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Abstract.  From the viewpoint of Behaviour based Control many control tasks 
can be divided into separate  behaviour components.  By defining the relevant 
behaviour components, the actual control action can be constructed based on the 
individual control actions of the component behaviours. In this case the control 
action is either related to an individual behaviour component or to a fusion of 
behaviour  components  based  on  their relevance  to  the  actual  situation.  This 
paper adapts the concept of fuzzy automaton for achieving the decision related to 
the relevance of the behaviour components in the task of the navigation of an 
autonomous  vehicle.  In  the  structure  applied,  the  relevance  of  the behaviour 
components  is  approximated  by  a  fuzzy  rule  interpolation  (FRI,  namely  the 
FIVE method) based fuzzy automaton. The main reason for the FRI application 
is the state-transition rule-base simplification of the fuzzy automaton. In case of 
FRI, sparse rule bases (incomplete rule bases) are acceptable, because derivable 
rules  can be omitted intentionally,  saving construction time and reducing the 
complexity  of  the  state-transition  rule-base.  The  paper  also  provides  a  brief 
overview of Behaviour based Control and fuzzy rule interpolation (FRI).  For 
demonstration purposes the paper gives a simple example of state-transition rule-
base construction in case of the vehicle navigation task mentioned.
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1. Introduction

The main  building  blocks  of  Behaviour  based  Control  (BBC,  a  comprehensive 
overview can be found in [14])  are the behaviour components themselves.  The 
behaviour components can be copies of typical human or animal behaviors, or can 
be artificially created behaviours. The actual behaviour response of the system can 
be formed as one of the existing behaviour components, which gives the best match 
for the actual situation, or a fusion of the behaviour components based on their 
suitability  for  the  actual  situation.  Encoding  the  behaviour  components  can  be 
realized with simple  reflexive agents,  which assign an output  response to  each 
input situation.

In  the  case  when  more  than  one  behaviour  components  are  simultaneously 
competing  for  the  same  actuator  an  aggregation  or  selection  of  the  behaviour 
components  is  necessary.  Handling  multiple  behaviour  components  in  a  BBC 
system can  be  done  in  two  ways.  The  first  is  the  competitive  way,  when the 
behaviour components are assigned  priorities, and the behaviour component with 
the highest priority takes precedence, while the behaviours with lower priorities are 
simply ignored.  The second is  the cooperative way when the outputs are fused 
based on various criteria. 

Figure 1. Diagram of the fuzzy automaton

152



BEHAVIOUR BASED CONTROL WITH FUZZY AUTOMATON IN VEHICLE NAVIGATION

For achieving the decision related to the relevance of the behaviour components 
this  paper  adapts  the  concept  of  fuzzy  automaton.  (See  the  diagram  of  the 
suggested fuzzy automaton based system in Fig. 1).  The system consists of not 
only the automaton but the behaviour fusion component and various component 
behaviours  implemented  as  fuzzy  logic  controllers  (FLC).  The  state  variables 
characterize the relevance of the component behaviours. The state-transition rule 
base of the automaton applies fuzzy rule interpolation (namely the FIVE method) 
for state-transition evaluation. The previous states are fed back to the automaton 
and the conclusion given by the automaton is used as a weight in the behaviour 
fusion component for determining the final conclusion of the BBC. The conclusion 
of  the  fuzzy  automaton  will  be  the  new system state  for  the  next  step  of  the 
behaviour fusion. The behaviour fusion component can also be implemented by 
fuzzy reasoning (e.g. using fuzzy rule interpolation), or simply as a weighted sum. 
The  symptom  evaluation  components  provide  a  kind  of  preprocessing  for  the 
automaton based on the observations gathered. These components can also employ 
FRI techniques. 

Embedding fuzzy rule interpolation the model always gives an usable conclusion 
even if there are no rules defined for the actual observations. Hence the application 
of sparse rule bases (not complete) can be beneficial, because derivable rules can 
be omitted intentionally, radically simplifying the rule base creation, saving time- 
consuming work. The example application of the paper is also based on sparse (not 
a complete) rule bases. The main reason of applying sparse rule bases and FRI in 
this case is the simple adaptation of expert knowledge to the system. The existing 
knowledge is naturally sparse as the experts concentrate on giving the main state-
action rules only. On the other hand, having sparse rule bases also helps the final 
parameter optimization process,  as it  has usually fewer tunable parameters than 
complete rule bases.

