

74 D. Gönczi

Production Systems and Information Engineering

Volume 13 (1), pp. 74-83 74
doi: https://doi.org/10.32968/psaie.2025.1.7

ANALYSIS OF FUNCTIONALLY GRADED DISKS USING NEURAL

NETWORKS AND FINITE ELEMENT SOFTWARE

DÁVID GÖNCZI

University of Miskolc, Hungary

Institute of Applied Mechanics
david.gonczi@uni-miskolc.hu

Abstract. This paper investigates the thermomechanical analysis of disks
using deep neural networks and finite element software. The structural
components are made from functionally graded materials and are subjected to
combined mechanical and thermal loading. The neural network is trained
using a dataset obtained through simulations performed by programming a
commercially available finite element software Abaqus. Both the programs of
the finite element software and the neural network-based solver application
are written in Python programming language.

Keywords: neural networks, FEM, FGM, Abaqus scripting

1. Introduction

As technology advances, the demand for new materials with special properties is

also growing. In many cases, solving a problem requires a material that is

simultaneously hard, heat-resistant, or ductile. To address this issue, metals are

combined with other metals or non-metal components to improve their

characteristics. One method for producing such materials is to combine them in a

solid state, known as composite materials. In addition, functionally graded

materials (FGMs) have also emerged, where the sharp interfaces of composites

between the constituent materials are eliminated. Instead of a sharp internal

boundary, where failure might initiate, a graded (gradual) interface is formed,

providing a smooth transition from one material to another, thus improving

multiple characteristics of the material (such as the heat resistance).

Numerous studies have explored the mechanics of functionally graded materials

(FGMs) from different viewpoints. Several books offer solutions to linear elastic

problems in non-homogeneous structures [1, 2]. Additionally, a wide range of

research papers have introduced analytical, semi-analytical, and numerical

approaches for addressing thermomechanical problems in simple structural

components, such as hollow spherical bodies, cylinders, plates, beams, and disks.

The analytical and semi analytical methods work only for certain, simplified

problems, while generalized numerical techniques, such as finite element method

(FEM) can deal with a wide variety of problems. In the latter case the creation of

the models is time consuming and often expensive. Papers [3-5] present analytical

and semi-analytical techniques to solve simple thermoelastic problems of radially

graded disks.

https://doi.org/10.32968/psaie.2025.1.7
mailto:david.gonczi@uni-miskolc.hu

Analysis of FG disks using NNs and FE software 75

Neural networks (NN) can be efficient tools for the thermomechanical analysis of

structural elements and components. Research related to deep NNs is extremely

popular nowadays. Numerous articles address their applications as well as their

potential for further development. There are several papers, such as [6-9], that

focus on the development and optimization capabilities of deep neural networks

and radial basis function networks. Contributors [10] compared finite element

method and physics-informed neural networks to numerically solve different linear

and non-linear partial differential equations. In the study, considering the solution

time and accuracy, in most cases PINNs could not beat FEM, although in both

cases there are methods to improve the results. Papers, such as [11-13] applied

neural networks to different areas of finite element method, the constitutive

equations, equation of motions etc.

 This paper deals with the utilization of deep neural networks for the thermoelastic

design problems of discs made from functionally graded materials. Finite element

method, and consequently finite element software represent an effective and widely

used approach for solving such problems. However, it also comes with several

limitations. These include the time required to create and solve models, as well as

the often high cost of the software. In this work, we aim to explore possibilities for

reducing model preparation time (e.g., through the development of plugins) and to

investigate the potential of replacing finite element simulations with neural

networks.

Consider a disk made of functionally graded material. The problem is treated as

axisymmetric, and thus we work in cylindrical coordinate system (). To solve

the problem, we use the preprocessor and solver modules of the commercial finite

element software Abaqus CAE (complete Abaqus environment). Geometrically,

the disk is defined by its inner and outer radii (), while its thickness and half-

thickness are denoted by .

A schematic representation of the problem is shown in Fig. 1. Given the applied

loads and boundary conditions illustrated in the figure, the problem can be

considered axisymmetric and static. The structure is subjected to combined thermal

and mechanical loads. The disk is subjected to internal and external pressures

() at the inner and outer cylindrical boundary surfaces (), which

depends on the positional coordinate. Optionally we can apply body forces coming

from the rotation () of the disk. The thermal boundary conditions can be defined

either as a first-kind – e.g., prescribed temperature field, given surface temperatures

 – or as third-kind boundary conditions given by

the environmental temperature and the corresponding heat transfer coefficient .

