
 

 

 

 

 
Production Systems and Information Engineering 

Volume 13 (1), pp. 46-63 46 
doi: https://doi.org/10.32968/psaie.2025.1.5  

 

 

 

 

Real-Time, low audio latency based AI-Powered 

application architecture design 

 

PÉTER MILEFF 

University of Miskolc, Hungary 

Institute of Information Technology 

peter.mileff@uni-miskolc.hu 

 
 

 

Abstract: 

This paper presents the design and implementation of a mobile application 
that provides users with an interactive conversational experience powered by 
OpenAI's language model. A key feature of this application is its real-time 
text response streaming, coupled with synchronized audio synthesis using 
Azure's text-to-speech (TTS) services. The architecture includes a Node.js 
backend server that handles OpenAI communication in streaming mode, 
sentence segmentation for response buffering, and a dedicated, multithreaded 
audio service for efficient TTS conversion. Parallelized webSocket 
communication enables high throughput real-time coordination between the 
backend and the audio service. This paper explores the system's architecture, 
implementation challenges, performance evaluation, and potential 
applications in education, accessibility, and virtual assistants. 
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1. Introduction 
 

Over the past decade, the rapid advancement of artificial intelligence (AI) and natural 

language processing (NLP) technologies has significantly redefined the landscape of 

human–computer interaction. One of the most prominent breakthroughs in this domain is 

the emergence of large-scale transformer-based language models, such as OpenAI’s GPT 

series, which are capable of generating coherent, context-aware responses to open-ended 

user input. These models have demonstrated state-of-the-art performance across a wide 

variety of tasks, ranging from language translation and summarization to question 

answering and creative content generation. Their availability via APIs has enabled 

developers to integrate intelligent conversational capabilities into mobile and web-based 

applications with relative ease. 

Despite these advances, most AI-powered chat interfaces today remain largely text-

based. While textual interaction is sufficient for many scenarios, it is not always the most 

effective or inclusive form of communication. In particular, voice-based interactions 

offer substantial advantages in terms of accessibility, engagement, and naturalness. 

Voice responses are crucial for users with visual impairments, for hands-free operation 

in mobile environments, and for creating more immersive digital assistants that closely 

mimic human conversational patterns. Furthermore, multimodal systems—those 
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combining text, voice, and visual feedback—have been shown to enhance user retention, 

learning outcomes, and emotional connection with the application. 

 

However, delivering real-time, voice-enhanced conversations with AI presents several 

architectural and technical challenges. Unlike static or pre-generated content, chatbot 

responses are typically generated dynamically, and in many cases, incrementally through 

streaming APIs. This means that a system aiming to synthesize speech from AI-

generated text must be capable of handling partial or segmented content, initiating audio 

generation while the conversation is still ongoing. Achieving low-latency speech 

synthesis in such a streaming environment, while ensuring proper sequencing and voice 

consistency, requires a highly optimized and parallelized infrastructure. 

Equally important is the need for scalability and responsiveness. In a mobile context, 

users expect near-instantaneous feedback, both in textual and audio forms. The system 

must be designed to support multiple concurrent conversations, with efficient 

management of resources, minimal delays, and accurate alignment between spoken and 

written output. These requirements are particularly critical when targeting general-

purpose use cases such as digital personal assistants, educational tutors, or voice-based 

customer service agents. 

To address these needs, we propose a modular and high-performance architecture that 

combines OpenAI’s advanced text generation capabilities with Azure’s high-quality text-

to-speech (TTS) service, orchestrated through a distributed backend infrastructure that 

supports real-time, sentence-level audio synthesis. 

 

2. Related work 
 

The field of conversational AI has experienced rapid growth over the last decade, 

driven by advances in natural language processing (NLP), deep learning, and 

speech synthesis technologies. This section reviews key developments in 

conversational agents, text-to-speech systems, multimodal interfaces, and 

architectural solutions for real-time AI applications. 

 

2.1 Conversational Agents and Language Models 

 

Traditional chatbots were based on rule-based or retrieval-based approaches, which 

relied on predefined scripts or matching heuristics to simulate dialogue (e.g., 

ELIZA, AIML-based systems). While these systems had limited flexibility, they 

laid the groundwork for more dynamic approaches. 

Recent years have seen the emergence of generative language models such as 

OpenAI's GPT-3 and GPT-4, Google's PaLM, and Meta's LLaMA, which leverage 

transformer architectures to produce highly contextual and coherent responses. 

