practice the normal distribution can be 
considered final and the outer part of the interval [μ-3σ, μ+3σ] is not significant so 
we can neglect it. It is shown in Figure 3 that 68.26 percent of all possible values of a 
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normal distribution variable lie in the interval [μ-σ, μ+σ], there is 95.45 percent 
between μ-2σ and μ+2σ and nearly the whole mass (99.73 percent) is settled in the 
interval [μ-3σ, μ+3σ]. The latter interval width is usually considered to be the 
‘technological 100 percent’. The normal distribution is completely determined by its 
two parameters: the expected value (μ) and the standard deviation (σ). We cannot 
calculate the exact expected value we use; instead we use the most possible value of 
the measured data given by the mean of measure sequences achieved in sufficiently 
large number. Similarly we consider empirical deviation instead of theoretical 
standard deviation. 

Following statistical laws, component tolerances are accumulated in a square-root 
form. We allow for the lowest probability of the worst-case combinations, assuming 
that the variations of the components are normally distributed. In general, tolerances 
are supposed to suit a 6σ deviation of the normal distribution. Tolerance of the 
closing component in an assembly dimension chain is given by the following 
formulas. 

In the one-dimensional case: 
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In the case of multi-dimensional chains: 
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In a more general case when tolerance distribution differs from ±3σ: 
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where Z is the required number of standard deviation according to the described 
assembly tolerance and Zi denotes the expected deviations of the component 
tolerances. The correction factor Cf  is often taken into account when circumstances 
differ from the ideal case. Typical values of Cf  are 1.4 and 1.5. 
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3.3. Bounds of common assembly models 

In statistical models we assume manufacturing variants which are normally 
distributed symmetrically about the centre of tolerance limits. These models do not 
consider possible asymmetry or deformation. Figure 4 illustrates the occurrence of 
unexpected rejects if we do not take asymmetry into account. 

 

 

Figure 4. Ideal and real distribution for a three-component assembly 

 

Asymmetric deformation is expressed in shift from the real measurement. It is very 
dangerous because the variations can stack in the given assembly resulting in an 
unexpectedly high percentage of rejects. All manufacturing processes show 
asymmetry, although some processes produce larger variations than others. 
Asymmetric deformation can come from setup errors, tool wear, etc. Asymmetric 
deformation occurs in a natural way in some processes, for instance by thermal 
contraction of the assembly parts cast in die. Deformation in an assembly model is 
just as critical as the capacity or variance of the process. Furthermore, statistical 
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approaches or genetic algorithms can be applied in case of non-ideal (real) 
probability distribution of component tolerances [15, 9]. 

3.4. Motorola 6 sigma model 

The more we refine the process control, the more we have decreasing spread of 
operations and if the distribution of variations is symmetrical, fewer and fewer 
rejects will occur [12]. Figure 5 shows that if the lower limit (LL) and upper limit 
(UL) of the dimension are within the ±6σ limits, then we achieved the so-called ‘six 
sigma quality’. If the UL and LL are set at the ±3σ limits, then we have 0.27% reject 
assemblies. This number does not seem very high, but it means that for  one million 
products we can reject 2700 of them. Setting the UL and LL at ±4.5σ will yield 3.4 
ppm rejects (products per million). In the case of ±6σ this ratio is nearly 100%, with 
only 2 rejected products per billion. 

3

5.4

6

LL UL

 

 

Figure 5. Density function of normal distribution in ±6σ model 

 

It may sound surprising, but ‘Six Sigma’ is actually the target quality level of today’s 
major manufacturing corporations. It seems easy to achieve this quality level by 
increasing UL and LL up to the ±6σ limits. But this solution cannot be successful 
because the UL and LL limits are not arbitrarily chosen; they must meet exacting 
requirements in the planning and working processes. 

3.5. Estimated mean shift 

Chase and Greenwood offer a new model for describing assembly tolerance stackup 
which contains the estimation of the expected asymmetric deformation (see [3]). We 
call this method ‘Estimated Mean Shift Model’, since the constructor has to estimate 
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the deformation of each component of the given assembly unit. This is done in the 
following way: surrounding symmetrically the centre of the tolerance area we define 
a zone (see Figure 5) which gives the possible position of some dimension of a 
typical component sequence. 

