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Abstract. This paper investigates the thermomechanical analysis of disks 
using deep neural networks and finite element software. The structural 
components are made from functionally graded materials and are subjected to 
combined mechanical and thermal loading. The neural network is trained 
using a dataset obtained through simulations performed by programming a 
commercially available finite element software Abaqus. Both the programs of 
the finite element software and the neural network-based solver application 
are written in Python programming language.  

 

Keywords: neural networks, FEM, FGM, Abaqus scripting 

 

1. Introduction 
 

As technology advances, the demand for new materials with special properties is 

also growing. In many cases, solving a problem requires a material that is 

simultaneously hard, heat-resistant, or ductile. To address this issue, metals are 

combined with other metals or non-metal components to improve their 

characteristics. One method for producing such materials is to combine them in a 

solid state, known as composite materials. In addition, functionally graded 

materials (FGMs) have also emerged, where the sharp interfaces of composites 

between the constituent materials are eliminated. Instead of a sharp internal 

boundary, where failure might initiate, a graded (gradual) interface is formed, 

providing a smooth transition from one material to another, thus improving 

multiple characteristics of the material (such as the heat resistance). 

Numerous studies have explored the mechanics of functionally graded materials 

(FGMs) from different viewpoints. Several books offer solutions to linear elastic 

problems in non-homogeneous structures [1, 2]. Additionally, a wide range of 

research papers have introduced analytical, semi-analytical, and numerical 

approaches for addressing thermomechanical problems in simple structural 

components, such as hollow spherical bodies, cylinders, plates, beams, and disks. 

The analytical and semi analytical methods work only for certain, simplified 

problems, while generalized numerical techniques, such as finite element method 

(FEM) can deal with a wide variety of problems. In the latter case the creation of 

the models is time consuming and often expensive. Papers [3-5] present analytical 

and semi-analytical techniques to solve simple thermoelastic problems of radially 

graded disks. 
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Neural networks (NN) can be efficient tools for the thermomechanical analysis of 

structural elements and components. Research related to deep NNs is extremely 

popular nowadays. Numerous articles address their applications as well as their 

potential for further development. There are several papers, such as [6-9], that 

focus on the development and optimization capabilities of deep neural networks 

and radial basis function networks. Contributors [10] compared finite element 

method and physics-informed neural networks to numerically solve different linear 

and non-linear partial differential equations. In the study, considering the solution 

time and accuracy, in most cases PINNs could not beat FEM, although in both 

cases there are methods to improve the results. Papers, such as [11-13] applied 

neural networks to different areas of finite element method, the constitutive 

equations, equation of motions etc. 

 This paper deals with the utilization of deep neural networks for the thermoelastic 

design problems of discs made from functionally graded materials. Finite element 

method, and consequently finite element software represent an effective and widely 

used approach for solving such problems. However, it also comes with several 

limitations. These include the time required to create and solve models, as well as 

the often high cost of the software. In this work, we aim to explore possibilities for 

reducing model preparation time (e.g., through the development of plugins) and to 

investigate the potential of replacing finite element simulations with neural 

networks.  

Consider a disk made of functionally graded material. The problem is treated as 

axisymmetric, and thus we work in cylindrical coordinate system (     ). To solve 

the problem, we use the preprocessor and solver modules of the commercial finite 

element software Abaqus CAE (complete Abaqus environment). Geometrically, 

the disk is defined by its inner and outer radii (     ), while its thickness and half-

thickness are denoted by            . 

A schematic representation of the problem is shown in Fig. 1. Given the applied 

loads and boundary conditions illustrated in the figure, the problem can be 

considered axisymmetric and static. The structure is subjected to combined thermal 

and mechanical loads. The disk is subjected to internal and external pressures 

(     ) at the inner and outer cylindrical boundary surfaces (       ), which 

depends on the positional coordinate. Optionally we can apply body forces coming 

from the rotation ( ) of the disk. The thermal boundary conditions can be defined 

either as a first-kind – e.g., prescribed temperature field, given surface temperatures 

                       – or as third-kind boundary conditions given by 

the environmental temperature and the corresponding heat transfer coefficient   . 

The material parameters are the elasticity parameters of Hooke’s law (   ), the 

coefficient of linear thermal expansion ( ), the thermal conductivity ( ) and the 

density ( ). 

 
Figure 1. The sketch of the problem. 