These models have demonstrated state-of-the-art performance on a wide range of 

NLP benchmarks and are now widely used in research and commercial 

applications. The ability to stream responses token-by-token from these models 

(e.g., via OpenAI’s streaming API) allows for more responsive interaction, a 

feature crucial for real-time applications. Notable platforms such as ChatGPT, Bing 

Chat, and Claude AI have demonstrated the potential of these models in production 

environments. However, these platforms typically focus on desktop or web use 

cases, and often do not provide audio synthesis as an integrated feature, especially 

not in a streaming context. 
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2.2 Text-to-Speech Synthesis (TTS) 

 

Text-to-speech systems have evolved from concatenative and parametric models to 

neural architectures. WaveNet, developed by DeepMind, introduced a new 

paradigm in speech synthesis by producing natural-sounding audio using deep 

generative models. Building upon this, commercial services such as Microsoft 

Azure’s Neural TTS, Google Cloud Text-to-Speech, and Amazon Polly now offer 

high-quality, low-latency speech generation in multiple languages and voices. 

Azure's TTS in particular is designed for scalable cloud deployments and provides 

SDKs that support parallel processing. Previous works (e.g., [1], [2]) have shown 

the advantages of multithreaded TTS pipelines in reducing latency for dynamic 

dialog generation. However, many implementations assume pre-processed, non-

streamed text input, limiting their real-time applicability in streaming LLM 

contexts. 

 

2.3 Multimodal and Assistive Applications 

 

Several systems have been developed to support multimodal interaction. For 

example, Google Assistant and Apple Siri combine speech recognition, NLP, and 

TTS to offer a fully voice-driven interface. Similarly, research systems such as 

Microsoft’s XiaoIce and Facebook’s BlenderBot integrate vision, speech, and 

language capabilities to create engaging interactions. 

While these systems provide advanced capabilities, they are generally closed-

source or tightly integrated with proprietary ecosystems. Moreover, they do not 

provide modular backend architectures that can be independently deployed or 

customized, limiting their use in research and domain-specific applications. 

In the accessibility domain, multimodal systems have shown substantial benefits 

for users with disabilities. The use of text-plus-audio interaction has been found to 

improve comprehension for users with dyslexia [3], and to provide essential 

support for visually impaired users navigating digital content [4]. However, 

integrating this functionality into custom mobile applications still requires 

significant engineering effort. 

 

2.4 Real-Time Streaming Architectures 

 

Real-time NLP systems require low-latency communication between various 

components, especially when handling streaming data. Several studies (e.g., [5], 

[6][11]) have explored the use of WebSockets and microservice-based designs to 

achieve scalability and responsiveness in AI-driven systems [12][13]. 

Recent work on streaming LLM integration (e.g., [7]) demonstrates the feasibility 

of parsing token streams into semantically meaningful segments in real time. 

However, few studies have addressed the challenge of synchronizing such dynamic 

text generation with concurrent, parallel TTS synthesis. 

While substantial research has been done in the domains of conversational AI, 

TTS, and multimodal applications, the integration of real-time streamed language 

model output with parallel, sentence-based audio synthesis remains a relatively 

unexplored area. Our work addresses this gap by providing a modular, efficient 

architecture suitable for mobile deployment, with a focus on both user experience 

and backend scalability. 

 

 

3. Importance of Low-Latency Audio Conversion 
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Low-latency audio conversion plays a central role in the effectiveness and usability 

of multimodal conversational systems, especially those intended for mobile and 

real-time applications. In the context of AI-driven chatbots, where text responses 

are generated dynamically, the ability to transform those responses into natural-

sounding speech with minimal delay is critical for delivering a seamless and 

human-like user experience. This section outlines the functional and technical 

importance of minimizing audio synthesis latency and highlights its impact on 

perceived system responsiveness, user satisfaction, and accessibility. 

 

3.1 Real-Time Interaction and User Expectations 

Modern users expect conversational applications to respond almost 

instantaneously, particularly when they resemble human-to-human interactions. 

Any perceptible delay between the display of a chatbot’s text response and the 

corresponding voice playback can disrupt the flow of interaction and reduce user 

immersion. According to cognitive studies on dialogue systems, latencies above 

300–500 milliseconds are often noticed by users, while latencies above 1 second 

can result in frustration or abandonment. 

In applications like virtual assistants, language tutors, or assistive technologies for 

visually impaired users, low-latency audio feedback is essential. These users rely 

heavily on audio output not just as an optional feature, but as the primary means of 

consuming content. Therefore, ensuring that synthesized audio is delivered 

promptly after the text is generated is not a mere enhancement—it is a core 

usability requirement. 

 

3.2 Audio Conversion as a Parallel Process 

One of the main challenges in low-latency systems is the inherently sequential 

nature of text generation, especially when models like OpenAI’s GPT are used in 

streaming mode, producing output token by token. This makes it difficult to wait 

for the full response before initiating audio synthesis without significantly delaying 

the voice output. To mitigate this, the system must adopt a sentence-level 

streaming strategy, where partial responses are segmented into sentences and sent 

immediately for audio processing. 