In the next section, the FRI method FIVE will be introduced in more detail, as it is 
a quick and simple FRI method. It has the speed benefit against other FRI methods 
in the price of handling crisp observations and crisp conclusions only. (This makes 
no  real  drawback  in  the  example.)  Next  a  simple  application  example  will  be 
presented, which applies the proposed FRI based BBC structure for autonomous 
vehicle  navigation.  The  vehicle  follows  pre-defined  waypoints  while  avoiding 
collision  with  obstacles  and  walls.  The  vehicle  navigation  example  includes 
competitive and cooperative behaviour components as well.

2. Fuzzy Rule Interpolation

2.1. FRI Introduction

Traditional fuzzy reasoning methods (e.g. the Zadeh-Mamdani compositional rule 
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of  inference  (CRI)  and  the  Takagi-Sugeno  reasoning  method)  are  demanding 
complete rule bases, and hence the construction of a classical rule base requires 
extensive work to define all the required rules. In contrary, the application of fuzzy 
rule interpolation (FRI) methods, where the derivable rules are missing on purpose 
(as FRI methods are capable of  providing reasonable (interpolated) conclusions 
even  if  none  of  the  defined  rules  fire  under  the  current  observation)  allows 
avoiding a considerable amount of unnecessary work in the construction of the rule 
bases, because the rule base of an FRI controller can contain the most significant 
fuzzy rules  only.  On the other  hand,  most  of  the FRI methods are  sharing the 
burden of high computational demand, e.g. the task of searching for the two closest 
surrounding rules  to  the  observation,  and calculating the conclusion at  least  in 
some characteristic α-cuts. Additionally,  in some methods interpreting the fuzzy 
conclusion gained is not straightforward [8] even if there has been a great deal of 
effort to rectify the interpretability of the interpolated fuzzy conclusion [16]. In [1] 
Baranyi  et  al. give a  comprehensive overview of  recent  existing FRI methods. 
Moreover,  some  of  the  FRI  methods  need  special  extension  for  the 
multidimensional  case (e.g.  [2]-[3])  because they are originally defined for one 
dimensional input space. In [19] Wong et al. gave a comparative overview of the 
multidimensional input space capable FRI methods and in [2] Jenei introduced a 
way for axiomatic treatment of the FRI methods. In [6] Johanyák et al. introduce 
an automatic way for direct sparse fuzzy rule base generation based on given input-
output data. Many of these methods are hardly suitable for real-time applications 
due  to  the  high  computational  demand  (notably  the  search  for  the  two closest 
surrounding rules to an arbitrary observation in the multi-dimensional antecedent 
space). Some FRI methods, e.g. LESFRI [7] or the method introduced by Jenei et  
al. in [3], eliminate the search for the two closest surrounding rules by taking all 
the  rules  into  consideration,  and  therefore  speed  up  the  reasoning  process.  An 
application oriented aspect  of  the  FRI emerges  in  the  concept  of  FIVE (Fuzzy 
Interpolation based on Vague Environment), where the fuzziness of the antecedent 
and consequent fuzzy partitions is replaced by the concept of vague environment. 
This  makes  a  speed benefit  against  other  FRI methods,  but  it  has  the  price  of 
handling crisp observations and crisp conclusions only. It is a real disadvantage of 
FIVE, but in many direct FRI control applications, like the example in this paper, 
where the fuzzy conclusion is not required, it has no effect. In the followings the 
method FIVE will be introduced briefly. 