 

 

Figure 6. Position of the mean is not exactly known 

 

The centred tolerance zone is given by a proportion of the tolerance area described 
for the actual component dimension. This number is between 0 and 1. In strictly 
controlled producing processes it is sufficient to choose a low mean shift factor, e.g. 
between 0.1 and 0.2. If the process is less known, e.g. in the case of a component 
supplied by a new business partner, we choose 0.7 or 0.8 in order to allow for some 
uncertainity. 

After estimating the mean shift zone regarding each of the components we calculate 
the assembly tolerance in terms of the following mathematical model: 
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where mi denotes the mean shift factor for the i-th component. The assembly 
tolerance in Equation (2.12) consists of two parts. The first expression is the sum of 
the mean shifts which are given as the worst limits. The second part of the formula is 
the sum of the component tolerances calculated in a statistical way. So we obtain the 
contributions in the closing assembly tolerance according to the mean shift or 
deformation and component tolerance or deviation, respectively [3, 4]. 
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Choosing every mean shift factor to be zero, Equation (12) can be reduced to the 
simple statistical model. In addition we obtain the Worst Case Model if all of the 
mean shifts are chosen to be 1. 

We should mention further advantages of the Estimated Mean Shift Model. Mixed 
application of the factors assures proper flexibility in a given assembly. Some 
components may correspond to the worst limit while others may vary to a great 
extent in accordance with the statistical case. Because of a weakly controlled 
component we are not constrained to apply the worst case model for the whole 
assembly unit. 

3.6. Effect of the mean shift 

Figure 7 demonstrates clearly the effect of the mean shift. The values UL and LL 
were originally set at the ±6σ limits of the distribution. The mean shift of the arising 
dimension has been shifted 1.5σ to the right, leaving 4.5σ to remain. Since UL is 
4.5σ from the mean, it will yield increasing rejects, i.e. 3.4/2 = 1.7 ppm. It is not a 
large number, but compared to it the ±6σ case (without mean shift the reject products 
are 2 per billion) we get nearly a factor of 1000 increase! 

 

5.1 5.4LL UL

 

Figure 7. Effect of the mean shift 
 

4. Other tolerance analysis methods 

In certain cases other methods are applied in tolerance analysis, especially when the 
dimensions of the components are not normally distributed. We need to give full 
distribution as input in order to apply the assembly equation. 
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The Monte Carlo Simulation and the Method of Moments are useful tools for 
analysing tolerances if dimensions of the assemblies differ from the normal 
distribution [5]. The Monte Carlo Simulation generates pseudo-random numbers in 
order to describe a wide range of distribution curves. Each component receives an 
input dimension randomly for the assembly equation. After determining the value of 
the closing assembly variable, it is compared with the described assembly limit. This 
procedure is repeated again and again and the number of the assemblies proved 
rejects is divided by the number of the trials to estimate the proportion of the rejected 
assemblies [7], [8], [13].  

The Method of Moments uses the empirical moments of the contributing 
distributions and the first and second derivatives of the assembly function to find the 
first four moments of the assembly distribution. 

There is an alternative idea requiring a less sophisticated, quicker program, which 
can be regarded as a mixture of the methods mentioned. This hybrid method applies 
the Monte Carlo Simulation for generating assembly values in a smaller number. The 
sample size is usually between 1000 and 5000. The resultant assembly dimensions 
are used to compute the statistical moments of the assembly distribution and to 
estimate the percentage of rejected products. With the aid of this trick we avoid the 
greatest difficulties arising in the Method of Moments since we do not need 
numerical derivatives and summation of series in order to calculate assembly 
moments from the component moments. Considering that the sample is in the order 
of thousand the calculation is extremely simplified compared with the original Monte 
Carlo Simulation [11]. 

Constraint networks can also be applied for determining an optimum allocation of 
tolerances among components of an assembly and at the same time minimizing the 
total cost of manufacturing [20]. 

5. Classic methods of solving assembly dimension chains 

The problems which can be solved on the basis of the theory of dimension chains are 
divided into three groups: 

 calculation of closing tolerance based on the described tolerances of the 
components of the dimension chain; 

 determination of the component tolerances using the described closing 
tolerance;  

 determination of closing and component tolerances meeting general 
requirements. 
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These problems can be interpreted both for the component and the assembly 
dimension chains. The classical methods for assembly dimension chains are the 
following: (1) method of total changeability; (2) method of limited changeability; (3) 
method of selective coupling; (4) method of post fitting; (5) method of adjusting.  

