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Abstract:

This paper presents the design and implementation ofia,mebile application
that provides users with an interactive conyersational experience powered by
OpenAl's language model. A key feature of, this application is its real-time
text response streaming, coupled swith synchrenizedsaudio synthesis using
Azure's text-to-speech (TTS) servicesyThe architecture includes a Node.js
backend server that handles OpenAl communication in streaming mode,
sentence segmentation for response buffering, and a dedicated, multithreaded
audio service for efficient TTS conversion. Parallelized webSocket
communication enables high throughput,real-time coordination between the
backend and the audi0 service. This paper explores the system's architecture,
implementation  challenges, performance evaluation, and potential
applications in education, accessibility, and virtual assistants.
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1. Introduction

Over the past decade, the rapid advancement of artificial intelligence (Al) and natural
languagesprocessing (NLP) technologies has significantly redefined the landscape of
human—cemputer interaction. One of the most prominent breakthroughs in this domain is
the emergence of large-scale transformer-based language models, such as OpenAI’s GPT
series,Which are capable of generating coherent, context-aware responses to open-ended
userinput. These models have demonstrated state-of-the-art performance across a wide
variety of tasks, ranging from language translation and summarization to question
answering and creative content generation. Their availability via APIs has enabled
developers to integrate intelligent conversational capabilities into mobile and web-based
applications with relative ease.

Despite these advances, most Al-powered chat interfaces today remain largely text-
based. While textual interaction is sufficient for many scenarios, it is not always the most
effective or inclusive form of communication. In particular, voice-based interactions
offer substantial advantages in terms of accessibility, engagement, and naturalness.
Voice responses are crucial for users with visual impairments, for hands-free operation
in mobile environments, and for creating more immersive digital assistants that closely
mimic human conversational patterns. Furthermore, multimodal systems—those
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combining text, voice, and visual feedback—have been shown to enhance user retention,
learning outcomes, and emotional connection with the application.

However, delivering real-time, voice-enhanced conversations with Al presents several
architectural and technical challenges. Unlike static or pre-generated content, chatbot
responses are typically generated dynamically, and in many cases, incrementally through
streaming APIs. This means that a system aiming to synthesize speech from Al-
generated text must be capable of handling partial or segmented content, initiating audio
generation while the conversation is still ongoing. Achieving low-latency speech
synthesis in such a streaming environment, while ensuring proper sequencing and voice
consistency, requires a highly optimized and parallelized infrastructure.

Equally important is the need for scalability and responsiveness. In almobile context,
users expect near-instantaneous feedback, both in textual and audiexforms.“The system
must be designed to support multiple concurrent conversations, with efficient
management of resources, minimal delays, and accurate alignmentibetween,spoken and
written output. These requirements are particularly critical when targeting general-
purpose use cases such as digital personal assistants, educatienal tutors;¥or voice-based
customer service agents.

To address these needs, we propose a modular and high-performance architecture that
combines OpenAl’s advanced text generation capabilities with Azure’s high-quality text-
to-speech (TTS) service, orchestrated through a distributedsbackend infrastructure that
supports real-time, sentence-level audio synthesis.

2. Related.work

The field of conversational Althas experieneed rapid growth over the last decade,
driven by advances in<natural\ language processing (NLP), deep learning, and
speech synthesis technologies.), This section reviews key developments in
conversational ageénts, text-to-speech systems, multimodal interfaces, and
architectural solutions,for realtime Al applications.

2.1 Conversational Agents and Language Models

Traditienal chatbets were based on rule-based or retrieval-based approaches, which
relied ‘on~predefined scripts or matching heuristics to simulate dialogue (e.g.,
ELIZANAIML:based systems). While these systems had limited flexibility, they
laig,the groundwork for more dynamic approaches.

Recent \years have seen the emergence of generative language models such as
OpenAl's GPT-3 and GPT-4, Google's PaLM, and Meta's LLaMA, which leverage
transformer architectures to produce highly contextual and coherent responses.
These models have demonstrated state-of-the-art performance on a wide range of
NLP benchmarks and are now widely used in research and commercial
applications. The ability to stream responses token-by-token from these models
(e.g., via OpenAl’s streaming API) allows for more responsive interaction, a
feature crucial for real-time applications. Notable platforms such as ChatGPT, Bing
Chat, and Claude Al have demonstrated the potential of these models in production
environments. However, these platforms typically focus on desktop or web use
cases, and often do not provide audio synthesis as an integrated feature, especially
not in a streaming context.
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2.2 Text-to-Speech Synthesis (TTS)