Low-latency audio conversion thus becomes a pipeline problem: as soon as a 

complete sentence is available, it should be synthesized and returned in parallel 

with the ongoing text generation. The faster each sentence can be converted to 

audio, the more natural and responsive the interaction becomes. This architecture 

imposes strict demands on the audio synthesis pipeline, which must be designed 

for concurrency, parallelism, and thread-safe sequencing to ensure that audio 

segments are processed and returned in the correct order without delay. 

 

4. System Architecture 

 

In any complex software system, the architecture serves as the foundational blueprint 

that governs how components interact, scale, and perform. For real-time, multimodal 

applications—such as the mobile chatbot system described in this paper—architectural 

design is not just a matter of organization; it directly impacts critical system qualities 
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including performance, responsiveness, scalability, reliability, maintainability, and user 

experience. The success of such a system depends not only on the capabilities of 

individual technologies like OpenAI's language models or Azure's Text-to-Speech (TTS) 

service, but also on how effectively these technologies are integrated and orchestrated at 

the architectural level.  

 

Figure 1. System Architecture Diagram 

The architecture of the system is composed of the following core components: 

● Mobile Frontend: Built using Flutter, the mobile app provides the user 

interface for text/audio input and audio playback. 

● Node.js Backend: Central manager which contains several modules 

(Learning, Payment, etc) to handle application logic. It manages OpenAI 

requests in streaming mode and coordinates audio response generation. 

● OpenAI Integration: Utilizes the OpenAI API with streaming enabled to 

capture responses token-by-token. 

● Audio Service (Azure TTS): TTS service from Azure’s neural voice models. 

● Audio Service (Google TTS): TTS service from Google’s neural voice 

models. 

● Audio Conversion Service: This module provides a high speed, parallelized 

TTS audio conversion 

● WebSocket Server: Maintains low-latency, bidirectional communication 

between the backend and audio service. 

● Database: MySQL relational database to server application logic 

● Redis: used for NodeJS side worker threads 

 

The primary goal of the application is to support English teaching for students with 

audio content as well. This paper deals only with the technical background. The 

normal flow of application usage is the following: users open the app and initiate a 

conversation with the AI assistant. The application contains a variety of pre-
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integrated topics within the domain of English learning, but it also provides a so-

called "Ask Anything" mode using a highly customized english learning assistant 

prompt, where users can freely interact with the assistant. 

It is crucial to clearly distinguish between these different areas, as this is the only 

way to provide the AI model with a precise — sometimes quite lengthy — prompt 

that enables fine-tuning. For example, to ensure that responses remain within the 

proper domain, that the response length stays within acceptable bounds, and so on. 

 

Users can communicate with the AI assistant either via text or voice. These 

messages are sent to the NodeJS backend over a WebSocket connection. 

WebSockets are preferred over standard HTTP requests because they allow for a 

bidirectional communication channel between client and server [9]. This enables 

the efficient and immediate delivery of responses from OpenAI, which operates in 

streaming mode. Further details on this are discussed in later sections. 

The NodeJS-based backend contains several modules responsible for the 

application's functionality. This article focuses exclusively on the OpenAI 

integration and the audio processing pipeline. After initial filtering and 

transformation, user requests arriving at the backend are forwarded to the OpenAI 

service, which processes them in the aforementioned streaming mode. 

The data arriving from OpenAI is collected by the backend and sent sentence-by-

sentence to the audio service via a dedicated WebSocket connection. The audio 

service filters the incoming sentences and forwards them in a parallelized 

environment to Azure/Google TTS services for audio conversion. In this context, 

parallelization means that the processing of every sentence is performed by a 

separated thread. Threads are making audio conversion requests to Azure/Google 

TTS and waiting for the response. Our implementation uses mainly Azure for audio 

conversion, but for some specific languages, Google TTS is used for better results. 

From the technical perspective, the process for generating audio from text is the 

same for both providers. 

Since the audio conversion time of the sentence-segmented OpenAI responses can 

vary, an important challenge arises: sending back the completed audio parts to the 

backend in the correct order. While waiting for the audio responses, the backend 

already starts sending the streamed text segments back to the user via WebSocket, 

thereby improving the user experience. 

In order for the above architecture and operation to function efficiently, an 

appropriate cloud infrastructure is essential. Viable alternatives include Amazon 

AWS, Google Cloud [10], UpCloud, etc. The current architecture was developed 

using Google Cloud. 

