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Abstract. This paper investigates the thermomechanical analysis of 'disks
using deep neural networks and finite element’ software. The, structural
components are made from functionally graded materials and are subjected to
combined mechanical and thermal loading~The neural network is trained
using a dataset obtained through simulations performed, by programming a
commercially available finite element software Abaqus. Both the programs of
the finite element software and the neuralinetwork-based solver application
are written in Python programming,language:.
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1. Introduction

As technology advances, the demand for new materials with special properties is
also growing. In“many cases, solving a problem requires a material that is
simultaneously. hard, “heat-resistant, or ductile. To address this issue, metals are
combined 4with* \other “metals or non-metal components to improve their
characteristics. @Qne.method for producing such materials is to combine them in a
solidy, state, known as composite materials. In addition, functionally graded
materialsy(FGMs) have also emerged, where the sharp interfaces of composites
between the“constituent materials are eliminated. Instead of a sharp internal
boundary, where failure might initiate, a graded (gradual) interface is formed,
providing @ smooth transition from one material to another, thus improving
multiple’characteristics of the material (such as the heat resistance).

Numerous studies have explored the mechanics of functionally graded materials
(FGMs) from different viewpoints. Several books offer solutions to linear elastic
problems in non-homogeneous structures [1, 2]. Additionally, a wide range of
research papers have introduced analytical, semi-analytical, and numerical
approaches for addressing thermomechanical problems in simple structural
components, such as hollow spherical bodies, cylinders, plates, beams, and disks.
The analytical and semi analytical methods work only for certain, simplified
problems, while generalized numerical techniques, such as finite element method
(FEM) can deal with a wide variety of problems. In the latter case the creation of
the models is time consuming and often expensive. Papers [3-5] present analytical
and semi-analytical techniques to solve simple thermoelastic problems of radially
graded disks.
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Neural networks (NN) can be efficient tools for the thermomechanical analysis of
structural elements and components. Research related to deep NNs is extremely
popular nowadays. Numerous articles address their applications as well as their
potential for further development. There are several papers, such as [6-9], that
focus on the development and optimization capabilities of deep neural networks
and radial basis function networks. Contributors [10] compared finite element
method and physics-informed neural networks to numerically solve different linear
and non-linear partial differential equations. In the study, considering the solution
time and accuracy, in most cases PINNs could not beat FEM, although in both
cases there are methods to improve the results. Papers, such as [11-13] applied
neural networks to different areas of finite element method, the constitutive
equations, equation of motions etc.

This paper deals with the utilization of deep neural networks for the thermoelastic
design problems of discs made from functionally graded materials=Finite element
method, and consequently finite element software represent an effective and widely
used approach for solving such problems. However, it alsofeomes with several
limitations. These include the time required to create and solve models, as well as
the often high cost of the software. In this work, we aimyto explere possibilities for
reducing model preparation time (e.g., through the developmentiof plugins) and to
investigate the potential of replacing finite element simulations with neural
networks.

Consider a disk made of functionally graded material.“Thegproblem is treated as
axisymmetric, and thus we work in cylindricalcoordinate system (r, ¢, z). To solve
the problem, we use the preprocessor.and solver,modules of the commercial finite
element software Abaqus CAE (complete, Abaqus“environment). Geometrically,
the disk is defined by its inner and outer‘radit (Ry»R,), while its thickness and half-
thickness are denoted by 2h¢(@) = h(r).

A schematic representation of'the problempis shown in Fig. 1. Given the applied
loads and boundary cenditions illustrated in the figure, the problem can be
considered axisymmetric and statie. The structure is subjected to combined thermal
and mechanical leads. The disk Is subjected to internal and external pressures
(p1,p2) at the innerdand outer cylindrical boundary surfaces (r = Ry, R,), which
depends on_the pesitional, coardinate. Optionally we can apply body forces coming
from the rotation (w) of the disk. The thermal boundary conditions can be defined
either as a first=kind—"e1g., prescribed temperature field, given surface temperatures
T(r =Ry =T, T(x= R,) = T, — or as third-kind boundary conditions given by
the environmental’'temperature and the corresponding heat transfer coefficient h..
The matérial parameters are the elasticity parameters of Hooke’s law (Cj;), the
coefficient,of linear thermal expansion («), the thermal conductivity (1) and the
density (o).