Text-to-speech systems have evolved from concatenative and parametric models to
neural architectures. WaveNet, developed by DeepMind, introduced a new
paradigm in speech synthesis by producing natural-sounding audio using deep
generative models. Building upon this, commercial services such as Microsoft
Azure’s Neural TTS, Google Cloud Text-to-Speech, and Amazon Polly now offer
high-quality, low-latency speech generation in multiple languages and voices.
Azure's TTS in particular is designed for scalable cloud deployments and provides
SDKSs that support parallel processing. Previous works (e.g., [1], [2]) have shown
the advantages of multithreaded TTS pipelines in reducing latency for dynamic
dialog generation. However, many implementations assume pre-processed, non-
streamed text input, limiting their real-time applicability in streaming LLM
contexts.

2.3 Multimodal and Assistive Applications

Several systems have been developed to support multimedal interaction. For
example, Google Assistant and Apple Siri combine speech recagnition, NLP, and
TTS to offer a fully voice-driven interface. Similarly, research ‘systems such as
Microsoft’s Xiaolce and Facebook’s BlenderBot integrate vision, speech, and
language capabilities to create engaging interactions.

While these systems provide advanced capabilities, they are generally closed-
source or tightly integrated with proprietary eeosystems. Moreover, they do not
provide modular backend architecturestthat can“be independently deployed or
customized, limiting their use in research,and daemain-specific applications.

In the accessibility domain, multimodal Systems have shown substantial benefits
for users with disabilities. The'use of text-plus-audio interaction has been found to
improve comprehensioptfer._users with dyslexia [3], and to provide essential
support for visually impaired~users navigating digital content [4]. However,
integrating this fanctionality into” custom mobile applications still requires
significant engineering effort.

2.4 Real-Time StreamingArchitectures

Real-time NLP“systems require low-latency communication between various
componentsyespecially when handling streaming data. Several studies (e.g., [5],
[6][11])\have explored the use of WebSockets and microservice-based designs to
achieve scalability and responsiveness in Al-driven systems [12][13].

Recent wark on streaming LLM integration (e.g., [7]) demonstrates the feasibility
ofyparsing token streams into semantically meaningful segments in real time.
However, few studies have addressed the challenge of synchronizing such dynamic
text generation with concurrent, parallel TTS synthesis.

While substantial research has been done in the domains of conversational Al,
TTS, and multimodal applications, the integration of real-time streamed language
model output with parallel, sentence-based audio synthesis remains a relatively
unexplored area. Our work addresses this gap by providing a modular, efficient
architecture suitable for mobile deployment, with a focus on both user experience
and backend scalability.

3. Importance of Low-Latency Audio Conversion
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Low-latency audio conversion plays a central role in the effectiveness and usability
of multimodal conversational systems, especially those intended for mobile and
real-time applications. In the context of Al-driven chatbots, where text responses
are generated dynamically, the ability to transform those responses into natural-
sounding speech with minimal delay is critical for delivering a seamless and
human-like user experience. This section outlines the functional and technical
importance of minimizing audio synthesis latency and highlights its impact on
perceived system responsiveness, user satisfaction, and accessibility.

3.1 Real-Time Interaction and User Expectations

Modern users expect conversational applications to respond,..almost
instantaneously, particularly when they resemble human-to-human “interactions.
Any perceptible delay between the display of a chatbot’s text response,andythe
corresponding voice playback can disrupt the flow of interaction and reduce user
immersion. According to cognitive studies on dialogue .systemsp.latencies” above
300-500 milliseconds are often noticed by users, whilexlatencies above 1 second
can result in frustration or abandonment.

In applications like virtual assistants, language tutors,or assistive‘technologies for
visually impaired users, low-latency audio fgedback is essential. These users rely
heavily on audio output not just as an optional feature, but as the primary means of
consuming content. Therefore, ensuring that synthesized audio is delivered
promptly after the text is generated\is,not a “mere“enhancement—it is a core
usability requirement.

3.2 Audio Conversion as@ Parallel Process

One of the main challenges-in low-latency systems is the inherently sequential
nature of text generation, especiallyrwhen models like OpenAl’s GPT are used in
streaming mode;” preducing autput token by token. This makes it difficult to wait
for the full response before initiating audio synthesis without significantly delaying
the voicedoutput. To mitigate this, the system must adopt a sentence-level
streaming strategymwhere partial responses are segmented into sentences and sent
immediately foriaudio processing.