 

5. Implementation Details 

Modern AI applications increasingly rely on a composition of distributed services, 

often provided by third-party cloud APIs. In our case, natural language generation 

(via OpenAI) and speech synthesis (via Azure) are both handled by external 

providers. Each service introduces latency, rate limitations, and failure modes that 

must be managed explicitly. A well-designed architecture provides the 

coordination layer that: 

 

●     Buffers and synchronizes partial responses, 
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●     Handles service-specific constraints and retries, 

●     Enables parallelism without sacrificing ordering or context, 

●     Decouples responsibilities across services and components. 

 

Failing to properly design this coordination layer can result in bottlenecks, 

redundant processing, cascading failures, and unpredictable user-facing delays. In 

our system, the architectural separation between the backend and audio services, 

combined with session-specific WebSocket channels and multithreaded processing, 

ensures that each sentence is treated as a unit of work that can be routed, processed, 

and sequenced independently. 

The subsequent sections have presented all aspects of the implementation in detail. 

 

 

 

5.1. OpenAI Streaming Mode for Text Generation 

 

Due to the goal and nature of the project, it was necessary to choose a modern AI 

model capable of fully implementing the personal assistant functionality across 

various domains. In the context of this project, we chose the widely popular 

OpenAI. Naturally, the decision was also influenced by prior experience with using 

the OpenAI model. 

OpenAI's large language models (e.g., GPT-3.5, GPT-4) are capable of producing 

coherent and contextually rich natural language responses from user prompts [7]. A 

key feature relevant to real-time conversational applications is the streaming mode, 

which allows for incremental delivery of generated tokens over a persistent 

connection, rather than waiting for the entire response to be computed before 

transmission. 

In streaming mode, the model begins emitting output tokens (typically words or 

subword units) as soon as the generation process starts. This is accomplished 

through an HTTP-based Server-Sent Events (SSE) protocol, where each token is 

transmitted as a data frame as it becomes available. The client can thus consume 

partial results in real time, enabling immediate user feedback. 

 

Advantages for Real-Time Applications 

● Reduced Latency: Users can see the response unfold gradually, which 

significantly improves perceived responsiveness. This is particularly 

important in spoken interfaces where audio playback can begin before the 

full message is generated. 

● Progressive Processing: The application backend can parse and process 

parts of the response as they arrive (e.g., sentence-by-sentence), allowing for 

concurrent actions like text-to-speech conversion. 

● Improved UX: Streaming mimics human conversation more naturally than 

fully buffered responses, which can appear delayed or abrupt. 

 

5.1.1 Token Framing and Response Format 
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The Node.js backend initiates a streaming request to the OpenAI API when a user 

submits a message into the App. OpenAI responds in a token framing format. 

Token framing refers to the structured delivery of output one token at a time over a 

persistent connection using the Server-Sent Events (SSE) protocol. Each token is 

encapsulated in a small JSON payload known as a data frame, which allows 

developers to handle the generation stream incrementally. 

 

Structure of a Token Frame: 

 

data: {"choices":[{"delta":{"content":"Hello"},"index":0}]} 

data: {"choices":[{"delta":{"content":"!"},"index":0}]} 

data: [DONE] 

 

Hundreds of token frames may arrive from the OpenAI server in response. These 

are collected by the backend and then forwarded to the audio service in the 

appropriate format. 

 

5.1.2 Real-Time Parsing and Aggregation 

To achieve efficient, low-latency audio generation in a multi-user mobile 

application, our system is designed to exploit true parallelism by coupling 

OpenAI's streamed token output with a sentence-level segmentation and 

dispatch mechanism. This design choice is essential due to the sequential nature 

of token generation from large language models, where complete responses are 

produced incrementally. OpenAI's tokens arrive sequentially and represent partial 

linguistic units such as subwords, words, punctuation, or whitespace. In order to 

transform the generated text into a suitable input for text-to-speech (TTS) 

synthesis, the backend system aggregates these tokens into complete sentences 

using runtime heuristics. Sentence boundaries are detected primarily through the 

occurrence of terminal punctuation symbols (e.g., ., !, ?) combined with syntactic 

context rules to ensure linguistic completeness. 

Once a sentence boundary is identified, the sentence undergoes a filtering process 

that removes non-speakable artifacts such as: 

 

●     Emojis  

●     Special symbols (e.g., #, @, ~), 

●     Markdown formatting characters (e.g., *, _), 

●     Control characters and unsupported Unicode blocks. 

 

This ensures that the resulting audio stream remains semantically relevant and 

phonetically clean for real-time auditory presentation. For example Google’s TTS 

service is sensitive and gives 403 HTTP errors for non-normal sentences like 

empty spaces, underline character, etc. 