The first two methods have been already discussed to some extent previously. In this 
paper we give more details on total changeability.  

5.1. Method of total changeability 

In the case of total changeability, assembly can be carried out with randomly selected 
identical parts, and in this way the closing dimension will always be the prescribed 
value without adjusting the inserted parts.  

If the dimension chain is solved with the method of total changeability, then it is not 
sufficient to calculate the tolerance values of all the parts, but each part has to be 
machined within these prescribed tolerance limits. Without this condition it is not 
possible to consider applying the method of total changeability.   

Advantages of this method are: 

 assembly is simple and economical because no adjustment or selecting 
of components is needed, 

 the assembly process can be carried out with semi-skilled workers, 
 by virtue of total changeability, assembly processes can be carried out in 

parallel factories, 
 the assembly process can be carried out on an assembly line, 
 greater ease in managing machining of spare parts: we can assemble 

each part onto the product without adjustment and fitting.  

The main disadvantage of the method is that part machining requires high accuracy. 
The method of total changeability is the most economical if the dimensions of chain 
are very accurate, but the number of components is low [14]. It follows from this that 
the method of total changeability is used in mass production in the case of high 
precision and a low number of components. 

5.2. Method of limited changeability 

Increasing the precision of machining tolerances acts upon the production cost.  

Therefore increasing the precision requirements would be limited by the costs and 
assembly precision. 

When calculating the tolerances with the method of total changeability, the 
theoretical starting point is that particular components are machined with limit 
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dimensions. Components with limit dimensions of opposite direction can be 
assembled and will meet the precision requirements. During product manufacturing a 
very small percentage of components are prepared to their limit dimensions. 
Therefore considering the variations of machined dimensions the part tolerances are 
extensible and in this way production can be more economical, except that a certain 
number of products will exceed the prescribed tolerance limits (a higher rejection 
rate) [14]. 

Using the method of limited changeability, it is not possible to ensure the resultant 
dimensions between the prescribed limits. Applying the theory of the probability 
calculation we can increase the tolerance values of certain components, but we risk 
that rejected products will pass the tolerance limits. Increasing the tolerance values 
leads to more economical part production but marginally increases the reject rate.  

Taking these factors into account, we can generally say that the method of limited 
changeability can be applied if the dimension chain consists of several components 
and a tight tolerance is prescribed only for the closing dimension. As a consequence 
of choosing tight closing dimension, it is possible to increase the tolerances of the 
individual dimension chain components, which reduces the machining cost. 

In the case of the method of limited changeability, dimension chain solutions work 
on the principle that dimensional deviations of chain links as well as the summation 
of these deviation values have a random character, therefore the rules of probability 
calculation have to be applied. According to these rules, the boundary values of the 
closing dimension can be calculated with the summation of the regular and random 
errors of the links [14].  

5.3. Indices of process capability 

To measure process capability, there are two indices used in modern industrial 
practice: 

 

Cp process capability index, 

Cpk Cp adjusted for mean shift. 
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Figure 8. Indices of process capability 

 

The value of capability index Cp is 1.0 only if the limits LL and UL are exactly on the 
3σ boundaries of the standard deviation of dimensions. At this time, using the 
general assumptions of tolerance analysis, all the tolerances correspond exactly to 
3σ. If LL and UL correspond to ±6σ, then Cp = 2.0, which matches the quality level 
6σ. The previous explanation shows that Cp is a good indication of the quality level, 
but the mean shift is not taken into consideration. 

Cpk adjusts the value of Cp, taking the mean shift into consideration. It can be seen 
from Figure 8 that Cpk is (1-k) times Cp, where k=[0..1]. If the mean shift is 25%, 
then k=0.25, i.e. the distance from the mean of UL and LL, thus the process capacity 
sinks to 75%. 

Cp expresses how close the limits UL and LL are to the process capability ±3σ 
supposing symmetric distribution; while Cpk represents how close the nearest UL and 
LL limits are supposing non-symmetric distribution. 

The model presented here is the ‘Six sigma program’ developed by Motorola 
Corporation. This model also takes the qualitative mean shift observed during the 
mass production of assemblies into account. 