2.2. The FRI “FIVE”

The  FIVE  method  was  originally  introduced  in  [9],  [10]  and  [11]  and  it  was 
developed to fulfill the speed requirements of direct fuzzy control. In this case the 
conclusions of the fuzzy controller are applied directly as control actions in a real-
time system, so the concept of the FIVE method is an application oriented aspect of 
the FRI techniques. Most of the control applications serve crisp observations and 
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require  crisp  conclusions  from the  controller.  Adopting  the  idea  of  the  vague 
environment  (VE)  [4],  FIVE  can  handle  the  antecedent  and  consequent  fuzzy 
partitions of the fuzzy rule base by scaling functions [4], therefore it can turn the 
task of fuzzy interpolation to crisp interpolation. The idea of a vague environment 
is based on the similarity or in other words the indistinguishability of elements. In a 
vague  environment  the  fuzzy  membership  function  μA(x) indicates  the  level  of 
similarity of  x to a specific element  a which is a representative or  prototypical 
element of the fuzzy set μA (x), or it can be interpreted as the degree to which x is 
indistinguishable  from  a [4].  Two  values  in  a  vague  environment  are  ε-
distinguishable if their distance is greater than ε, where the distances are weighted 
distances.  The  weighting  factor  or  function  is  called  scaling  function  [4].  The 
scaling function serves the purpose of describing the shapes of the fuzzy sets in the 
partition.  After  determining  the  vague  environment  of  both  the  antecedent  and 
consequent part universes (the scaling function or at least the approximate scaling 
function [9], [11]), every member set of the fuzzy partition can be characterized by 
points in that vague environment (e.g. the approximated scaling function s shown 
in Fig. 3).

 

Figure 2. Interpolation of two fuzzy rules (Ri: Ai→Bi), by the Shepard operator based 
FIVE, and for comparison the min-max CRI with COG defuzzification. λ is a parameter 

of the Shepard operator
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The  consequent  and  antecedent  sides  of  the  vague  environment  and  scaling 
functions  can  be  precalculated  and  cached,  which  provides  the  fastness  of  the 
method.  Fig.  2  presents  an  example  of  a  one-dimensional  antecedent  and 
consequent system with two fuzzy rules. Therefore if the observation is a singleton, 
any crisp interpolation, extrapolation, or regression method can be adapted very 
simply for FRI [9], [11]. In method FIVE, because of its simple multi-dimensional 
applicability,  the Shepard operator based interpolation (first  introduced in [15]) 
was adapted (see e.g. in Fig. 2).  The Shepard operator based interpolation also 
appeared in other FRI methods like the stabilized KH interpolator which is proved 
to hold the universal approximation property in [17] and [18]. Beside its simplicity 
and  therefore  high  reasoning  speed,  the  original  FIVE  method  has  obvious 
drawbacks: the lack of the fuzziness on the observation side and on the conclusion 
side.  The explanation is  that  this  deficiency is  inherited from the nature of  the 
vague environment applied, which describes the indistinguishability of two points 
and  therefore  the  similarity  of  a  fuzzy  set  and  a  singleton  only.  The  lack  of 
fuzziness  on the conclusion side has  a  little  influence on common applications 
where the next step after the fuzzy reasoning is the defuzzification. On the other 
hand, the lack of fuzziness on the observation side can restrict applicability of the 
method. Furthermore, an extension of the original FIVE method was suggested in 
[12],  where  the  question  of  fuzzy  observation  is  handled  by  merging  vague 
environments  of  the  antecedent  universes  and  the  fuzzy  observation.  An 
implementation of FRI FIVE as a component of the FRI Matlab Toolbox [5] can be 
downloaded from [20] and [21].

 
Figure 3. Approximate scaling function s generated by non-linear interpolation, and the 

partition as described by the approximate scaling function (A’, B’)

3. Vehicle Navigation Example

The  example  application  of  the  paper  is  an  autonomous  vehicle  navigation 
simulation  which  demonstrates  the  benefits  of  the  proposed  FRI  based  BBC 
structures.  The  goal  of  the  application  is  to  navigate  the  vehicle  around given 
waypoints  in a pre-defined order,  while the vehicle should avoid collision with 
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obstacles and the walls of the room. The vehicle can detect whether some obstacle 
is standing in its way, and hence whether the planned path of the vehicle seems to 
be blocked. In this case the vehicle can turn back and head in the opposite direction 
by reversing the sequence of the waypoints. The example waypoint configuration 
has four members which correspond to the four corners of the room. 

3.1. Circular Waypoint Navigation and Collision Avoidance

For the navigation control the previously proposed BBC structure is adapted (see 
Fig.  1).  The  actual  states,  observations  and symptom evaluation and  behaviour 
components  of  the  example  are  shown  in  Fig.  4.  The  suggested  BBC  has 
homogeneous FRI knowledge representation. In the following the rule bases for all 
the  BBC  components,  the  symptom  evaluation,  the  state-transition  and  the 
behaviour component rule bases will be described and explained in more detail.