 

5.2. Text-to-Speech Audio Service 

 

Because NodeJS is not specifically designed for parallelism, it quickly becomes 

clear that if we want to make the most of the parallelization opportunity and build 



 

 

 

54             P. Mileff 

 

 

an audio service based on truly parallel processing, it is advisable to put the service 

in an independent software component, as we called Audio Service. Our 

implementation was based on Java technology.  

The Audio Service is designed as a multithreaded daemon that listens for incoming 

WebSocket connections from the backend. Each connection represents a unique 

user session, allowing the service to isolate and manage sentence queues per 

session. 

 

 

 
Figure 2. Parallel audio processing architecture 

So the normal way of communication is the following: the user asks something 

from the application. The application communicates with the backend, prepares 

and makes a request towards OpenAI. OpenAI gives responses (token frames) as 

streaming mode, the backend collects sentences from these. As one sentence is 

identified and ready, it is immediately sent to the audio server for processing and to 

the client mobile app, while the remaining part of the OpenAI streaming is 

continued to be parsed. The end of the OpenAI response is identified by the end 

token signal (data: [DONE]). 

During this process the backend listens to answers from the audio server as well in 

order to apply true parallelism. Because if the OpenAI answer is long for the user 

question, and the first sentence was short, it is not uncommon that the audio of the 

first sentence is already ready while OpenAI still sends the remaining text part to 

the backend. So we can only reach a good user experience, if the backend 

immediately sends the ready audio parts back to the client while the remaining will 

come later.  

Why collecting sentences is a good idea: we need to provide some basic unit for the 

TTS services which is large enough to convert and small enough to not have ―long‖ 

conversion time at Azure/Google. 

 

5.2.1 Serving multiple client request parallel via websocket 

 

One of the key problems was to eliminate every bottleneck from the whole process 

and keep implementation as simple as possible. To achieve maximum performance, 
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we must think in terms of threads. Since the input data arriving at the audio service 

always comes as separate sentences—each representing an independent processing 

unit for the TTS providers—this naturally forms the basis for dividing the 

workload into processing units. 

WebSocket server implementations generally operate in a very similar manner, 

offering a few functions to the programmer for handling the socket. These typically 

include: onStart, onOpen, onClose, onMessage, and onError. Nevertheless there 

are synchronous and asynchronous WebSocket implementations. In a synchronous 

WebSocket implementation, the communication flow is blocking. When a message 

is received or sent, the thread waits until the operation is complete. In an 

asynchronous implementation, messages are sent and received using non-blocking, 

event-driven mechanisms. The server can perform other tasks while waiting for I/O 

operations to complete. 

The first identified bottleneck was the backend side, because Node.js is 

traditionally known for its single-threaded, event-driven architecture, built on top 

of the V8 JavaScript engine and the libuv library [8]. This design excels at handling 

I/O-bound tasks using non-blocking asynchronous operations. However, CPU-

bound operations can block the main event loop, degrading overall system 

responsiveness. So when many users communicate with the AI assistant there is 

only one channel towards OpenAI and the Audio service. 

To address this limitation, Node.js introduced the worker_threads module in 

version 10.5.0 (and stabilized in 12.x), enabling developers to offload CPU-

intensive or blocking operations to separate threads. 

How worker threads are used in our environment: Each user request, which needs 

OpenAI answer, is handled by worker threads. Every user request opens a new 

websocket connection to the Audio service for sending the sentences. When the 

sentences are ready, the backend closes the websocket connection. So many 

channels can be open towards the Audio Service, which has a huge positive 

performance impact. And besides, this approach helps to keep the Audio Server 

implementation more simple, because all the sentences belonging to one user 

request which needs to be converted to audio are handled within one separated 

websocket connection. This makes it easier to handle threads and preserve proper 

audio parts order. 

 

5.2.2 Parallel Audio Processing 

 

Our parallel audio processing implementation does not use any library for handling 

or scheduling threads. Everything is built from scratch. The websocket server 

works like a Singleton. Even though every user request has a unique websocket 

connection from the backend, the server has only one main controller class. This 

means that any array/structure is needed for handling audio processing threads to 

be a global array.  We introduced a global Vector array for incoming TextStreams.  

TextStream class is a structure, which holds all the convertible text input parts 

(sentences) from a unique user. It has a unique clientID which identifies the client. 

So if many users have a conversation with the AI assistant, there are multiple 

connections from the backend to the audio service. Sentences are coming 

continuously from the backend because of the OpenAI streaming mode and based 

on the clientID, the websocket server knows that the newly incoming text belongs 

to which structure in the global array. 
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When a message arrives to the websocket server, the server creates a new thread in 

order to make a non-blocking environment and allow the server to handle more 

messages. This thread manages the audio conversion process. The audio 

conversion starts with a text filtering process and after that the preferred TTS 

service provider is chosen based on the language. Our implementation supports 

English and Indonesian language using Google TTS for Indonesian language and 

Azure TTS for English conversion. 