Instead of the relationship Ti=3σi, the resultant tolerance can be calculated as: 
 

iii CpT 3 ,                                                     (13) 

 
which meets higher quality requirements. Taking the mean shift into account, the 
previous formula with the substitution of Cpk is as follows: 

 

iii CpkT 3 ,                                                    (14) 
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moreover: 

i

i
i

Cpk

T

3
 .                                                      (15) 

 
Since Cpk is less than Cp, the estimated standard deviation σi will be greater. 

In the case of mass production, the mean of the process can be shifted, e.g. as a 
consequence of tool wear or thermal expansion. In the long term, the aim of 
Motorola’s Six Sigma principle is to achieve the quality level of 4.5σ. In order to 
realise it, the quality level of 6σ is to be aimed at in the short term: 

 
Short term:  60.233  iiii CpT .                      (16) 

 
Long term:  5.4)1(0.233  iiii kCpkT .              (17) 

 
If the mean shift is less than 0.25 (k<0.25), then in the long term, a quality level 
higher than 4.5σ can also be reached. If k>0.25, then the 4.5σ cannot be maintained. 

6. Direct linearization method for analysing 3D mechanical assemblies 

Kinematic tolerance analysis methods have had an extensive literature in the last five 
years. Kyung and Sack have successfully applied a nonlinear kinematic tolerance 
analysis algorithm for planar mechanical systems comprised of higher kinematic 
pairs [10], and additionally a combination of the direct linearization method and a 
kinematic error analysis was presented by Wittwer and Chase [19]. Joskowicz and 
Sacks introduced a new model of kinematic variation, called kinematic tolerance 
space, that generalizes the configuration space representation of nominal kinematic 
function [16]. Anselmetti et al. developed a new functional tolerancing method for 
analysing 3 dimensional variations of mechanical assemblies utilizing a solver 
implemented in Microsoft Excel [1]. 

In general, the kinematic constraints for a 3D mechanical assembly can be described 
by means of closed vector loops. The vector loop is traversed from the starting point 
to the end point of the mechanism, finally the cyclic translations and rotations will 
sum to zero. As a last step, the coordinate system of the end point has to be made 
congruent with the one at the beginning by means of a rotation. The method of vector 
loops derives from the 2D calculation method, as its spatial extension [5]. In the 3D 
case the equations of the system are much more complex. At this time it is highly 
practical to represent the rotation and translation constraints in matrix form. The 
closed vector chain can be expressed as a product of transformation matrices 

125



 K. NEHÉZ; T. TÓTH  

 
representing the constraints. To describe transformation from point i-1 to point i of 
the mechanism, a combination of three rotation matrices and one translation matrix is 
necessary in the most general case. The problem can be simplified if we carry out 
translations always along the local x-axis. For 3D rotational transformations, the 
following matrices can be used: 
  

[Rx]= ,

1000

0cossin0

0sincos0

0001
























xx

xx


 [Ry]= ,

1000

0cos0sin

0010

0sin0cos



















 yy

yy





[Rz]=       

         .

1000

0100

00cossin

00sincos

















 

zz

zz




                                                                                (18) 

 

For translation it is assumed that the translational vector is always parallel to the 
local x-axis:  

 

[T]=



















0000

0100

0010

001 L

.                                                (19) 

 
With these matrices, the kinematic constraints of the assembly can be written in form 
of the following equation: 

 
[R1][T1][R2][T2]...[Ri][Ti]...[Rn][Tn][Rf] = [I],                                     (20) 

 

where [Ri] is the product of rotation matrices at joint i; [Ti] is the translation matrix at 
joint i; [Rf] is the rotation matrix required to bring the loop to be congruent at the last 
joint; and I is the identity matrix. Equation (20) is a series of rotations and 
translations to transform the local coordinates from vector-to-vector to the end point 
via the joints representing the mechanism. At each joint, the rotation matrix [Ri] is a 
product of rotation matrices, which aligns the local x-axis with the direction of the 
next vector. Then the transformation matrix [Ti] contains only one translation value L 
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along the local x-axis, indicating the length of the current vector. Equation (20) can 
be decomposed into six independent non-linear equations. Since the nominal 
dimensions are much greater than their tolerances, the solution can be obtained 
through linearization. Six equations describe the loop variation in the global x,y,z and 
Θx, Θy, Θz directions, as follows: 

 

 ,,,,,,
11

zyxk

m

k k

i
j

n

j j

i
i zyxiu

x

H
x

x

H
H 








 