Figure 4. Diagram of the actual fuzzy automaton for the demonstration example

The navigation control is built of the following components:  waypoint approach 
(one  for  each  waypoint),  wall  avoidance,  obstacle  avoidance,  and  the  heading 
direction change.
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The  waypoint  approach  component (which  is  a  component  of  the  'Fuzzy 
Automaton' labeled block in Fig. 4) partly determines the current state vector, the 
selection weights of the waypoints. (Then these weights will be applied as selection 
strengths  of  the  corresponding  waypoint  directions.)  The  approximation  of  the 
waypoint selection weights is based on the following input parameters: the current 
position  of  the  vehicle  (described  by  the  distances  from  the  four  waypoints; 
denoted respectively: dw1, dw2, dw3, dw4), the previous selection weights of the four 
waypoints (namely sw1, sw2, sw3, sw4 – from the previous state of the automaton), 
the need for direction changing and the current direction of the vehicle. The need 
for direction changing component calculates a weight, and if this weight is beyond 
the value of an adjustable parameter,  then a direction change is necessary.  The 
state-transition rule base is very simple, it assigns the highest waypoint selection 
weights  in  a  predefined  sequence  which  follows  the  nearest  waypoint  to  the 
vehicle.  A high level  of  a waypoint  selection weight  means  that  the vehicle is 
mainly heading towards the corresponding waypoint. For expressing the distance 
from an  arbitrary  waypoint  in  the  fuzzy rule  base,  the  linguistic  terms  for  the 
antecedent universes are given as the following: zerus (Z), large (L). For the state 
variables related to the waypoint selection weights (WW in Table 4-7), there are 
only  two  linguistic  terms  defined:  true  (T)  and  false  (F)  for  the  antecedent 
partitions and zerus (Z) and large (L) for the consequents.  Each element  of the 
waypoint selection weight (partly the state) vector has a separate state-transition 
rule base, and a similar structure. In the example case it means four state-transition 
rule bases (equal to the number of the pre-defined waypoints). Each rule base needs 
to be evaluated with the same measured distances and previous state variables. The 
conclusion  is  partly  the  new  state,  the  normalized  weight  of  the  behaviour 
components  heading for  the corresponding waypoints,  which is  used to scale  a 
vector pointing towards the corresponding waypoint.

The collision avoidance strategy consists of as many behaviour components as the 
number of the walls and obstacles and hence the same number of state values (the 
weight of the corresponding collision avoidance component) in the state vector. By 
definition walls are the borders of the room and obstacles are objects which can 
move  freely inside the room.  The  wall  avoidance components are  very simple. 
There are as many normalised movement vectors as the number of the walls having 
a perpendicular  direction to the corresponding wall.  The state variables  are  the 
corresponding repulsion rates, one for each wall avoidance component. The state 
variables (repulsion rates, SCi in Fig. 4) are calculated based on the distance from 
the corresponding wall. The structures of the rule bases are similar and introduced 
in Table 1. Obstacle avoidance is solved in the same manner as wall avoidance. It 
has  as  many  component  behaviours  as  the  number  of  the  obstacles.  They are 
normalised movement vectors having a direction opposite to the resultant waypoint 
movement vector. Similarly to wall avoidance the corresponding state variables are 
their weights calculated based on the distance between the vehicle and the obstacle 
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in the same way as the states of wall avoidance (see again Table 1). Observations 
of the  wall and obstacle avoidance components are the measured distances from 
each  of  the  walls  (denoted:  dw),  and  the  measured  distances  from each  of  the 
objects  inside  the  room  (denoted:  do).  The  linguistic  terms  of  the  antecedent 
universes are: zerus (Z), small (S), medium (M), large (L), and for the consequent 
universes (AV): zerus (Z), small (S), large (L).

The wall and obstacle avoidance components use the same rule base structure (see 
Table 1) for  all  the required conclusions;  only the input distances differ within 
every  evaluation.  The  conclusions  are  the  state  variables  (component  weights) 
related to the wall and obstacle avoidance components and applied in the behaviour 
fusion component in the same manner as for the waypoint direction components.

The structure  of  the  wall  and obstacle  avoidance state  rules  are  defined in  the 
following form:

RColli: If dw = Ai Then AV = Bi

Table 1. Wall and obstacle avoidance weight rule base

The behaviour fusion part of the example is a simple convex combination of the 
component behaviours with the corresponding weights (state variables).