By assigning each sentence to a dedicated thread, the system allows multiple 

sentences to be processed concurrently. This design leverages cloud concurrency 

limits efficiently and ensures maximum throughput.  

 

5.2.3 Audio Ordering and Delivery 

 

Our goal was to improve user experience as much as possible. For example, the 

easiest way would be to wait for all the text input from OpenAI and convert them 

sentence by sentence and send them back to the client. But with this approach there 

will be a longer delay between the arriving text and the arriving audio on the user 

side. So, a more appropriate, more satisfactory approach is, to send back 

immediately the audio part when it is ready. However, this resulted in an additional 

problem: ensuring correct audio order which comes from the asynchronous nature 

of audio TTS processing. 

Example: there is only one user, which asks something more complicated from the 

AI assistant and the test result from OpenAI has multiple sentences. Longer 

sentences may take more time to synthesize than a shorter one, even if it was sent 

earlier. In this case, we cannot send back the finished audio immediately, because 

the finished sentence is not the next in order. 

In our implementation, each TextStream (identified by clientID) structure has a text 

part array representing the sentences. The input text elements in this array are in 

order, because as they come from the backend, they are added to the end of this 

array. In order to keep proper audio ordering in the sending back process, we need 

a special algorithm to check if there is any part ready to send back. 

 

In order to control the proper audio ordered communication, we have two options: 

1) Introduce some kind of manager thread globally, which always checks the 

sendable audio parts. It runs in short time periods. Thread safety is very 

important in this solution, because of getting status information from other 

running threads. 

2) Build control logic into the working threads: every audio processing thread 

has a built in option for checking audio ready parts. The algorithm reads 

the array of the input texts (which is already in order because it is coming 

from the backend) and checks if there is anything to send back to the 

backend.  

 

In our implementation the second option was chosen. The algorithm to determine 

to send anything back is the following: 

 

Function isAnythingToSend() -> TextPart or null 

    Lock this function to ensure thread safety (synchronized) 
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    Set minimumNotSentIndex to a very large number (e.g., 99999) 

 

    For each index i from 0 to size of textParts - 1: 

        If textParts[i] is not already sent: 

            If i < minimumNotSentIndex: 

                Set minimumNotSentIndex = i 

 

    Set audioReadyIndex to a very large number (e.g., 89999) 

 

    For each index i from 0 to size of textParts - 1: 

        If textParts[i] is audio ready AND not already sent: 

            If i < audioReadyIndex: 

                Set audioReadyIndex = i 

 

    If minimumNotSentIndex == audioReadyIndex: 

        Return textParts[audioReadyIndex] 

 

    Return null 

 

In this algorithm we look for the text part, where the audio is ready, it is not sent 

already and it is the next in the order. By this method the problem is not solved 

fully, because if the sendable audio part is not itself (the same thread), then the last 

audio part will not be sent to the backend. Therefore an extension is needed, which 

makes possible to handle the audio ordering logic properly: 

 
// Websocket server onMessage function 
Function onMessage(connection, message): 

 

    // Parse incoming message 

    ParseMessage(message) 

 

    // Retrieve or create a text stream instance for this client 

    textStream ← addToGlobalStreamArray(message.clientId) 
 

    // Start a new background thread to process the request 

    Start new Thread ← run() { 
 

     // Processing request: filtering, send to TTS providers 

    processor.processRequest(textStream.latestSentence) 

 

        // Loop to send audio responses back in order 

        Repeat: 

            partToSend ← textStream.isAnythingToSend() 
 

            If partToSend is not null: 

                Print "Sending audio part [index] to client [clientId]" 

                connection.send(partToSend.responseData) 

                partToSend.markAsSent() 

                partToSend.clearMemory() 

        Until partToSend is null 

  } 

 

End function 

 

Because the socket server has a global array for tasks, the 

addToGlobalStreamArray() function has two functions: if the message is coming 
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from a client (clientID) that is not exist in the array, then it creates a new 

TextStream class for the client and add to the end of the array. If a TextStream with 

the clientID already existed in the array, then it gives the reference of this class 

back. It means that a new sentence has arrived for an existing client connection. 

This method ensures that the request from the same client uses the same 

TextStream class holding all the user related OpenAI answer sentences in one 

place. 

The last infinite loop is the heart of the audio ordering preserve and sending 

process. The loop is inevitable because even if the socket server gets the sentences 

from backend in a proper order, the audio conversion time can be different. 