   (21) 

 

where 
jx  are variations in the manufactured dimensions and angles (j = 1…n), kx  

are variations in the dependent assembly variables (k = 1…m) and iH is the 

resultant assembly variation in the corresponding global direction. For closed loops, 
iH is zero and ku means the kinematic adjustments bringing about closure. The 

applicable perturbation method can be found in [14], [6]. If derivation is needed with 
respect to translational and rotational variables then the actual variable has to be 
substituted into Equation (20) as L+ΔL in case of translational (L) and φ+Δφ in case 
of rotational (φ) variables. Due to the small perturbation the equation does not 
express a closed loop, but a small error vector will produced. The derivates can be 
expressed with numerical approximation. A detailed derivation of this method can be 
found in [6]. Based on this method, Equation (21) can be expressed as a linearized 
matrix form: 

 

{δH}=[M]{δX}+[A]{δU}= }{ .                               (22) 

 

where {δH} is vector of the clearance variations; {δX} is vector of the variations of 
the manufactured dimensions; {δU} is vector of the variations of the assembly 
dimensions; [M] is matrix of the first order partial derivatives of the manufactured 
variables, [A] is matrix of the first order partial derivatives of the assembly variables; 
and {Θ} is the zero vector. 

Each element of [M] and [A] matrices can be determined with the perturbation 
method. The structure of both matrices will be as follows: 

 

 
T

i

z

i

y

i

x

i

z

i

y

i

x
i

x

H

x

H

x

H

x

H

x

H

x

H
A





























  ,,,,,                      (23) 
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where xi is the i-th assembly variable. The structure of [M] matrix is the same, but ui 
will be used instead of xi. Equation (22) can be solved for U: 

 
{δU} = -[A]-1 [M]{δX}.                                    (24) 

 

On the score of Equation (24), when [A] is a square matrix, U vector can be 
determined. This matrix method is highly applicable in computerized 
implementations.  

7. Introducing the Optol 3D tolerance calculation software 

Developing a computerized algorithm and its integration into a CAD system is a 
difficult and complicated task. The research group has proposed a general ‘CAD 
system’ independent model. Our starting point is that CAD systems are able to export 
geometrical data of each design feature with an arbitrarily chosen coordinate system 
(in Pro/Engineer CAD system datum coordinate systems can be used for this 
purpose, in CATIA this export is also available). It is obvious that input data for our 
algorithm will be coordinates of vector end-points. Figure 9 depicts the functional 
diagram of our OpTol Software. The input data of the OpTol system is a special text-
based Loop file that describes an assembly loop. The user is able to analyse an 
existing Pro/Engineer 2001 assembly by means of the OpTol Pro/Engineer module. 
In this case, the OpTol module creates the input Loop file for the OpTol System. 
This module was implemented by using Pro/JLink, which is an extension creator 
toolkit of the Pro/Engineer software. Additionally, the OpTol system can be used 
without Pro/Engineer, creating Loop files by using a simple text editor. 
 

 

 

Figure 9. Functional diagram of the OpTol system 

The OpTol system generates a detailed html assembly report as a result of tolerance 
calculations. The OpTol system also supports three dimensional tolerancing 
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calculation based on worst-case, statistical and six sigma methods. The OpTol 
system does not yet support geometrical tolerances. 

In further versions, our team is planning to extend the functionability of the system 
by supporting geometrical tolerances and tolerance allocation methods. 

Our development strategy is based upon using only open-source software tools and 
components. All components of the OpTol software were developed in Java utilizing 
NetBeans IDE and Java Swing API. The OpTol system is basically platform 
independent but its installer and launcher application only runs under a Windows 
platform. In the following section a simple 2D example with multiple loops will be 
presented. 

     

Figure 10. Screenshots of the OpTol Tolerancing System 
 

7.1. 2D Tolerance calculation example (multiple-loops) 

We tested the system on a relatively complicated industrial assembly, but publishing 
the results exceeds the limited length of this paper, at the same time the following 2D 
example demonstrates the fundamental functions of our application well. 