Low-latency,audio conversion thus becomes a pipeline problem: as soon as a
complete’sentence is available, it should be synthesized and returned in parallel
with the‘ongoing text generation. The faster each sentence can be converted to
audio, the more natural and responsive the interaction becomes. This architecture
imposes strict demands on the audio synthesis pipeline, which must be designed
for)concurrency, parallelism, and thread-safe sequencing to ensure that audio
segments are processed and returned in the correct order without delay.

4. System Architecture

In any complex software system, the architecture serves as the foundational blueprint
that governs how components interact, scale, and perform. For real-time, multimodal
applications—such as the mobile chatbot system described in this paper—architectural
design is not just a matter of organization; it directly impacts critical system qualities
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including performance, responsiveness, scalability, reliability, maintainability, and user
experience. The success of such a system depends not only on the capabilities of
individual technologies like OpenAl's language models or Azure's Text-to-Speech (TTS)
service, but also on how effectively these technologies are integrated and orchestrated at
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the architectural level.
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Figure 1. System Architecture Diagram

The architecture of the system is composed of the following core components:

Mobile Frontend: Builtyusing Flutter, the mobile app provides the user
interface for text/audioiAput and audio playback.

Node.js Baekend: Central »manager which contains several modules
(Learning, Payment, etc) to handle application logic. It manages OpenAl
requestsdmstreaming mode and coordinates audio response generation.

OpenAl Integration: Utilizes the OpenAl API with streaming enabled to
capture responsesttoken-by-token.

Audio Service’(Azure TTS): TTS service from Azure’s neural voice models.

Audio Service (Google TTS): TTS service from Google’s neural voice
models.

Audio Conversion Service: This module provides a high speed, parallelized
FTS audio conversion

WebSocket Server: Maintains low-latency, bidirectional communication
between the backend and audio service.

Database: MySQL relational database to server application logic
Redis: used for NodeJS side worker threads

The primary goal of the application is to support English teaching for students with
audio content as well. This paper deals only with the technical background. The
normal flow of application usage is the following: users open the app and initiate a
conversation with the Al assistant. The application contains a variety of pre-
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integrated topics within the domain of English learning, but it also provides a so-
called "Ask Anything" mode using a highly customized english learning assistant
prompt, where users can freely interact with the assistant.

It is crucial to clearly distinguish between these different areas, as this is the only
way to provide the Al model with a precise — sometimes quite lengthy — prompt
that enables fine-tuning. For example, to ensure that responses remain within the
proper domain, that the response length stays within acceptable bounds, and so on.

Users can communicate with the Al assistant either via text or voice. These
messages are sent to the NodeJS backend over a WebSocket connection.
WebSockets are preferred over standard HTTP requests because they allow. for a
bidirectional communication channel between client and server [9]. This enables
the efficient and immediate delivery of responses from OpenAl, which operates in
streaming mode. Further details on this are discussed in later sectians.

The NodeJS-based backend contains several modules sresponsible for the
application's functionality. This article focuses exclusively Jon the _@penAl
integration and the audio processing pipeline. After ‘initial filtering and
transformation, user requests arriving at the backend are forwarded to the OpenAl
service, which processes them in the aforementioned'streaming mode.

The data arriving from OpenAl is collected py the backend and sent sentence-by-
sentence to the audio service via a dedicated WebSocket connection. The audio
service filters the incoming sentences and \forwards them in a parallelized
environment to Azure/Google TTS services for audie’conversion. In this context,
parallelization means that the processing ofyevery sentence is performed by a
separated thread. Threads are ynaking audio conversion requests to Azure/Google
TTS and waiting for the response. Our implementation uses mainly Azure for audio
conversion, but for somegpecific languages, Google TTS is used for better results.
From the technical perspective; the process for generating audio from text is the
same for both providers.

Since the audio conversion time of the sentence-segmented OpenAl responses can
vary, an important challenge arises: sending back the completed audio parts to the
backend in‘the correct order. While waiting for the audio responses, the backend
already starts'sendinguthe streamed text segments back to the user via WebSocket,
therely,improving,the user experience.

In order foruthe “above architecture and operation to function efficiently, an
appropriate cloud infrastructure is essential. Viable alternatives include Amazon
AWS, Goegle Cloud [10], UpCloud, etc. The current architecture was developed
using Google Cloud.

5. Implementation Details

Modern Al applications increasingly rely on a composition of distributed services,
often provided by third-party cloud APIs. In our case, natural language generation
(via OpenAl) and speech synthesis (via Azure) are both handled by external
providers. Each service introduces latency, rate limitations, and failure modes that
must be managed explicitly. A well-designed architecture provides the
coordination layer that:

° Buffers and synchronizes partial responses,
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° Handles service-specific constraints and retries,
° Enables parallelism without sacrificing ordering or context,
° Decouples responsibilities across services and components.