Therefore, there may be cases where a later audio conversion in a queue is 

completed sooner than a sentence that arrived earlier from the backend. Let's take 

the following case: we have three sentences (from one client). The first one is the 

longest and the second one is shorter than the third. These three sentences mean 

three threads in the audio server. During the conversion the second sentence will be 

ready at first. The isAnythingToSend() function in the above algorithm will give 

back a NULL response, because we cannot send back the second sentence, while 

the first one is not ready yet. So the second thread is terminated. Let's assume that 

the audio conversion of the first sentence is finished. Now we have two sentences 

(1 and 2) ready. The infinite loop helps to send both sentences back, because the 

isAnythingToSend() function will give back the first sentence id (because it is ready 

now), which can be sent back. But because of the loop, the isAnythingToSend() 

function runs again and identifies that the second is also ready, so it can be also 

sent back. After sending back the two audio parts, the first thread terminates. 

Finally when the third part is ready, the isAnythingToSend() function will give back 

the third part ID, which is sendable immediately and thread terminates. 

 

5.2.4 TTS provider limitations 

 

Cloud-based Text-to-Speech (TTS) services, such as those provided by Microsoft 

Azure Cognitive Services and Google Cloud Text-to-Speech, offer high-quality, 

multilingual, neural voice synthesis capabilities. These platforms enable developers 

to convert textual information into natural-sounding speech with minimal local 

computation. However, in real-time or high-throughput applications—such as 

chatbots responding with audio in parallel—these services impose rate limits and 

architectural constraints that must be carefully managed. 

In our case we had a 100 request / minute / project rate limit on both providers. It is 

obvious that if 50 users are using the application simultaneously and every user has 

at least 2 sentences answer from the OpenAI, then we are in trouble, the rate limit 

was reached easily. To overcome this the following trick was made. 

Both providers allow to create more projects and limitations are regarded to 

projects. Based on this, the idea was to make several projects on both providers. 

Each project is identified by an unique API key. If we make a simple algorithm, 

which rotates the API keys during audio conversion, it will give enough time 

between the requests to not run into rate limitations. Of course this method is not 

enough to handle thousands of users simultaneously, that needs unique pricing 

from providers. 

In our implementation we used a simple ―round-robin‖ like algorithm to rotate 

between keys. Every TTS service request is performed with another key. 32 

projects were created on both providers. If we rotate keys between them, it pushes 
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the rate limit (32*100 = 3200 simultaneous requests) far enough to make a usable 

mobile application. Maybe a more intelligent solution can be the following: if we 

count the request numbers on each project / minute, then we know when we reach 

the rate limit. A smart algorithm can predict the usage before reaching the rate limit 

and can delay the audio conversion in a given little amount of time to not reach the 

limit. Based on the current number of simultaneous users the algorithm could 

predict how much time delay it should insert before every TTS request. 

 

6.  Performance Evaluation 

To assess the efficiency, responsiveness, and scalability of our mobile application’s 

backend architecture, we conducted a series of performance evaluations focusing 

on the OpenAI streaming pipeline, the multithreaded audio generation service, 

and end-to-end latency experienced by users. The primary goal was to validate 

that the system supports real-time, parallel audio synthesis across multiple 

concurrent user sessions, while maintaining low latency and ordered delivery of 

audio responses. 

Properly testing such a complex system is not an easy task. As a first step, a Python 

based, multithreaded backed service test environment was built. The supported 

main functionalities of the environment are: 

● Configurable multithreaded requests: simulate parallel mobile app usage 

simulation by supporting parallelized requests to the backend. The 

number of simultaneous requests are configurable to help making wider 

test cases 

● Monitoring outgoing and incoming websocket messages: manage 

requests, pairing and validate messages, count and alert on missing parts 

● Measure different types of requests times: Summarize and visualize 

results. 

 

The tests were conducted on a Google Cloud-based machine running Debian 

Linux, equipped with a 4-core CPU and 8 GB of RAM. 

 

6.1. First approach 

 

Due to the complexity of the problem, the research progressed step by step. 

Initially, we aimed for a working but as simple a solution as possible, with the 

primary goal of gaining experience. The first, less efficient approach included the 

following architecture and characteristics: 

Backend side: In the initial implementation, user requests coming from the mobile 

app and are going towards OpenAI. The streaming mode responses returned from 

OpenAI were immediately sent back to the mobile application via a WebSocket 

connection. During this time, in the audio domain, however, the backend waits for 

all parts of the response to arrive from OpenAI, and then sends the complete 

response over a WebSocket to the Java-based audio service. In this solution, there 

was only a single permanent WebSocket connection between the backend and the 

audio service. 