3.2. Heading Direction Change Extension

As already mentioned earlier in the case when the way of the vehicle seems to be 
blocked in the current direction, the vehicle can change its heading, by assigning 
the waypoints in the reverse order. This direction change decision is made by the 
heading  direction  change  symptom  evaluation  (see  Fig.  4)  component.  The 
observations needed for this component (see Fig. 5) are the sum of movement rates 
of the vehicle and the collision avoidance vector (denoted:  mr), the summarized 
rate of the length of the wall and obstacle avoidance vectors (denoted:  ar). In a 
hierarchical  navigation  control,  the  vehicle  could  do  some  other  types  of 
movements  beyond  navigation  among  the  waypoints  ('exploration'),  hence  an 
'exploration rate'  observation could be also added (er in Table 2) to control the 
level of our example navigation strategy as a component behaviour itself in a more 
complex system. 
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Figure 5. M is the movement vector of the vehicle towards the next waypoint, Ro is the 
repulsion vector of the obstacle, Rw for the wall and R is their sum

The  linguistic  terms  of  the  two  antecedent universes  of  the  heading  direction 
change component are: zerus (Z) and large (L). For the conclusion universe (DC), 
which tells whether to change the direction of the vehicle or  not,  the linguistic 
terms are: false (F) and true (T). The rule base consists only of three rules, which 
can be seen in Table 2. The rules are defined in the following form:

RDirChi: If er = A1,i and mr = A2,i and ar = A3,i Then DC = Bi

Table 2. Direction changing behaviour component decision rule base

One more rule base is used to determine the new heading direction for the vehicle. 
Two  observations  are  required  for  this  subcomponent,  which  is  also  a  fuzzy 
automaton in the symptom evaluation component, with one state variable (see in 
Fig.  4):  a  value  which  tells  whether  a  direction  heading  change  is  necessary 
(denoted:  dirchg)  (this  is  the  conclusion  above,  see  Table  2)  and  the  current 
heading direction state (denoted:  currdir). The linguistic terms for the antecedent 
universes are the following: for expressing the need of direction changing: true (T), 
false (F), for expressing the current direction and also for the consequent universe, 
which  gives  the  new  direction:  clockwise  (C),  counter-clockwise  (CC).  The 
conclusion of the symptom evaluation will be the new state of the fuzzy automaton 
(direction). 

The state-transition rule base of the fuzzy automaton embedded into the symptom 
evaluation can be seen in Table 3, and the rules can be interpreted according to the 
following form:

RNewDiri: If dirchg = A1,i and currdir = A2,i Then ND = Bi
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 Table 3. Selection of current direction decision rule base

Having the rule bases for direction changing decision the state-transition rule base 
of the waypoint selection weights can also be extended with direction changing. 
Some new observations should be added to the waypoint selection weights state-
transition rule base which were introduced earlier: the current heading direction 
(denoted:  dir)  and  a  parameter  expressing  whether  the  heading  direction  was 
changed (denoted:  dirchg).  The newly added antecedent linguistic terms for the 
necessity of reversing the direction are: true (T), false (F). For the current direction: 
clockwise (C), counter-clockwise (CC). 

As mentioned, four rule bases are required in this particular case. E.g. having four 
waypoints in case the direction is clockwise: first to calculate the weight needed to 
take the vehicle towards the 2nd waypoint, second to direct the vehicle to the 3rd 

waypoint, third to take the vehicle to the 4th waypoint, and a fourth rule base to 
navigate the vehicle back to the 1st waypoint. E.g. in case of the first waypoint the 
waypoint  selection weights state-transition rule base has the following meaning 
(see Table 4): the first rule means that when the corresponding waypoint (1st) is 
reached by the vehicle then that waypoint (1st  ) should be abandoned, hence the 
weight of the waypoint (1st  ) will be zerus (Z). The second rule keeps the vehicle 
coming to the waypoint (1st ) if it has been selected earlier. The third rule stops the 
vehicle when a direction change is necessary. The fourth rule changes the direction 
if needed and if the previous heading was towards the next waypoint in the defined 
sequence (2nd in this particular case). The fifth rule is similar to the fourth one, it 
changes  the direction if  required and if  the  previous  heading was the previous 
waypoint in order (in this case the 4th). The sixth rule serves the purpose of keeping 
down the weight when the vehicle is going to the next (2nd) waypoint, so do the 
seventh  and  eighth  rules,  but  for  the  remaining  two  waypoints  (4th and  3rd 