Failing to properly design this coordination layer can result in bottlenecks,
redundant processing, cascading failures, and unpredictable user-facing delays. In
our system, the architectural separation between the backend and audio services,
combined with session-specific WebSocket channels and multithreaded processing,
ensures that each sentence is treated as a unit of work that can be routed, processed,
and sequenced independently.

The subsequent sections have presented all aspects of the implementationsn-detail.

5.1. OpenAl Streaming Mode for Text Generation

Due to the goal and nature of the project, it was necessary to choose a modern Al
model capable of fully implementing the personal‘assistant funcCtionality across
various domains. In the context of this project, we ehosethe widely popular
OpenAl. Naturally, the decision was also influenced by prior experience with using
the OpenAl model.

OpenAl's large language models (e.g.,'GPiI-3.5, GPT-4) are capable of producing
coherent and contextually rich natural languageresponses from user prompts [7]. A
key feature relevant to real-time conversational applications is the streaming mode,
which allows for incremental delivery of” generated tokens over a persistent
connection, rather than4waiting for the entire response to be computed before
transmission.

In streaming mode, the model begins emitting output tokens (typically words or
subword units) as seen as the generation process starts. This is accomplished
through angHTTR-based Server-Sent Events (SSE) protocol, where each token is
transmittéd ‘as, a data frame as it becomes available. The client can thus consume
partial results inyreal time, enabling immediate user feedback.

Advantageés for Real-Time Applications

e Reduced Latency: Users can see the response unfold gradually, which
significantly improves perceived responsiveness. This is particularly
important in spoken interfaces where audio playback can begin before the
full message is generated.

e Progressive Processing: The application backend can parse and process
parts of the response as they arrive (e.g., sentence-by-sentence), allowing for
concurrent actions like text-to-speech conversion.

e Improved UX: Streaming mimics human conversation more naturally than
fully buffered responses, which can appear delayed or abrupt.

5.1.1 Token Framing and Response Format
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The Node.js backend initiates a streaming request to the OpenAl APl when a user
submits a message into the App. OpenAl responds in a token framing format.
Token framing refers to the structured delivery of output one token at a time over a
persistent connection using the Server-Sent Events (SSE) protocol. Each token is
encapsulated in a small JSON payload known as a data frame, which allows
developers to handle the generation stream incrementally.

Structure of a Token Frame:

data: {"choices":[{"delta":{"content":"Hello"},"index":0}]}
data: {"choices":[{"delta":{"content":"!"},"index":0}]}

data: [DONE]

Hundreds of token frames may arrive from the OpenAl serverin ‘responsey These
are collected by the backend and then forwarded to the audio service Jin the
appropriate format.

5.1.2 Real-Time Parsing and Aggregation

To achieve efficient, low-latency audio [generationin_a‘ multi-user mobile
application, our system is designed to exploit truey parallelism by coupling
OpenAl's streamed token output with a“sentence-level segmentation and
dispatch mechanism. This design choi€e,is essential”due to the sequential nature
of token generation from large language models; where complete responses are
produced incrementally. OpenAl's tokens{arrive sequentially and represent partial
linguistic units such as subwords, words, punctuation, or whitespace. In order to
transform the generated text \into a suitable input for text-to-speech (TTS)
synthesis, the backend system-aggregates these tokens into complete sentences
using runtime heuristics. Sentence boundaries are detected primarily through the
occurrence of terminal punctuation symbols (e.g., ., !, ?) combined with syntactic
context rulesst@'ensure linguistic completeness.

Once a séntence boundary is identified, the sentence undergoes a filtering process
that removes non-speakable artifacts such as:

Emojis

Special symbols (e.g., #, @, ~),

Markdown formatting characters (e.g., *, ),
Control characters and unsupported Unicode blocks.

This ensures that the resulting audio stream remains semantically relevant and
phonetically clean for real-time auditory presentation. For example Google’s TTS
service is sensitive and gives 403 HTTP errors for non-normal sentences like
empty spaces, underline character, etc.

5.2. Text-to-Speech Audio Service

Because NodelS is not specifically designed for parallelism, it quickly becomes
clear that if we want to make the most of the parallelization opportunity and build
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an audio service based on truly parallel processing, it is advisable to put the service
in an independent software component, as we called Audio Service. Our
implementation was based on Java technology.