The material parameters are the elasticity parameters of Hooke’s law (), the

coefficient of linear thermal expansion (), the thermal conductivity () and the

density ().

Figure 1. The sketch of the problem.

To create the neural network, Python programming language and Tensorflow are

used.

76 D. Gönczi

2. Simulation of the problem

Abaqus CAE (Complete Abaqus Environment) is one of the leading general-

purpose finite element software. It is widely used in the industry due to its ability to

solve a broad range of nonlinear engineering problems. In the early versions of

Abaqus, only the processor module was implemented, which was written in

Fortran. Over the years, the software architecture of the program have been

extended, modules have been developed and added to the core of the software.

These modules can be programmed using Python. Abaqus/CAE has a modular

architecture built around three main layers. The Graphical User Interface (GUI)

layer provides the interactive modeling environment, menus, and viewport for

geometry, meshing, and results visualization. It is implemented in C++ and

wrapped with Python hooks so that nearly every GUI action corresponds to an

equivalent Python command. The Application Programming Interface (API) layer

is the Python-based scripting interface. It exposes Abaqus objects (parts, materials,

loads, steps, jobs, etc.) and constants. The core solver layer is the underlying finite

element solvers (Standard, Explicit, CFD) are compiled executables that run

analysis jobs. CAE communicates with them by writing input files, launching

solver processes, and then reading the resulting output database (.odb) files for

post-processing. The Python interpreter embedded in Abaqus/CAE acts as the

“glue” between the GUI and solver, allowing full automation, customization, and

integration with external workflows.

The main types of files generated and used during simulation include the core input

file (.inp) for defining the problem for the processor, it’s the processor’s main

input. The subroutine files are required for the modification of the core equations

inside the processor module. Certain features are only accessible through these

files. The .cae files are the pre-processor files, essential for setting up tasks in the

pre-processor and they are version dependent. The output of the simulation is in

the .odb file, which is used by the postprocessor to evaluate the results. The python

script files can modify and control the simulation process. The preprocessor has a

built-in python interpreter, which can be utilized in several ways during simulation.

Abaqus provides a powerful Python scripting interface that allows full automation

and customization of finite element simulations.

Figure 2. The preprocessor of Abaqus CAE.

Analysis of FG disks using NNs and FE software 77

The version of Python embedded in Abaqus depends on the version, Abaqus 2017:

Python 2.7, Abaqus 2021: Python 3.7. The interpreter is integrated with Abaqus’

internal APIs for scripting and automation. The Python interpreter inside Abaqus is

sandboxed, meaning not all third-party packages are available by default. Abaqus

ships with a set of default Python packages, these include abaqus and

abaqusConstants, that are core Abaqus scripting commands/API, caeModules are

interfaces to Abaqus/CAE functions. The odbAccess package is used to access the

output database files. Numpy, sys and os packages are also included in modern

Abaqus versions. The Abaqus CAE system extends the default Python packages

with more than 500 classes (or objects) and numerous methods that operate

between them. These are grouped into three main categories: session, mdb, and

odb. Furthermore we can manually install packages into the Python interpreter of

Abaqus using the embedded python executable, but it is very tricky and limited.

Many users instead bridge Abaqus with external scripts, e.g., by exporting data as

.csv or .npy, processing it in external Python, then feeding it back. The API

architecture is object-oriented, covers geometry, meshing, loading, analysis,

postprocess. Ther are a lot of important use cases of python scripting. In case of

parametric modeling, Python scripting allows users to create geometric models and

meshes programmatically based on input parameters. This is especially useful when

analyzing families of parts with similar features. With batch job submission, scripts

can automate the setup and execution of multiple simulations. This is commonly

used in design studies, where many variants of a model need to be analyzed under

different conditions without manual intervention or in case of training data

generation for NNs. Users can employ Python to extract and process results from

Abaqus output databases. This is valuable when handling large numbers of

simulations or when consistent, customized result extraction is required across

studies. Optimization loops enable integration of Abaqus simulations into

optimization routines. For example, users can implement topology optimization or

parameter tuning by running Abaqus analyses in a loop, modifying input

parameters according to performance. Material modeling pipelines and GUI

Plugins can be used to automate complex workflows involving material behavior

evaluation. Additionally, users can extend the Abaqus/CAE interface itself by

developing custom GUI plugins that incorporate specific modeling tools and

shortening simulation time.