respectively). The ninth means that when the vehicle reaches the previous waypoint 
in the sequence (4th), it should head for the current waypoint (1st). The meaning of 
the  last  rule  is  very  similar  to  the  previous  one,  but  for  the  opposite  heading 
direction. The rule bases for the 2nd, 3rd and 4th waypoints contain similar rules, the 
differences  are  only  the  rotational  numbering  of  the  corresponding  next  and 
previous waypoints numbers.
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The extended waypoint selection weights state-transition rules are defined in the 
following form:

RWXi:

If     dw1 = A1,i and dw2 = A2,i and dw3 = A3,i  and dw4 = A4,i  
and  sw1 = A5,i and sw2 = A6,i  and sw3 = A7,i   and sw4 = A8,i 
and  dir = A9,i  and dirch = A10,i

Then WW = Bi

With  the  rule  bases  above  described  the  vehicle  can  cycle  around  the  given 
waypoints,  with  direction  change  in  blocked  situations,  while  still  avoiding 
obstacles and walls.

Table 4. First waypoint selection weight with direction changing rule base

Table 5. Second waypoint selection weight with direction changing rule base
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Table 6. Third waypoint selection weight with direction changing rule base

Table 7.  Fourth waypoint selection weight with direction changing rule base

3.3. Implementation Remarks

It is recommended to arrange the evaluation of these rule bases and observation 
calculations  in  a  loop.  First  the  waypoint  selection  conclusions  should  be 
calculated, the result vector should be added to the current position of the vehicle. 
With  this  new  position  the  distances  from  the  walls  and  obstacles  should  be 
computed,  then  the  wall  and  obstacle  avoidance  fuzzy  rule  bases  should  be 
evaluated, these results should be summarized with the current position. This will 
be the next valid position of the vehicle. Finally we have all the required data to get 
the  conclusion  for  direction  changing.  If  the  direction  has  to  be  changed,  the 
direction state variable should be inverted and in the next iteration it should take 
effect. Following this procedure gives a working FRI model of vehicle navigation 
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and collision avoidance.

With a simple algorithm the waypoint selection rule bases can be generated based 
on the number of the defined waypoints. This was implemented as a standalone 
script written in Python programming language, which can be found at [22]. Using 
this  script,  dynamic  waypoint  insertion/deletion  could  be  achieved  with 
regeneration of the waypoint selection rule base every time the count of waypoints 
has been modified. A drawback is that this feature implies modifications not only 
in the rule bases (and the number of rule bases also), but in the rule base evaluation 
procedures. Achieving the latter requires further research.

For non-commercial purposes the Matlab source of the example of the paper can be 
accessed free of charge at [22].

Conclusion

Some  details  of  an  autonomous  surveillance  vehicle  implementation  based  on 
fuzzy automaton  and behaviour-based control  navigating were examined in  the 
paper. The knowledge representation of the behaviour components, and the state-
transition rule-base of the system state approximation were implemented as sparse 
fuzzy  rule  bases  of  the  “FIVE”  fuzzy  rule  interpolation  method.  Beyond  the 
successful  application,  a  notable  conclusion  of  the  paper  is  that  by using  FRI 
methods the rule base sizes can be considerably reduced to a fraction of the original 
sizes.  Building  a  complete  fuzzy  rule  base  for  the  behaviour  components 
introduced in the paper with the same strategies, but with complete rule-base could 
require approximately a thousand fuzzy rules. On the other hand applying sparse 
fuzzy rule bases (and fuzzy rule interpolation, in case of 4 waypoints, 4 walls and 2 
obstacles) only 71 rules are sufficient. This rule base size is easily implementable 
even in an embedded FRI fuzzy logic controller. The implementation also proves 
the  real-time  suitability  of  the  FIVE  fuzzy  rule  interpolation  method  itself  (in 
application areas where as a restriction of the method crisp observation and crisp 
conclusion are sufficient). For non-commercial purposes an implementation of FRI 
FIVE as a component of the FRI Matlab Toolbox [5] can be downloaded from [20] 
and [21]. 
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