Figure 11 represents a model assembly consisting of four parts: two cylinders, one 
block and a base. We are looking for the tolerance values of the dimensions X1, X2, 
X3. The following table shows the x and y coordinates of the points A, B, C… M 
(Point A is the origin). Assume that for the sake of convenience, all the tolerance 
values of each dimension (line segments e.g.: AB, BC, DE, … LM) are the same: ± 
0.05 mm. A datum reference point must be defined for each part ( ). 
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X
2

A B

C

D

E

F

G

H

J

I
K

LM

X3

X
1

R1

R2

a b

c

d

 

 

Point name A B C D E F G H K L M 

x-y coords 0, 0 3, 0 3, 1 4, 2 0, 6 10.5,0 10.5, 3.52 8, 6 4, 10 2.42, 11.8 0,11.8 

  

Figure 11. 2D model example with four parts 

 

The next step of the tolerance calculation is to determine the number of necessary 

assembly loops. The applicable relation is as follows: L = J – P + 1 where J is the 

number of joints, and P expresses the number of parts. For our example: J = 6, P = 4, 

thus L = 3. 

7.2. Creating vector loops 

A vector loop must fulfil some modelling rules when it passes through parts: [14] 

 enter through a joint into a part, 

 follow datum path to the datum reference point of the part, 

 follow dimensions to another joint, 

 leave part. 

Figure 11shows this process. 
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            Figure 12a. Loop One                               Figure 12b. Loop Two 
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X3

X
1

LOOP 3

 

Figure 12c. Loop Three 

 

The loops must go through every part and every joint in the assembly. The following 

table shows the Loop files, which are importable into the OpTol System (these 

source files can be found in the folder “[Install dir]/Tutorial/”):  
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Figure 13. Three loop files describing the example. The lower part of the table contains the 
sample tolerance values which have to be set in the application. 

 

Restart OpTol system and import the entire three loops into the application: 

 Import loop by pushing “Ctrl+I” and select Example2D_1.loop from the 
[Install dir]/Tutorial folder. 

Example2D_1.loop Example2D_2.loop Example2D_3.loop 

0.0, 0.0, 0.0, A

3.0, 0.0, 0.0, B

3.0, 1.0, 0.0, C

4.0, 2.0, 0.0, D

0.0, 6.0, 0.0, E

0.0, 0.0, 0.0, A

0.0, 0.0, 0.0, A

10.5, 0.0, 0.0, F

10.5, 3.52, 0.0, G

8.0, 6.0 ,0.0, H

4.0, 2.0, 0.0, D

0.0, 6.0, 0.0, E

0.0, 0.0, 0.0, A

0.0, 0.0, 0.0, A 

10.5, 0.0, 0.0, F 

10.5, 3.52, 0.0, G 

8.0, 6.0, 0.0, H 

4.0, 2.0, 0.0, D 

0.0, 6.0, 0.0, E 

4.0, 10.0,0.0, K 

2.42, 11.8,0.0, L 

0.0, 11.8,0.0, M 

0.0, 0.0, 0.0, A 

Name Tol. - Tol. + Name Tol.- Tol. + Name Tol. - Tol. + 

A-B 

B-C 

C-D 

E-A 

-0.02 

-0.02 

-0.1 

-0.03 

0.05 

0.01 

0.01 

0.04 

A-F 

F-G 

G-H 

H-D 

D-E 

E-A 

-0.02 

-0.05 

-0.01 

-0.01 

-0.05 

-0.01 
 

0.02 

0 

0.01 

0.01 

0.05 

0.04 

A-F 

F-G 

G-H 

H-D 

D-E 

E-K 

K-L 

L-M 

M-A 

-0.02 

-0.05 

-0.01 

-0.01 

-0.05 

-0 

-0 

-0 

-0.02 

0.02 

0 

0.01 

0.01 

0.05 

0 

0 

0 

0.05 

132



 OPTOL:SPATIAL TOLERANCE ANALYSIS APPLICATION  

 

 Push the button  to add a new loop to the table. Select the 

tab ‘Loop2’ and import the next loop by pushing “Ctrl+I” and select 

Example2D_2.loop. 

 Push the button  to add a new loop to the table. Select the 

tab ‘Loop3’ and import the next loop by pushing “Ctrl+I” and select 

Example2D_3.loop. 

The next step is to edit the tolerance values. Figure 13 contains the tolerance values 

for each segment. In OpTol, you must set any parameter of a dimension only once. 