The main components of the simulation program include:

- specifying the initial configuration settings,

- generating auxiliary points required for geometry construction (e.g., edge

reference points, partition centers),

- drawing the planar cross-section to be revolved, followed by structured

meshing of the resulting full domain,

- creating sets of points, surfaces, and other set objects required for boundary

conditions, result evaluation, and additional modeling components,

- generating material properties and assigning them to sections, then assigning

sections and modeling considerations to the appropriate geometry,

- assembling the complete model,

- defining and configuring the main steps of the simulation,

- specifying loads and boundary conditions within the appropriate analysis steps,

- setting up the mesh structure, characteristics, and the applied element type

(which is CAX8RT in our case), and generating the mesh,

- preparing the simulation job and allocating computational resources,

- finalizing the job configuration and launching the simulation,

- waiting for the simulation to complete, then reading the result file,

- exporting the required data to a file, documenting the results, and logging any

78 D. Gönczi

errors encountered.

The curved edges of the shaped disk () in the considered plane are constructed

from straight line segments connecting parabolic points. This choice is also

justified by the fact that, when using linear isoparametric elements, the geometry is

interpolated accordingly (with line segments). The set of points defining this edge

was constructed in such a way that the lengths of the inner and outer cylindrical

edges of the disk can be used as parameters, denoted by

 , respectively. Thus, the equation of the parabola can be expressed as

follows:

(1)

where the governing parameter of the shape is denoted by . The material behavior

(and the approximation of material properties) is represented using homogeneous

sections. This means that, instead of using the continuous material property

distribution function , a discretized representation with constant values is

applied. For each section, the material property is calculated, for example, at the

center () of the corresponding subdomain, which means
 Naturally, the finer the discretization, the more accurately it

approximates the original continuous (graded) distribution. When the material

composition varies only in the radial direction, then the midpoint is given by

 . One of the most widely used one-dimensional

distribution function can be expressed as

 (2)

Naturally, more complex functions can also be implemented within the discussed

method. The temperature dependence of material properties can be incorporated

into our model, as this is supported by the material module. A custom function was

developed for computing the material properties, which calculates the values to be

assigned to each layer based on an expression provided as a string and the

corresponding parameter values. Using the given geometric parameters, the

program constructs the full geometry of the disk and partitions it into subdomains

according to the user-defined resolution. It then generates the appropriate boundary

conditions and loads accordingly. The problem is solved as a coupled thermoelastic

simulation. Our program can be implemented following an object-oriented

approach, but a procedural paradigm may also be applicable. When using object-

oriented programming, it becomes evident that even in cases with a minimal

number of parameters, the program must handle a significant amount of data

members. This should be considered during the design phase of the program, where

the use of a design pattern such as the Builder pattern is recommended. If multiple

simulations are to be executed with certain fixed parameter sets, it is advisable to

implement Director to facilitate the repeated use of those configurations. Figure 3

shows an example of the model of a disk displayed by the postprocessor. This two-

dimensional axisymmetric problem has multiple boundary conditions (traction:

purple arrows as pressure; thermal: yellow squares) and an additional kinematic

boundary condition at the symmetry plane of the disk indicated by the orange

triangles at the midplane along the horizontal direction.

Analysis of FG disks using NNs and FE software 79

Figure 3. Example for the geometry and boundary conditions of a disk created by the

program.

When the simulation is completed, the output database is used to get the variables

we need. These field variables can be the deformation (displacement field), the

strain or stress tensors or the equivalent stresses. The von Mises equivalent stress

distribution will be used for the main design function of the disk.

Based on the program created to solve these thermoelastic disk problems, we can

create plugins, which simplifies the model creation process. Abaqus provides

simple tools to build a very simple GUI and bind it to the script we created. Figure

4 shows an example of this GUI.

Figure 4. The plugin of the disk simulation in the preprocessor of Abaqus.

In the given example (Fig. 4), the user inputs the required data into the appropriate

fields and can start the simulation directly from the dialog window without having

to leave it. If modifications are needed, the user can generate the simulation files

(without selecting the 'Submit the Job' option), make the necessary edits, and then

run the simulation in the usual manner, which significantly shortens the solution

time.