 

To create the neural network, Python programming language and Tensorflow are 

used. 
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2. Simulation of the problem 

 

Abaqus CAE (Complete Abaqus Environment) is one of the leading general-

purpose finite element software. It is widely used in the industry due to its ability to 

solve a broad range of nonlinear engineering problems. In the early versions of 

Abaqus, only the processor module was implemented, which was written in 

Fortran. Over the years, the software architecture of the program have been 

extended, modules have been developed and added to the core of the software. 

These modules can be programmed using Python. Abaqus/CAE has a modular 

architecture built around three main layers. The Graphical User Interface (GUI) 

layer provides the interactive modeling environment, menus, and viewport for 

geometry, meshing, and results visualization. It is implemented in C++ and 

wrapped with Python hooks so that nearly every GUI action corresponds to an 

equivalent Python command. The Application Programming Interface (API) layer 

is the Python-based scripting interface. It exposes Abaqus objects (parts, materials, 

loads, steps, jobs, etc.) and constants. The core solver layer is the underlying finite 

element solvers (Standard, Explicit, CFD) are compiled executables that run 

analysis jobs. CAE communicates with them by writing input files, launching 

solver processes, and then reading the resulting output database (.odb) files for 

post-processing. The Python interpreter embedded in Abaqus/CAE acts as the 

“glue” between the GUI and solver, allowing full automation, customization, and 

integration with external workflows. 

The main types of files generated and used during simulation include the core input 

file (.inp) for defining the problem for the processor, it’s the processor’s main 

input. The subroutine files are required for the modification of the core equations 

inside the processor module. Certain features are only accessible through these 

files. The .cae files are the pre-processor files, essential for setting up tasks in the 

pre-processor and they are version dependent.  The output of the simulation is in 

the .odb file, which is used by the postprocessor to evaluate the results. The python 

script files can modify and control the simulation process. The preprocessor has a 

built-in python interpreter, which can be utilized in several ways during simulation.  

Abaqus provides a powerful Python scripting interface that allows full automation 

and customization of finite element simulations. 

 
Figure 2. The preprocessor of Abaqus CAE. 
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The version of Python embedded in Abaqus depends on the version, Abaqus 2017: 

Python 2.7, Abaqus 2021: Python 3.7. The interpreter is integrated with Abaqus’ 

internal APIs for scripting and automation. The Python interpreter inside Abaqus is 

sandboxed, meaning not all third-party packages are available by default. Abaqus 

ships with a set of default Python packages, these include abaqus and 

abaqusConstants, that are core Abaqus scripting commands/API, caeModules are 

interfaces to Abaqus/CAE functions. The odbAccess package is used to access the 

output database files. Numpy, sys and os packages are also included in modern 

Abaqus versions. The Abaqus CAE system extends the default Python packages 

with more than 500 classes (or objects) and numerous methods that operate 

between them. These are grouped into three main categories: session, mdb, and 

odb. Furthermore we can manually install packages into the Python interpreter of 

Abaqus using the embedded python executable, but it is very tricky and limited. 

Many users instead bridge Abaqus with external scripts, e.g., by exporting data as 

.csv or .npy, processing it in external Python, then feeding it back. The API 

architecture is object-oriented, covers geometry, meshing, loading, analysis, 

postprocess. Ther are a lot of important use cases of python scripting. In case of 

parametric modeling, Python scripting allows users to create geometric models and 

meshes programmatically based on input parameters. This is especially useful when 

analyzing families of parts with similar features. With batch job submission, scripts 

can automate the setup and execution of multiple simulations. This is commonly 

used in design studies, where many variants of a model need to be analyzed under 

different conditions without manual intervention or in case of training data 

generation for NNs. Users can employ Python to extract and process results from 

Abaqus output databases. This is valuable when handling large numbers of 

simulations or when consistent, customized result extraction is required across 

studies. Optimization loops enable integration of Abaqus simulations into 

optimization routines. For example, users can implement topology optimization or 

parameter tuning by running Abaqus analyses in a loop, modifying input 

parameters according to performance. Material modeling pipelines and GUI 

Plugins can be used to automate complex workflows involving material behavior 

evaluation. Additionally, users can extend the Abaqus/CAE interface itself by 

developing custom GUI plugins that incorporate specific modeling tools and 

shortening simulation time. 

