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Abstract. The main contribution of this paper is the extension of an
existing Fuzzy Rule Interpolation (FRI) method by gradient-based con-
sequent optimization. The targeted FRI method is an application ori-
ented approach, called FIVE (Fuzzy Rule Interpolation based on the
Vague Environment of the Fuzzy Rule Base [1]). The goal of the con-
sequent optimization is the rule base parameter optimization based on
input-output sample data of the modelled system.
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1. Introduction

There are more and more practical applications of Fuzzy Rule Interpolation
(FRI) methods appearing in recent literature. Their popularity is based on
their ability to handle incomplete fuzzy knowledge representation i.e. ’sparse’
fuzzy rule bases. A ’sparse’ rule base in this case means a fuzzy rule base, which
does not have rules for all the possible observations, in other words, at least
one observation may exist which does not lead to an interpretable conclusion
applying classical fuzzy reasoning methods (like Zadeh, Mamdani, Larsen, or
Takagi-Sugeno). Numerous FRI methods can be found in the literature, and
every method has its own advantage. Some of them are very precise, some of
them are less precise but their computational complexity is better. In the last
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few years FRI based systems have been applied successfully for several fuzzy
modeling and control tasks.

For example Johanyák, Parhiban and Sekaran [2] developed fuzzy models for
an anaerobic tapered fluidized bed reactor, Johanyák and Szabó [3] used a FRI
based fuzzy model for tool life prediction depending on cutting parameters in
the case of machining operations.

An application oriented aspect of FRI emerges in the concept of FIVE. The
fuzzy reasoning method FIVE (originally introduced in [4] and described in
[5], [6] and [1]) was developed to fit the speed requirements of direct fuzzy
control, where the conclusions of the fuzzy controller are applied directly as
control actions in a real-time system (see e.g. a downloadable and executable
code of a real-time vehicle path tracking and collision avoidance control at [7]).

Automatic rule base generation is a hard task and most of the available meth-
ods are based on a gradient-free approach. The main problem of these methods
is the slow convergence compared to gradient-based methods. On the other
hand, for gradient-based parameter optimization there has to be a performance
measure which is at least partially derivable with the optimizable (tunable)
parameters.

In the following, first the FRI method FIVE will be introduced in more detail
with the applied Shepard interpolation, then the paper will suggest a gradient-
based optimization method (steepest descent) for the automatic consequent
optimization of the FIVE rule base. Finally, we illustrate the method with
two sample data sets:

1. the training sample is a simple input-output set of randomly selected
data from y = sin(x)/x,

2. the training data set contains measured porosity values in a real en-
vironment corresponding to specified input values (gamma ray, deep
induction resistance and sonic travel time).

2. The Concept of FIVE

The FIVE FRI method is based on the concept of vague environment [8].
Applying the idea of vague environment, the linguistic terms of fuzzy partitions
can be described by scaling functions [8] and the fuzzy reasoning itself can be
replaced by classical interpolation. The concept of vague environment is based
on the similarity or indistinguishability of the elements considered. Two values
in a vague environment are ǫ-distinguishable if their distance is greater than ǫ.
The distances in a vague environment are weighted distances. The weighting
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factor or function is called scaling function (factor) [8]. Two values in the
vague environment X are ǫ-indistinguishable if

ǫ ≥ δs(x1, x2) =

∣

∣

∣

∣

∫ x1

x2

s(x)dx

∣

∣

∣

∣

, (2.1)

where δs(x1, x2) is the scaled distance of the values x1, x2 and s(x) is the
scaling function on X.

For finding connections between fuzzy sets and a vague environment the mem-
bership function µA(x) can be introduced as an indicating level of similarity of
x to a specific element a that is a representative or prototypical element of the
fuzzy set µA(x), or equivalently, as the degree to which x is indistinguishable
from a (2.2) [8]. The α-cuts of the fuzzy set A are the sets that contain the
elements that are (1 − α)-indistinguishable from a (see Fig. 1):

1 − α ≥ δs(a, b), µA(x) = 1 − min{δs(a, b), 1}

= 1 − min

{
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∣

∣
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b
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∣
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∣

∣

, 1

}

. (2.2)

Figure 1. The α-cuts of (x) contain the elements that are (1 − α)
indistinguishable from a

In this case (see Fig. 1), the scaled distance of points a and b ( δs(a, b) ) is the
Disconsistency Measure (SD) (mentioned and studied among other distance
measures in [9] by Turksen et al.) of fuzzy sets A and B (where B is a
singleton).

SD(A,B) = 1 − sup
x∈X

µA∩B(x) = δs(a, b) if δs(a, b) ∈ [0, 1], (2.3)
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where A ∩ B denotes the min t-norm: µA∩B(x) = min[µA(x), µB(x)]∀x ∈ X.