3. Creating the neural network

For the disk problem, we aim to develop a deep neural network, which requires

generating a solution dataset across the space of input parameters

(). The material properties of the constituent materials

(metal: subscript 1 – ceramics: subscript 2) are

80 D. Gönczi

The constant values include the heat transfer coefficient of
 , and the ambient temperatures applied to the lower and upper curved

surfaces (), which are and , respectively. The

components of the functionally graded material are the same two materials defined

earlier in the benchmark disk example. We will only accept results where the

maximum stress does not exceed .

To implement this process, we can use the os package in the Python programming

language. Abaqus generates model files for each simulation, which we utilize

during the evaluation phase. However, these files are no longer needed once the

data has been extracted, so we may delete them while updating the working

directory. The results can be stored in a text file (e.g. in CSV format). Our program

should be designed to handle issues encountered during the simulation process, it

should raise an error when necessary and then proceeds to the next parameter

combination to be analyzed. Error messages may be collected and saved in a

separate text file. If the stress values exceed the allowable limit, the corresponding

parameter sets are logged in a third text file.

In addition, it is recommended to save the progress of the simulation (in case of a

crash, or termination due to software or simulation issues). The dataset we

generated was based on the following parameter combinations:

In the examined case, the simulation was run for a limited combinations of

geometric dimensions (for a specific product, the manufacturer generally uses only

predefined, usually standardized sizes). To create the NN, we used the packages

Panda, Sklearn and Tensorflow of Python. Multiple activation functions,

initialization methods were investigated. The best one was the activation function

be Selu with LeCun initialization in a fully connected network. To train the

network, Nadam optimizer was used. Let us investigate the prediction of the

maximum equivalent (von Mises) stress. We begin with a single-layer neural

network and gradually increase the number of layers. We investigated the ideal

number of neurons between 32 and 512. In the end, we decided to use 512 neurons

in every deep layer, and the training process was conducted over 100 to 300

epochs. The evolution of the error, expressed as MAE (Mean Absolute Error), is

illustrated in Figure 5. The error is in MPa, in case of 7 layers, its only .

In case of 3 layers, the error is only , which is only a few percent error

compared to the average , while the solution time is bit better, than the

original FE solver. If we bypass the Abaqus preprocessor and solve the problem

directly using the input file and the processor module, the solution time is shorter

than that of the neural network. However, the majority of the total simulation time

is consumed by model preparation and execution through the preprocessor.

Analysis of FG disks using NNs and FE software 81

Figure 5. The graph of mean absolute error - number of layers.

In our case, the goal was to predict 44 values corresponding to the equivalent (von

Mises) stresses calculated at specific nodes using finite element method. During

training, a callback method was used to save the best-performing models. The more

parameters we aim to calibrate in our case, the more epochs are typically required

for effective training. The training process of the 7-layer neural network is

illustrated in Fig. 6. In this case, the model's accuracy showed no significant

improvement after 230 epochs, with only a reduction in error over the

final 70 epochs, furthermore val_ denotes validation.

Figure 6. The training process of a 7-layer DNN.

4. Conclusion

In this paper, we investigated the simulation of functionally graded disks using

finite element software and deep neural networks. We presented a simulation

method, that considered parabolic disks made from functionally graded material.

The finite element software provides sufficient flexibility to handle a wide range of

thermoelastic problems, beyond the specific cases studied in this paper. We

explored how programming capabilities in Abaqus/CAE can be leveraged to reduce

solution time and developed a custom GUI plug-in tailored to the investigated

problem. The main steps of the solution process and the scripting possibilities

within the software were demonstrated. Using Abaqus/CAE, we generated a

dataset for a user-defined metal–ceramic functionally graded disk under specified

82 D. Gönczi

geometrical, traction, and thermodynamic boundary conditions. This dataset was

used to train a neural network, whose predictive accuracy was then evaluated. Even

with a relatively small number of layers, the deep neural network (DNN) was able

to predict the equivalent stress distribution with only a few percent error.

Moreover, the neural network’s solution time (not including the training time) was

shorter than that of the original finite element simulation when we include the

creation of the model and the utilization of the preprocessor, although the accuracy

of finite element software is always one of its key advantages.