The main components of the simulation program include: 

- specifying the initial configuration settings, 

- generating auxiliary points required for geometry construction (e.g., edge 

reference points, partition centers), 

- drawing the planar cross-section to be revolved, followed by structured 

meshing of the resulting full domain, 

- creating sets of points, surfaces, and other set objects required for boundary 

conditions, result evaluation, and additional modeling components, 

- generating material properties and assigning them to sections, then assigning 

sections and modeling considerations to the appropriate geometry, 

- assembling the complete model, 

- defining and configuring the main steps of the simulation, 

- specifying loads and boundary conditions within the appropriate analysis steps, 

- setting up the mesh structure, characteristics, and the applied element type 

(which is CAX8RT in our case), and generating the mesh, 

- preparing the simulation job and allocating computational resources, 

- finalizing the job configuration and launching the simulation, 

- waiting for the simulation to complete, then reading the result file, 

- exporting the required data to a file, documenting the results, and logging any 
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errors encountered. 

The curved edges of the shaped disk (  ) in the considered plane are constructed 

from straight line segments connecting parabolic points. This choice is also 

justified by the fact that, when using linear isoparametric elements, the geometry is 

interpolated accordingly (with line segments). The set of points defining this edge 

was constructed in such a way that the lengths of the inner and outer cylindrical 

edges of the disk can be used as parameters, denoted by                   

       , respectively. Thus, the equation of the parabola can be expressed as 

follows: 

            
                             

                                

(1) 

where the governing parameter of the shape is denoted by  . The material behavior 

(and the approximation of material properties) is represented using homogeneous 

sections. This means that, instead of using the continuous material property 

distribution function     , a discretized representation with constant values is 

applied. For each section, the material property is calculated, for example, at the 

center (    ) of the corresponding subdomain, which means          
           Naturally, the finer the discretization, the more accurately it 

approximates the original continuous (graded) distribution. When the material 

composition varies only in the radial direction, then the midpoint is given by 

                   . One of the most widely used one-dimensional 

distribution function can be expressed as 

                        
    

     
 
 
        (2) 

Naturally, more complex functions can also be implemented within the discussed 

method. The temperature dependence of material properties can be incorporated 

into our model, as this is supported by the material module. A custom function was 

developed for computing the material properties, which calculates the values to be 

assigned to each layer based on an expression provided as a string and the 

corresponding parameter values. Using the given geometric parameters, the 

program constructs the full geometry of the disk and partitions it into subdomains 

according to the user-defined resolution. It then generates the appropriate boundary 

conditions and loads accordingly. The problem is solved as a coupled thermoelastic 

simulation. Our program can be implemented following an object-oriented 

approach, but a procedural paradigm may also be applicable. When using object-

oriented programming, it becomes evident that even in cases with a minimal 

number of parameters, the program must handle a significant amount of data 

members. This should be considered during the design phase of the program, where 

the use of a design pattern such as the Builder pattern is recommended. If multiple 

simulations are to be executed with certain fixed parameter sets, it is advisable to 

implement Director to facilitate the repeated use of those configurations. Figure 3 

shows an example of the model of a disk displayed by the postprocessor. This two-

dimensional axisymmetric problem has multiple boundary conditions (traction: 

purple arrows as pressure; thermal: yellow squares) and an additional kinematic 

boundary condition at the symmetry plane of the disk indicated by the orange 

triangles at the midplane along the horizontal direction. 
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Figure 3. Example for the geometry and boundary conditions of a disk created by the 

program. 

When the simulation is completed, the output database is used to get the variables 

we need. These field variables can be the deformation (displacement field), the 

strain or stress tensors or the equivalent stresses. The von Mises equivalent stress 

distribution will be used for the main design function of the disk. 

Based on the program created to solve these thermoelastic disk problems, we can 

create plugins, which simplifies the model creation process. Abaqus provides 

simple tools to build a very simple GUI and bind it to the script we created. Figure 

4 shows an example of this GUI. 

 

Figure 4. The plugin of the disk simulation in the preprocessor of Abaqus. 

In the given example (Fig. 4), the user inputs the required data into the appropriate 

fields and can start the simulation directly from the dialog window without having 

to leave it. If modifications are needed, the user can generate the simulation files 

(without selecting the 'Submit the Job' option), make the necessary edits, and then 

run the simulation in the usual manner, which significantly shortens the solution 

time. 