Cy(r.T),
(. T), p(r, T)

P2

To create the neural network, Python programming language and Tensorflow are
used.
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2. Simulation of the problem

Abaqus CAE (Complete Abagus Environment) is one of the leading general-
purpose finite element software. It is widely used in the industry due to its ability to
solve a broad range of nonlinear engineering problems. In the early versions of
Abaqus, only the processor module was implemented, which was written in
Fortran. Over the years, the software architecture of the program have been
extended, modules have been developed and added to the core of the software.
These modules can be programmed using Python. Abaqus/CAE has a=modular
architecture built around three main layers. The Graphical User Interface (GUI)
layer provides the interactive modeling environment, menus, andsviewport for
geometry, meshing, and results visualization. It is implemented in C++ and
wrapped with Python hooks so that nearly every GUI action. corresponds to:an
equivalent Python command. The Application Programming Interface (API) layer
is the Python-based scripting interface. It exposes Abaqus objects (parts,umaterials,
loads, steps, jobs, etc.) and constants. The core solverlayer isthe underlying finite
element solvers (Standard, Explicit, CFD) are compiled executables that run
analysis jobs. CAE communicates with them_by writing input”files, launching
solver processes, and then reading the resulting output,database (.odb) files for
post-processing. The Python interpreter embedded in, Abaqus/CAE acts as the
“glue” between the GUI and solver, allowing full automation, customization, and
integration with external workflows.

The main types of files generated and used during simulation include the core input
file (.inp) for defining the problem for\the processor, it’s the processor’s main
input. The subroutine files are,required for the modification of the core equations
inside the processor module. Certain features are only accessible through these
files. The .cae files are"the presprocessor files, essential for setting up tasks in the
pre-processor and they are versiomdependent. The output of the simulation is in
the .odb file, whichjis used by the postprocessor to evaluate the results. The python
script files can_modifyaand control the simulation process. The preprocessor has a
built-in python interpreter;, which can be utilized in several ways during simulation.
Abaqus provides a.powerful Python scripting interface that allows full automation
and customization of finite element simulations.

S

ABAQUS/CAE
kernel

______________ #________________

input file
Figure 2. The preprocessor of Abaqus CAE.
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The version of Python embedded in Abaqus depends on the version, Abaqus 2017:
Python 2.7, Abaqus 2021: Python 3.7. The interpreter is integrated with Abaqus’
internal APIs for scripting and automation. The Python interpreter inside Abaqus is
sandboxed, meaning not all third-party packages are available by default. Abaqus
ships with a set of default Python packages, these include abaqus and
abaqusConstants, that are core Abaqus scripting commands/API, caeModules are
interfaces to Abaqus/CAE functions. The odbAccess package is used to access the
output database files. Numpy, sys and os packages are also included in modern
Abaqus versions. The Abaqus CAE system extends the default Python packages
with more than 500 classes (or objects) and numerous methods that operate
between them. These are grouped into three main categories: session, mdb, and
odb. Furthermore we can manually install packages into the Python interpreter of
Abaqgus using the embedded python executable, but it is very tricky and limited.
Many users instead bridge Abaqus with external scripts, e.g., by exporting dataas
.CSV or .npy, processing it in external Python, then feeding it back. The API
architecture is object-oriented, covers geometry, meshings, loading, analysis,
postprocess. Ther are a lot of important use cases of pytheh scripting. In case of
parametric modeling, Python scripting allows users to create.geometric models and
meshes programmatically based on input parameters. JFhistis especially/useful when
analyzing families of parts with similar features. With batch job submission, scripts
can automate the setup and execution of multiple simulations. This is commonly
used in design studies, where many variants of a modelneed o be analyzed under
different conditions without manual intervention or, in case of training data
generation for NNs. Users can employ Pythomto extract and process results from
Abaqus output databases. This is valuable whenshandling large numbers of
simulations or when consistent, customizedyresult extraction is required across
studies. Optimization loops ,enable intégration of Abaqus simulations into
optimization routines. For example, users can implement topology optimization or
parameter tuning by running, Abaqus analyses in a loop, modifying input
parameters according 1o performance. Material modeling pipelines and GUI
Plugins can be used to automate‘eomplex workflows involving material behavior
evaluation. Additionally, users can extend the Abaqus/CAE interface itself by
developing custom GUI plugins that incorporate specific modeling tools and
shortening simulation time.
The main"components of the simulation program include:
- specifyingthe initial configuration settings,
- generating auxiliary points required for geometry construction (e.g., edge
referencelpoints, partition centers),
- _ drawing the planar cross-section to be revolved, followed by structured
meshing of the resulting full domain,
=, creating sets of points, surfaces, and other set objects required for boundary
conditions, result evaluation, and additional modeling components,
- /generating material properties and assigning them to sections, then assigning
sections and modeling considerations to the appropriate geometry,
- assembling the complete model,
- defining and configuring the main steps of the simulation,
- specifying loads and boundary conditions within the appropriate analysis steps,
- setting up the mesh structure, characteristics, and the applied element type
(which is CAX8RT in our case), and generating the mesh,
- preparing the simulation job and allocating computational resources,
- finalizing the job configuration and launching the simulation,
- waiting for the simulation to complete, then reading the result file,
- exporting the required data to a file, documenting the results, and logging any
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errors encountered.
The curved edges of the shaped disk (hy) in the considered plane are constructed
from straight line segments connecting parabolic points. This choice is also
justified by the fact that, when using linear isoparametric elements, the geometry is
interpolated accordingly (with line segments). The set of points defining this edge
was constructed in such a way that the lengths of the inner and outer cylindrical
edges of the disk can be used as parameters, denoted by h¢(r = Ry) = hgq, he(r =
R;) = hg,, respectively. Thus, the equation of the parabola can be expressed as
follows:
ar? +br+c=0,
b = (hez — he1)(Ry — Ry) — a(R, + Ry), (1)