Taking into account the most common way of building a traditional fuzzy
logic controller where the first step is defining the fuzzy partitions on the an-
tecedent and consequent universes by setting up the linguistic terms and then
based on these terms building up the fuzzy rule base, the concept of vague
environment [8] is straightforward. The goal of the fuzzy partitions is to define
indistinguishability, or vagueness in the different regions of the input-output
universes. The vague environment is characterized by its scaling function. For
generating a vague environment of a fuzzy partition an appropriate scaling
function is needed, which describes the shapes of all the terms in the fuzzy
partition. Generally, a fuzzy partition cannot be characterized by a single
scaling factor, so the question is how to describe all fuzzy sets of the fuzzy
partition with one universal scaling function. For this task, the concept of an
approximate scaling function is proposed in [4], [5], [6] as an approximation of
the scaling functions describing the terms of the fuzzy partition separately.

3. Shepard Interpolation for FIVE

The main idea of the FRI method FIVE can be summarized in the followings:

1. If the vague environment of a fuzzy partition (the scaling function or at
least the approximate scaling function) exists, the member sets of the
fuzzy partition can be characterized by points in that vague environ-
ment. (These points indicate the positions of the fuzzy terms, while the
membership functions are described by the scaling function itself.)

2. If all the vague environments of the antecedent and consequent uni-
verses of the fuzzy rule base exist, all the primary fuzzy sets (linguistic
terms) compounding the fuzzy rule base can be characterised by points
in their vague environment. Therefore the fuzzy rules (built-up from
the primary fuzzy sets) can also be characterized by points in the vague
environment of the fuzzy rule base. In this case, approximate fuzzy
reasoning can be handled as a classical interpolation task.

3. Applying the concept of vague environments (the distances of points are
weighted distances), any crisp interpolation, extrapolation, or regression
method can be adapted very simply for approximate fuzzy reasoning [4],
[5] and [6].

Owning to its simple multidimensional applicability, this paper suggests the
adaptation of the Shepard operator based interpolation (first introduced in
[10]) for interpolation based fuzzy reasoning. The Shepard interpolation method
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for arbitrarily placed bivariate data was introduced as follows [10]:

f = g(x, y) =















fk if (x, y) = (xk, yk)
for some k

(
∑n

k=0 f(xk, yk)/d
λ
k

)

/
(
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k

)

otherwise,
(3.1)

where the measurement points xk, yk ( k ∈ [0, n] ) are irregularly spaced in

the domain of f ∈ R2 → R,λ > 0 , and dk = [(x − xk)
2 + (y − yk)

2]
1/2

. This
function can be used typically when a surface model is required to interpolate
scattered spatial measurements.

The adaptation of the Shepard interpolation method for interpolation based
fuzzy reasoning in the vague environment of the fuzzy rule base is straight-
forward by substituting the Euclidean distances dk by the scaled distances δs,k :

δs,k = δs(ak, x) =





m
∑

i=1

(

∫ xi

ak,i

SXi
(Xi)dXi

)2




1/2

, (3.2)

where SXi
is the ith scaling function of the m dimensional antecedent universe,

x is the m dimensional crisp observation and ak is the abscissa of the proto-
type point of the kth fuzzy set in the ith antecedent dimension.

Thus, in the case of singleton rule consequents (ck) the fuzzy rule Rk has the
following form:

If x1 = Ak,1 and x2 = Ak,2 and . . . and xm = Ak,m then y = ck. (3.3)

By substituting (3.2) into (3.1) the conclusion of interpolative fuzzy reasoning
can be obtained as:

y(x) =











ck if x = ak for some k

(

∑r
k=1 ck/d

λ
s,k

)

/
(

∑r
k=1 1/dλ

s,k

)

otherwise.
(3.4)
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4. Gradient-Based Consequent Optimization

The main contribution of this paper is the suggestion of a gradient-based op-
timization method (steepest descent) for the consequent optimization of the
FIVE rule base.
If the performance function is derivable, we can apply the gradient method.
Consequent Optimization is based on a set of sample (training) data. The goal
of the optimization method is to minimize the squared error E of the fuzzy
model.

E =

N
∑

k=1

(yd(xk) − y(xk))
2, (4.1)

where yd(xk) is the desired output of the kth training data and y(xk) is the
output of the fuzzy model applying FIVE (as interference technique), N is the
number of the training data points.

The applied steepest descent parameter optimization method modifies the rule
consequents based on their partial derivatives to the squared error function E
(4.1) in the following manner:

g(ck) =
∂E(ck)

∂ck
=

∂E(ck)

∂y(x)

∂y(x)

∂ck
(4.2)

cknext
= ck − τg(ck), (4.3)

where τ is the step size of the iteration and cknext
is the next iteration of the

kth conclusion ck.