The Audio Service is designed as a multithreaded daemon that listens for incoming
WebSocket connections from the backend. Each connection represents a unique
user session, allowing the service to isolate and manage sentence queues per
session.

Conn 1
€ ——— |

i Conn 2 : :
D o Cllomt2 NodeJS Backend <> | Audio Service
« Comn3d o | \Wehsocket

Conn L - Senterce n
‘Conn 2 - Senkence 1
Conn 2 - SEntence m
Cionn 3 - Senkemice 1

L

Azure | Google TTS

Client 3 TJL A A A
D Conn 1 - Senkence 1

Figure 2. Parallel audio prgcessing architecture

So the normal way of communication is the following: the user asks something
from the application. The application communicates with the backend, prepares
and makes a request towards OpenAl. OpenAl gives responses (token frames) as
streaming mode“the backend collects sentences from these. As one sentence is
identified and_ready, itis immediately sent to the audio server for processing and to
the client amobile app, “while the remaining part of the OpenAl streaming is
continued to'be parsed. The end of the OpenAl response is identified by the end
token signal (data: [DONE]).

During, thisyprocess the backend listens to answers from the audio server as well in
order to\apply true parallelism. Because if the OpenAl answer is long for the user
guestion,\and the first sentence was short, it is not uncommon that the audio of the
first sentence is already ready while OpenAl still sends the remaining text part to
the, backend. So we can only reach a good user experience, if the backend
immediately sends the ready audio parts back to the client while the remaining will
come later.

Why collecting sentences is a good idea: we need to provide some basic unit for the
TTS services which is large enough to convert and small enough to not have “long”
conversion time at Azure/Google.

5.2.1 Serving multiple client request parallel via websocket

One of the key problems was to eliminate every bottleneck from the whole process
and keep implementation as simple as possible. To achieve maximum performance,
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we must think in terms of threads. Since the input data arriving at the audio service
always comes as separate sentences—each representing an independent processing
unit for the TTS providers—this naturally forms the basis for dividing the
workload into processing units.

WebSocket server implementations generally operate in a very similar manner,
offering a few functions to the programmer for handling the socket. These typically
include: onStart, onOpen, onClose, onMessage, and onError. Nevertheless there
are synchronous and asynchronous WebSocket implementations. In a synchronous
WebSocket implementation, the communication flow is blocking. When a message
is received or sent, the thread waits until the operation is complete. In an
asynchronous implementation, messages are sent and received using non-blocking,
event-driven mechanisms. The server can perform other tasks while waiting for 1/0
operations to complete.

The first identified bottleneck was the backend side, because “Node.js is
traditionally known for its single-threaded, event-driven architecturesbuilt,on<top
of the V8 JavaScript engine and the libuv library [8]. This deSign excels at handling
I/0-bound tasks using non-blocking asynchronous operatiens./However, CPU-
bound operations can block the main event loop;~degrading overall system
responsiveness. So when many users communicate/with the Alassistant there is
only one channel towards OpenAl and the Audigiservice.

To address this limitation, Node.js introddced the worker threads module in
version 10.5.0 (and stabilized in 12.x), enabling developers to offload CPU-
intensive or blocking operations to separate threads.

How worker threads are used in our envirenment: Each user request, which needs
OpenAl answer, is handled by worker thréads. Every user request opens a new
websocket connection to the“Audio servige for sending the sentences. When the
sentences are ready, thesbackend closes/the websocket connection. So many
channels can be open“towards the Audio Service, which has a huge positive
performance impact. And besidesy this approach helps to keep the Audio Server
implementation more simple, because all the sentences belonging to one user
request which needs‘to be converted to audio are handled within one separated
websocket gonnection. Thismakes it easier to handle threads and preserve proper
audio parts arder.

5.2.2 ParallelbAudio’Processing

Qur parallel audio processing implementation does not use any library for handling
or, scheduling threads. Everything is built from scratch. The websocket server
works like a Singleton. Even though every user request has a unique websocket
connection from the backend, the server has only one main controller class. This
means that any array/structure is needed for handling audio processing threads to
be a global array. We introduced a global Vector array for incoming TextStreams.
TextStream class is a structure, which holds all the convertible text input parts
(sentences) from a unique user. It has a unique clientlD which identifies the client.
So if many users have a conversation with the Al assistant, there are multiple
connections from the backend to the audio service. Sentences are coming
continuously from the backend because of the OpenAl streaming mode and based
on the clientlD, the websocket server knows that the newly incoming text belongs
to which structure in the global array.
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When a message arrives to the websocket server, the server creates a new thread in
order to make a non-blocking environment and allow the server to handle more
messages. This thread manages the audio conversion process. The audio
conversion starts with a text filtering process and after that the preferred TTS
service provider is chosen based on the language. Our implementation supports
English and Indonesian language using Google TTS for Indonesian language and
Azure TTS for English conversion.