 

3. Creating the neural network 

 

For the disk problem, we aim to develop a deep neural network, which requires 

generating a solution dataset across the space of input parameters 

(                     ). The material properties of the constituent materials 

(metal: subscript 1 – ceramics: subscript 2) are 
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The constant values include the heat transfer coefficient of              
     , and the ambient temperatures applied to the lower and upper curved 

surfaces (    ), which are            and        , respectively. The 

components of the functionally graded material are the same two materials defined 

earlier in the benchmark disk example. We will only accept results where the 

maximum stress does not exceed        .  

To implement this process, we can use the os package in the Python programming 

language. Abaqus generates model files for each simulation, which we utilize 

during the evaluation phase. However, these files are no longer needed once the 

data has been extracted, so we may delete them while updating the working 

directory. The results can be stored in a text file (e.g. in CSV format). Our program 

should be designed to handle issues encountered during the simulation process, it 

should raise an error when necessary and then proceeds to the next parameter 

combination to be analyzed. Error messages may be collected and saved in a 

separate text file. If the stress values exceed the allowable limit, the corresponding 

parameter sets are logged in a third text file. 

In addition, it is recommended to save the progress of the simulation (in case of a 

crash, or termination due to software or simulation issues). The dataset we 

generated was based on the following parameter combinations: 

                                           
                                                          

                                                              
                                                               

                                                        

In the examined case, the simulation was run for a limited combinations of 

geometric dimensions (for a specific product, the manufacturer generally uses only 

predefined, usually standardized sizes). To create the NN, we used the packages 

Panda, Sklearn and Tensorflow of Python. Multiple activation functions, 

initialization methods were investigated. The best one was the activation function 

be Selu with LeCun initialization in a fully connected network. To train the 

network, Nadam optimizer was used. Let us investigate the prediction of the 

maximum equivalent (von Mises) stress. We begin with a single-layer neural 

network and gradually increase the number of layers. We investigated the ideal 

number of neurons between 32 and 512. In the end, we decided to use 512 neurons 

in every deep layer, and the training process was conducted over 100 to 300 

epochs. The evolution of the error, expressed as MAE (Mean Absolute Error), is 

illustrated in Figure 5. The error is in MPa, in case of 7 layers, its only         . 

In case of 3 layers, the error is only        , which is only a few percent error 

compared to the average        , while the solution time is bit better, than the 

original FE solver. If we bypass the Abaqus preprocessor and solve the problem 

directly using the input file and the processor module, the solution time is shorter 

than that of the neural network. However, the majority of the total simulation time 

is consumed by model preparation and execution through the preprocessor. 
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Figure 5. The graph of mean absolute error - number of layers. 

 

In our case, the goal was to predict 44 values corresponding to the equivalent (von 

Mises) stresses calculated at specific nodes using finite element method. During 

training, a callback method was used to save the best-performing models. The more 

parameters we aim to calibrate in our case, the more epochs are typically required 

for effective training. The training process of the 7-layer neural network is 

illustrated in Fig. 6. In this case, the model's accuracy showed no significant 

improvement after 230 epochs, with only a         reduction in error over the 

final 70 epochs, furthermore val_ denotes validation. 

 

Figure 6. The training process of a 7-layer DNN. 

 

 

4. Conclusion 
 

In this paper, we investigated the simulation of functionally graded disks using 

finite element software and deep neural networks. We presented a simulation 

method, that considered parabolic disks made from functionally graded material. 

The finite element software provides sufficient flexibility to handle a wide range of 

thermoelastic problems, beyond the specific cases studied in this paper. We 

explored how programming capabilities in Abaqus/CAE can be leveraged to reduce 

solution time and developed a custom GUI plug-in tailored to the investigated 

problem. The main steps of the solution process and the scripting possibilities 

within the software were demonstrated. Using Abaqus/CAE, we generated a 

dataset for a user-defined metal–ceramic functionally graded disk under specified 
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geometrical, traction, and thermodynamic boundary conditions. This dataset was 

used to train a neural network, whose predictive accuracy was then evaluated. Even 

with a relatively small number of layers, the deep neural network (DNN) was able 

to predict the equivalent stress distribution with only a few percent error. 

Moreover, the neural network’s solution time (not including the training time) was 

shorter than that of the original finite element simulation when we include the 

creation of the model and the utilization of the preprocessor, although the accuracy 

of finite element software is always one of its key advantages. 
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