Having completed this procedure, check the checkbox ‘dependent variable’ for the 

following dimensions: EA, AF, MA (remember: these were X1, X2 and X3). Since 

we have not indicated the values Cp and k, we should turn off the six-sigma 

statistical method. After clicking on the ‘Calculate’ button, you will see the 

following result in the ‘Results of Tolerance Calculation’ tab. 
 

OpTol Assembly Report 

WORST-CASE METHOD 

 
Number of calculated variables:3 

Variable name: E-A 

Tolerance +-0.08 [mm] 

Calculated Upper limit 6.08 [mm] 

Calculated Lower limit 5.92 [mm] 

 
Variable name: A-F 

Tolerance +-0.021 [mm] 

Calculated Upper limit 10.521 [mm] 

Calculated Lower limit 10.479 [mm] 
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Variable name: M-A 

Tolerance  +-0.046 [mm]  

Calculated Upper limit  11.846 [mm]  

Calculated Lower limit  11.754 [mm]  

STATISTICAL (3-sigma) METHOD 

 
Number of calculated variables:3 

Variable name: E-A 

Tolerance  +-0.041 [mm]  

Calculated Upper limit  6.041 [mm]  

Calculated Lower limit  5.959 [mm]  

Reject Calculation   

Design Upper limit  6.04 [mm]  

Design Lower limit  5.99 [mm]  

Predicted Rejects (UL)  1609.937 [ppm]  

Predicted Rejects (LL)  230718.717 [ppm]  

Predicted Rejects Total  232328.654 [ppm]  

 
Variable name: A-F 

Tolerance  +-0.012 [mm]  

Calculated Upper limit  10.512 [mm]  

Calculated Lower limit  10.488 [mm]  

Reject Calculation   

Design Upper limit  10.52 [mm]  

Design Lower limit  10.48 [mm]  

Predicted Rejects (UL)  0.498 [ppm]  

Predicted Rejects (LL)  0.498 [ppm]  

Predicted Rejects Total  0.996 [ppm]  
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Variable name: M-A 

Tolerance  +-0.028 [mm]  

Calculated Upper limit  11.828 [mm]  

Calculated Lower limit  11.772 [mm]  

Reject Calculation   

Design Upper limit  11.85 [mm]  

Design Lower limit  11.78 [mm]  

Predicted Rejects (UL)  0.035 [ppm]  

Predicted Rejects (LL)  15548.773 [ppm]  

Predicted Rejects Total  15548.808 [ppm]  

 

 

 

Figure 14. OpTol assembly report of the 2D example tolerance calculation 

 

7.3. Calculating percentual contribution 

This procedure is very useful if you want to see how each dimension contributes to a 

selected variable. If you press  when the ‘loop 1’ tab is the 

selected tab on the pane, you will get the following. 

According to Figure 15, BC is the principal contributor of the dimension EA, 

followed by the dimension CD. If the resultant tolerance is not desirable, we must 

change the dimension tolerance values. According to the percent contribution results 

we must reduce the tolerance values of the dimension BC.  

 

Note: this percent contribution calculation is not a trivial task. We have three 

dimension loops and they affect the tolerance of the dimension EA simultaneously. 
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(Worst-case) Percent 

Contribution of variable: E-A 

 

A-B 0.0%  

B-C 37.68% 

C-D 28.87% 

D-E 8.88%  

F-G 15.7%  

G-H 4.42%  

H-D 4.44%  

E-K 0.0%  

K-L 0.0%  

L-M 0.0%  
 

(Statistical) Percent 

Contribution of variable: E-A 

 

A-B 0.0%  

B-C 54.24% 

C-D 31.83% 

D-E 3.01%  

F-G 9.42%  

G-H 0.75%  

H-D 0.75%  

E-K 0.0%  

K-L 0.0%  

L-M 0.0%  
 

Figure 15. Percent contribution of dimension ‘EA’ 

8. Conclusion 

The OpTol 3D tolerancing software and its mathematical models have been 
presented. The software is utilizing a direct linearization method to solve tolerance 
calculations up to 3 dimensional cases. The OpTol System can work as a stand alone 
system or consists of a CAD module in order to support engineers to analyse their 
existing assemblies. The OpTol system installation package can be downloaded from 
the website alpha.iit.uni-miskolc.hu/OpTol/setup_trial.exe. The package includes a 
detailed user’s guide with examples and a fully functional trial license. 

Continuing work will focus on handling geometrical tolerances and implementing 
tolerance allocation methods and cost optimizations. 
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