Multithreaded Audio Service: The backend sends the full text, meaning it 

contains all the sentences intended as a response to the audio server. The main task 
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of the audio service was to split and filter the received text into individual 

sentences. These sentences were then sent to the TTS (Text-to-Speech) providers 

simultaneously. Each sentence was converted into a separate thread. Once all the 

audio files are ready controlled by our special algorithm (5.2.3), the service sends 

the result back to the backend and the backend sends the audio as whole back to 

the user. 

The test results obtained using the above solution are as follows: 

 

Table 1. First results with 50 simulated users. Time was measured in 

seconds. 

Statistics Min Max Average 

First message received 

duration 

6.95 71.44 35.84 

Last message received 

duration 

7.71 71.67 36.14 

First audio received 

duration 

13.23 74.52 41.48 

Last audio received 

duration 

13.39 74.65 41.57 

 

In the measurements, we recorded four cumulative data points: the average time of 

arrival for the first and last messages from OpenAI, and the average time required 

for the audio conversion of the first and last sentences. The results clearly show 

that performance is unconvincing, making the service nearly unusable even with 

just 50 users. 

 

6.2. Second approach 

 

In the second approach, our goal was to eliminate the bottleneck occurring with 

responses from OpenAI. While the previous solution waited for all incoming 

sentences before sending them in a batch for audio conversion, this version allows 

the backend to send the data to the audio server sentence by sentence. As the 

OpenAI streaming response continuously arrives, the backend sends the chunks 

immediately back to the client in order to have better user experience. But 

meanwhile, the backend forms sentences from the incoming text chunks, and these 

sentences are sent immediately to the audio service via a WebSocket channel. It is 

important to emphasize that, in this case, there is still only a single connection 

between the backend and the audio server. 

The test results achieved with this approach are as follows: 

Table 2. Second results with 50 simulated users. Time was measured 

in seconds. 

Statistics Min Max Average 
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First message received 

duration 

1.84 30.59 12.26 

Last message received 

duration 

2.57 31.02 12.54 

First audio received 

duration 

2.42 31.04 15.72 

Last audio received 

duration 

3.62 31.20 16.04 

 

Although the results have been visibly improved and the application may have 

become more usable, unfortunately, the performance is still not sufficient to ensure 

an optimal user experience. 

 

6.3. The final approach 

 

With the experience and measurements gained from the previously developed 

models, we were able to eliminate all bottlenecks. Based on this, the architecture 

presented in Section 5.2.1 was developed, according to which, for n number of 

users, n number of WebSocket connections are established between the backend 

and the audio server. On the backend side, worker threads support NodeJS 

parallelism, while on the Java audio side, the structure described in Section 5.2.3 

was implemented. In the current implementation, the performance improvement is 

primarily expected due to the advantages arising from multiple WebSocket 

connections. So the main new feature regarding the previous second approach is, 

that there are many numbers of websocket connections between the backend and 

the audio server. This number equals the number of clients who are using this part 

of the application. This modification removed the last bottleneck between the 

backend and the audio server. 

 

Table 3. Third results with 50 simulated users. Time was measured in 

seconds. 

Statistics Min Max Average 

First message received 

duration 

0.80 1.56 1.14 

Last message received 

duration 

1.72 2.71 2.13 

First audio received 

duration 

1.37 2.30 1.74 

Last audio received 

duration 

2.17 3.47 2.68 

 

It is clearly visible that the results far exceed those of previous attempts. Naturally, 

the architecture can be further scaled if needed. However, they also demonstrate 

that without proper parallelization, the results will not be satisfactory. With 
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parallelization, however, the system's complexity increases significantly. Tests 

were also conducted with 100-300 users, where naturally the numbers were 

somewhat higher. Nevertheless, the tests clearly show that a 4-core computer does 

not constitute a bottleneck, as the CPU load on the cores is not significant since 

most of the work is handled by the TTS providers. 

 

 

7. Conclusion 

In this paper, we presented the design and implementation of a mobile application 

that combines natural language understanding and speech synthesis to provide an 

interactive, multimodal user experience. The architecture leverages OpenAI's 

streaming API to deliver real-time, sentence-by-sentence text generation, and 

integrates a custom-built, multithreaded audio service that uses external TTS 

capabilities to generate speech output in parallel. A key technical contribution of 

our solution lies in its ability to perform true parallelism through the use of 

dedicated WebSocket channels for each user session. This design enables 

concurrent and scalable audio processing, avoiding the limitations of single-

threaded execution environments such as Node.js. Performance evaluations 

demonstrated that the architecture achieves low-latency response times, effective 

concurrency management, and high audio output consistency, even under increased 

user load. This work highlights the viability of integrating advanced AI services in 

mobile applications to deliver fluid and personalized user interactions. 
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