By assigning each sentence to a dedicated thread, the system allows multiple
sentences to be processed concurrently. This design leverages cloud concurrency
limits efficiently and ensures maximum throughput.

5.2.3 Audio Ordering and Delivery

Our goal was to improve user experience as much as possible. Forsexampleithe
easiest way would be to wait for all the text input from OpenhAl.and convert them
sentence by sentence and send them back to the client. But with this.appreach there
will be a longer delay between the arriving text and the arriving, audigion the user
side. So, a more appropriate, more satisfactory/ approach is) 40 send back
immediately the audio part when it is ready. However,this resulted in an additional
problem: ensuring correct audio order whichomes fram the asynchronous nature
of audio TTS processing.

Example: there is only one user, which asks something /more complicated from the
Al assistant and the test result from ‘@penAl has"multiple sentences. Longer
sentences may take more time to synthesize'than,a shorter one, even if it was sent
earlier. In this case, we cannot send backthe finished audio immediately, because
the finished sentence is not the'next in order;

In our implementation, eachifextStream (identified by clientID) structure has a text
part array representing the sentenges, The input text elements in this array are in
order, because as<they come from/the backend, they are added to the end of this
array. In order to keep,properjaudio ordering in the sending back process, we need
a special algorithm to check if there is any part ready to send back.

In order. to controhthe proper audio ordered communication, we have two options:

1) Intreduce’some kind of manager thread globally, which always checks the
sendable audio parts. It runs in short time periods. Thread safety is very
important in this solution, because of getting status information from other
running threads.

2) Build control logic into the working threads: every audio processing thread
has a built in option for checking audio ready parts. The algorithm reads
the array of the input texts (which is already in order because it is coming
from the backend) and checks if there is anything to send back to the
backend.

In our implementation the second option was chosen. The algorithm to determine
to send anything back is the following:

Function isAnythingToSend () -> TextPart or null
Lock this function to ensure thread safety (synchronized)
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Set minimumNotSentIndex to a very large number (e.g., 99999)

For each index i from 0 to size of textParts - 1:
If textParts[i] is not already sent:
If i < minimumNotSentIndex:
Set minimumNotSentIndex = i

Set audioReadyIndex to a very large number (e.g., 89999)

For each index i from 0 to size of textParts - 1:
If textParts[i] is audio ready AND not already sent:
If i < audioReadyIndex:
Set audioReadyIndex = i

If minimumNotSentIndex == audioReadyIndex:
Return textParts[audioReadyIndex]

Return null

In this algorithm we look for the text part, where thg”audio is‘ready, it is not sent
already and it is the next in the order. By this method the problem”is not solved
fully, because if the sendable audio part is not itself (the same thread), then the last
audio part will not be sent to the backend. Therefore an‘eéxtension is needed, which
makes possible to handle the audio ordering logic properly:

// Websocket server onMessage function
Function onMessage (connection, messagg) :

// Parse incoming mesgage
ParseMessage (mesgage)

// Retrieve, or create a “text stream instance for this client
textStream' ¢ addToGlobalStreamArray(message.clientId)

// St@¥tya new background thread to process the request
Start new Thread &srun() {

// Progessing request: filtering, send to TTS providers
Processor.pfocessRequest (textStream.latestSentence)

// JLoop to send audio responses back in order
Repeat:
partToSend ¢ textStream.isAnythingToSend()

If partToSend is not null:
Print "Sending audio part [index] to client [clientId]"
connection.send(partToSend.responseData)
partToSend.markAsSent ()
partToSend.clearMemory ()
Until partToSend is null

End function

Because the socket server has a global array for tasks, the
addToGlobalStreamArray() function has two functions: if the message is coming
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from a client (clientlD) that is not exist in the array, then it creates a new
TextStream class for the client and add to the end of the array. If a TextStream with
the clientlD already existed in the array, then it gives the reference of this class
back. It means that a new sentence has arrived for an existing client connection.
This method ensures that the request from the same client uses the same
TextStream class holding all the user related OpenAl answer sentences in one
place.