References

[1] Hetnarski R. B., Eslami, M. R.: Thermal Stresses – Advanced Theory and Applications.

Springer, New York, USA, 2010, https://doi.org/10.1007/978-3-030-10436-8

[2] Shen H-S.: Functionally Graded Materials: Nonlinear Analysis of Plates and Shells.

CRC Press, London, UK, 2009.

[3] Gönczi D. (2024). Thermoelastic analysis of functionally graded anisotropic rotating

disks and radially graded spherical pressure vessels. Journal of Computational and

Applied Mechanics, 19 (2), 85-104., https://doi.org/10.32973/jcam.2024.004

[4] Mert Kutsal, S., & Coşkun, S. B. (2024). Analysis of functionally graded rotating

disks via analytical approximation methods. Mechanics Based Design of Structures

and Machines, 52(9), 6348-6367., https://doi.org/10.1080/15397734.2023.2277736

[5] Alavi, N., Nejad, M. Z., Hadi, A., & Nikeghbalyan, A. (2024). Exact

thermoelastoplastic analysis of FGM rotating hollow disks in a linear elastic-fully

plastic condition. Steel and Composite Structures, 51(4), 377-389.,

https://doi.org/10.12989/scs.2024.51.4.377

[6] Kovács L. (2025). Classification Improvement with Integration of Radial Basis

Function and Multilayer Perceptron Network Architectures. MATHEMATICS 13 : 9

Paper: 1471, 25 p., https://doi.org/10.3390/math13091471

[7] Mohammadi, M., Kouzani, A. Z., Bodaghi, M., & Zolfagharian, A. (2025). Inverse

design of adaptive flexible structures using physical-enhanced neural network. Virtual

and Physical Prototyping, 20(1). https://doi.org/10.1080/17452759.2025.2530732

[8] Kovács, L. (2025). Experiments with Neural Network for Optimization. In: Moldovan,

L., Gligor, A. (eds) The 18th International Conference Interdisciplinarity in

Engineering. Inter-Eng 2024. Lecture Notes in Networks and Systems, vol 1249.

Springer, Cham. https://doi.org/10.1007/978-3-031-81685-7_6

[9] Khodadadi, N., Talatahari, S., & Gandomi, A. H. (2024). ANNA: Advanced neural

network algorithm for optimisation of structures. Proceedings of the Institution of Civil

Engineers-Structures and Buildings, 177(6), 529-551.,

https://doi.org/10.1680/jstbu.22.00083

[10] Grossmann, T. G., Komorowska, U. J., Latz, J., & Schönlieb, C. B. (2024). Can

physics-informed neural networks beat the finite element method?. IMA Journal of

Applied Mathematics, 89(1), 143-174. https://doi.org/10.1093/imamat/hxae011

[11] Javadi, A., Tan, T., & Zhang, M. (2023). Neural network for constitutive modelling in

finite element analysis. Computer Assisted Methods In Engineering And Science,

10(4), 523-529.

[12] Meethal, R.E., Kodakkal, A., Khalil, M. et al. (2023). Finite element method-

enhanced neural network for forward and inverse problems. Adv. Model. and Simul. in

Eng. Sci. 10, 6. https://doi.org/10.1186/s40323-023-00243-1

[13] Badia, S., Li, W., & Martín, A. F. (2025). Compatible finite element interpolated

neural networks. Computer Methods in Applied Mechanics and Engineering, 439,

117889. https://doi.org/10.1016/j.cma.2025.117889

https://doi.org/10.1007/978-3-030-10436-8
https://doi.org/10.32973/jcam.2024.004
https://doi.org/10.1080/15397734.2023.2277736
https://doi.org/10.12989/scs.2024.51.4.377
https://doi.org/10.3390/math13091471
https://doi.org/10.1080/17452759.2025.2530732
https://doi.org/10.1007/978-3-031-81685-7_6
https://doi.org/10.1680/jstbu.22.00083
https://doi.org/10.1093/imamat/hxae011
https://doi.org/10.1186/s40323-023-00243-1
https://doi.org/10.1016/j.cma.2025.117889

Analysis of FG disks using NNs and FE software 83

[14] Abaqus 6.13 online documentation. Dassault Systems. 2015.

[15] Abaqus 2016. Scripting user’s guide. Dassault Systems. 2016.