According to (4.1), (4.2) can be rewritten in the following form:

g(ck) = −2(yd(xk) − y(xk))
∂y(x)

∂ck
. (4.4)

Applying the Shepard interpolation formula of FIVE (3.4), for the partial
derivatives we get the following formulas:
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∂y(x)

∂ck
=











1 if x = ak for some k

(

1/dλ
s,k

)

/
(

∑r
k=1 1/dλ

s,k

)

otherwise.
(4.5)

According to (4.3), (4.4) and (4.5) the next iteration of the kth conclusion ck

can be calculated.

5. Test and Benchmark

5.1. Application Example

The training data of the application example are a simple input-output set of
randomly selected data from the y=sin(x)/x function in the domain of [-20,
20]. For demonstration purposes this domain is covered by 13 single input,
single output fuzzy rules in the following form (for the kth rule of the rule
base):

If x = Ak then y = ck. (5.1)

For the initial state of the experiment all the consequents of the fuzzy rules
are set to 1 (ck = 1, k ∈ [1, 13]).

The antecedents (Ak) of the fuzzy rules are fixed and more or less evenly
distributed in the domain according to 5.1.

Figure 2. Fixed antecedents (Ak) of the 13 fuzzy rules

Fig. 3 introduces the values of the training data, the conclusions of the initial,
and the parameter-optimized fuzzy models. The change of the squared error
of the training data and the fuzzy model (4.1) in the function of the iteration
steps is illustrated in Fig. 4.
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Figure 3. Training data (circles), conclusions of the initial (horizon-
tal line), and the parameter-optimized fuzzy model (curve)

Figure 4. Change of the squared error (4.1) against the iteration steps

5.2. Petrophysical Properties Benchmark

In order to prove the practical applicability of our technique we compared
the performance of a fuzzy model generated with the method presented above
to some previously published results obtained using other methods for a real
world problem taken from the field of petrophysical properties analysis.

The main goal of this example is to compare the optimized FIVE system to the
system generated by the RBE-DSS (introduced by Johanyák in [11]) method.
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One of the key tasks in the course of the analysis of petroleum oil well data
is the prediction of petrophysical properties corresponding to specific input
data, i.e. depth values that are different from the original ones used by the
experiments. Such properties are porosity, permeability and the volume of
clay [12]. The expensive and time-consuming character of data collection
from boreholes increases the significance of the prediction. The predicted
values help making decisions on the rentability of the exploration of a specific
region. The research task of Johanyák was to create a fuzzy model with low
complexity that is applicable for the prediction of porosity (PHI) based on
well log data described by three input variables. These are the gamma ray
(GR), deep induction resistance (ILD), and sonic travel time (DT).
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Figure 5. Change of the squared error (4.1) against the iteration steps

The reference system used in the course of the benchmark was developed
by Johanyák [11] using RBE-DSS as the model identification technique and
LESFRI as the FRI method.

The initial rule base was generated by the RBE-DSS method which is sub-
optimal in the case of method FIVE, hence the beginning correlation is not
a notable value. With the help of gradient-based optimization (introduced
in Section 4) after 100 steps the correlation became good as can be seen in
Tab. 1 and Fig. 6, and the performance function value (squared error) de-
creased as Fig. 5 shows. The optimization results are worse than the results
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obtained with RBE-DSS and LESFRI because our method modifies only the
consequent, and disregards the antecedent part of the rules.
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Figure 6. Change of the correlation against the iteration steps

Table 1. Changing of the correlation coefficient against the iteration steps

beginning step 50 step 100 RBE-DSS
training 0.5885 0.8343 0.8562 0.934

test 0.4056 0.6935 0.7281 0.890

6. Conclusion

As a first step of automatic rule base generation for FRI methods, this pa-
per suggests a gradient-based optimization method (steepest descent) for the
consequent optimization of the FIVE rule base. Consequent optimization is
based on a set of sample (training) data. The goal of the optimization method
is to minimize the squared error of the training data and the FRI fuzzy model.

Based on the numerical example (introduced in Section 5.2) the correlation
is increasing and the squared error is decreasing quickly and it is close to
the result obtained with RBE-DSS and LESFRI. The optimization results are
worse than the results of RBE-DSS because this method modifies only the
consequent, and does not alter the antecedent part of the rules. The chosen
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FRI method (FIVE) is rather simple but efficient, serving as a good basis for
further improvement of fully automatic FRI FIVE rule base generation which
optimizes the antecedent part as well.
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