The last infinite loop is the heart of the audio ordering preserve and sending
process. The loop is inevitable because even if the socket server gets the sentences
from backend in a proper order, the audio conversion time can be different.
Therefore, there may be cases where a later audio conversion in a queue is
completed sooner than a sentence that arrived earlier from the backend#Let's take
the following case: we have three sentences (from one client). The firstionedissthe
longest and the second one is shorter than the third. These threesSentences mean
three threads in the audio server. During the conversion the second\sentence Will,bée
ready at first. The isAnythingToSend() function in the above algorithm will give
back a NULL response, because we cannot send back the‘secongh.sentence; while
the first one is not ready yet. So the second thread is terminated. Let'slassume that
the audio conversion of the first sentence is finished. Now we hawve two sentences
(1 and 2) ready. The infinite loop helps to send, both sentences back, because the
isAnythingToSend() function will give back the"first sentence id/(because it is ready
now), which can be sent back. But because’ of the loop,“the isAnythingToSend()
function runs again and identifies that the seeond is also ready, so it can be also
sent back. After sending back the two audio“parts,the first thread terminates.
Finally when the third part is ready, the‘isAnythingToSend() function will give back
the third part 1D, which is sendable immediately and thread terminates.

5.2.4 TTS provider limitations

Cloud-based Text-to-Speech (TTS) services, such as those provided by Microsoft
Azure Cognitive Services and Google Cloud Text-to-Speech, offer high-quality,
multilingual, neural voiceisynthesis capabilities. These platforms enable developers
to convert textualyinformation into natural-sounding speech with minimal local
computation. However, in real-time or high-throughput applications—such as
chatbotsresponding”with audio in parallel—these services impose rate limits and
architectural constraints that must be carefully managed.

In‘eur case we had a 100 request / minute / project rate limit on both providers. It is
ebviousythat if 50 users are using the application simultaneously and every user has
atilleast’2 sentences answer from the OpenAl, then we are in trouble, the rate limit
was reached easily. To overcome this the following trick was made.

Both providers allow to create more projects and limitations are regarded to
projects. Based on this, the idea was to make several projects on both providers.
Each project is identified by an unique API key. If we make a simple algorithm,
which rotates the API keys during audio conversion, it will give enough time
between the requests to not run into rate limitations. Of course this method is not
enough to handle thousands of users simultaneously, that needs unique pricing
from providers.

In our implementation we used a simple “round-robin” like algorithm to rotate
between keys. Every TTS service request is performed with another key. 32
projects were created on both providers. If we rotate keys between them, it pushes
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the rate limit (32*100 = 3200 simultaneous requests) far enough to make a usable
mobile application. Maybe a more intelligent solution can be the following: if we
count the request numbers on each project / minute, then we know when we reach
the rate limit. A smart algorithm can predict the usage before reaching the rate limit
and can delay the audio conversion in a given little amount of time to not reach the
limit. Based on the current number of simultaneous users the algorithm could
predict how much time delay it should insert before every TTS request.

6. Performance Evaluation

To assess the efficiency, responsiveness, and scalability of our mobile application’s
backend architecture, we conducted a series of performance evaluations focusing
on the OpenAl streaming pipeline, the multithreaded audio generationiservice;
and end-to-end latency experienced by users. The primary goal was to validate
that the system supports real-time, parallel audio synthesis “across ‘multiple
concurrent user sessions, while maintaining low latency and ordered delivery of
audio responses.

Properly testing such a complex system is not an easy task. As afirst step, a Python
based, multithreaded backed service test environment was built;”The supported
main functionalities of the environment are:

e Configurable multithreaded requests: simulate parallel mobile app usage
simulation by supporting parallelized requests to the backend. The
number of simultaneous requests are ‘eonfigurable to help making wider
test cases

e Monitoring outgoing and inceming websocket messages: manage
requests, pairing andalidate messages, count and alert on missing parts

e Measure different types of requests times: Summarize and visualize
results.

The tests were conducted op a Google Cloud-based machine running Debian
Linux, equippediwith a4-core’CPU and 8 GB of RAM.

6.1.. First approach

Due to‘the complexity of the problem, the research progressed step by step.
Initially, we aimed for a working but as simple a solution as possible, with the
primarysgoal of gaining experience. The first, less efficient approach included the
following architecture and characteristics:

Backend side: In the initial implementation, user requests coming from the mobile
app and are going towards OpenAl. The streaming mode responses returned from
OpenAl were immediately sent back to the mobile application via a WebSocket
connection. During this time, in the audio domain, however, the backend waits for
all parts of the response to arrive from OpenAl, and then sends the complete
response over a WebSocket to the Java-based audio service. In this solution, there
was only a single permanent WebSocket connection between the backend and the
audio service.

Multithreaded Audio Service: The backend sends the full text, meaning it
contains all the sentences intended as a response to the audio server. The main task
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of the audio service was to split and filter the received text into individual
sentences. These sentences were then sent to the TTS (Text-to-Speech) providers
simultaneously. Each sentence was converted into a separate thread. Once all the
audio files are ready controlled by our special algorithm (5.2.3), the service sends
the result back to the backend and the backend sends the audio as whole back to
the user.

The test results obtained using the above solution are as follows:

Table 1. First results with 50 simulated users. Time was measured in

seconds.
Statistics Min Max Average

First message received 6.95 71.44 35.84
duration

Last message received 7.71 71.67 36.14
duration

First audio received 13.23 7452 41.48
duration

Last audio received 13.39 74.65 41557
duration

In the measurements, we recorded four cumulative data points: the average time of
arrival for the first and last messages from OpenAl, and the average time required
for the audio conversion of the first and last sentences. The results clearly show
that performance is uncenwvincing, making the service nearly unusable even with
just 50 users.

6.2. Second approagh

In the second approachy’our goal was to eliminate the bottleneck occurring with
responses from ‘OpenAl. While the previous solution waited for all incoming
sentences before sending them in a batch for audio conversion, this version allows
the backend to send the data to the audio server sentence by sentence. As the
OpenAl streaming response continuously arrives, the backend sends the chunks
immediately back to the client in order to have better user experience. But
meanwhile, the backend forms sentences from the incoming text chunks, and these
sentences are sent immediately to the audio service via a WebSocket channel. It is
important to emphasize that, in this case, there is still only a single connection
between the backend and the audio server.

The test results achieved with this approach are as follows:

Table 2. Second results with 50 simulated users. Time was measured
in seconds.

Statistics Min Max Average
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First message received 1.84 30.59 12.26
duration

Last message received 2.57 31.02 12.54
duration

First audio received 2.42 31.04 15.72
duration

Last audio received 3.62 31.20 16.04
duration

Although the results have been visibly improved and the application{may have
become more usable, unfortunately, the performance is still not sufficientto'ensure
an optimal user experience.

6.3. The final approach

With the experience and measurements gained from the previously developed
models, we were able to eliminate all bottlenecks. Based on this;/ the architecture
presented in Section 5.2.1 was developed, according“te,whieh, for n number of
users, n number of WebSocket connections|are established between the backend
and the audio server. On the backend side; workern threads support NodelS
parallelism, while on the Java audio side, the strueturé described in Section 5.2.3
was implemented. In the current implementatien, the performance improvement is
primarily expected due to the advantages arising from multiple WebSocket
connections. So the main new, feature regarding the previous second approach is,
that there are many numbers of websocket connections between the backend and
the audio server. This numberiequals the number of clients who are using this part
of the application.s This modification removed the last bottleneck between the
backend and the audio server.

Table 3. Third results with 50 simulated users. Time was measured in

seconds.
Statistics Min Max Average

First message received 0.80 1.56 1.14
duration

Lastymessage received 1.72 271 2.13
duration

First audio received 1.37 2.30 1.74
duration

Last audio received 2.17 3.47 2.68
duration

It is clearly visible that the results far exceed those of previous attempts. Naturally,
the architecture can be further scaled if needed. However, they also demonstrate
that without proper parallelization, the results will not be satisfactory. With
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parallelization, however, the system's complexity increases significantly. Tests
were also conducted with 100-300 users, where naturally the numbers were
somewhat higher. Nevertheless, the tests clearly show that a 4-core computer does
not constitute a bottleneck, as the CPU load on the cores is not significant since
most of the work is handled by the TTS providers.

7. Conclusion

In this paper, we presented the design and implementation of a mobile application
that combines natural language understanding and speech synthesis to provide an
interactive, multimodal user experience. The architecture leverages:,OpenAl's
streaming APl to deliver real-time, sentence-by-sentence text .generation, and
integrates a custom-built, multithreaded audio service that uses externakJTS
capabilities to generate speech output in parallel. A key technical ‘contribution of
our solution lies in its ability to perform true parallelism through.the sise of
dedicated WebSocket channels for each user session. “ThiS design enables
concurrent and scalable audio processing, avoiding the limitations of single-
threaded execution environments such as Node.js. PerformanCe evaluations
demonstrated that the architecture achieves low-lateney response times, effective
concurrency management, and high audio output consisteneys€ven under increased
user load. This work highlights the viability of integrating advanced Al services in
mobile applications to deliver fluid and personalized user interactions.
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