c= hfl - Ry ((hfz - hfl)(RZ —Ry) - aRz),

where the governing parameter of the shape is denoted by a. The material behavior
(and the approximation of material properties) is represented .usingshomogeneous
sections. This means that, instead of using the continuous material property
distribution function M(r), a discretized representation”with constantgvalues is
applied. For each section, the material property is caletlated; for example, at the
center (r,;q) Of the corresponding subdomain, which means M. tion =
M(r = ry;q). Naturally, the finer the discretization, the more accurately it
approximates the original continuous (graded) distribution. AMWhen the material
composition varies only in the radial direction, then the“midpoint is given by
Imig = 0,5(r;41 +1;)e,. One of the most widely used one-dimensional
distribution function can be expressed‘as

~Rq

Myou (. T) = My (1) = My(MNGZR) + My(T). ()

Naturally, more complexsfunctions can also be implemented within the discussed
method. The temperature dependence of material properties can be incorporated
into our model, as this is supportedyby the material module. A custom function was
developed for computing the material properties, which calculates the values to be
assigned to each layer based on an expression provided as a string and the
corresponding parameten, values. Using the given geometric parameters, the
program constructs. the full geometry of the disk and partitions it into subdomains
according to theyuser-defined resolution. It then generates the appropriate boundary
conditions,and loads‘accordingly. The problem is solved as a coupled thermoelastic
simulations Qur.‘program can be implemented following an object-oriented
approach; but a procedural paradigm may also be applicable. When using object-
oriented programming, it becomes evident that even in cases with a minimal
numberof parameters, the program must handle a significant amount of data
members. This should be considered during the design phase of the program, where
the/use of a design pattern such as the Builder pattern is recommended. If multiple
simulations are to be executed with certain fixed parameter sets, it is advisable to
implement Director to facilitate the repeated use of those configurations. Figure 3
shows an example of the model of a disk displayed by the postprocessor. This two-
dimensional axisymmetric problem has multiple boundary conditions (traction:
purple arrows as pressure; thermal: yellow squares) and an additional kinematic
boundary condition at the symmetry plane of the disk indicated by the orange
triangles at the midplane along the horizontal direction.
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Figure 3. Example for the geometry and boundary conditions of a disk created by the
program.

When the simulation is completed, the output database is used to get the variables
we need. These field variables can be the deformation (displacement field), the
strain or stress tensors or the equivalent stresses. The von Mises equivalent stress
distribution will be used for the main design function of the disk.

Based on the program created to solve these thermoelastic disk problems, we can
create plugins, which simplifies the model creation process. Abagus provides
simple tools to build a very simple GUI and bind it to the sefipt we created. [Figure
4 shows an example of this GUI.

({'; create fg disk X
outer radius: | 0.7 inner radius: | 0.1
h(inner): |0.04 h(outer): | 0.01

parabol control parameter: 0.1

p(inner): | 100 T(inner): 100
p(outer): 0.1 T(enviro): 20
m: |3 elem.size: |1

,,’/7" . ”)' b=
s 10 ERE

l oK } Apply Cancel
Figure4, The plugin of the disk simulation in the preprocessor of Abaqus.

In the given example (Fig. 4), the user inputs the required data into the appropriate
fields and can start the simulation directly from the dialog window without having
tosleave itIf modifications are needed, the user can generate the simulation files
(withoub selecting the 'Submit the Job' option), make the necessary edits, and then
runithe simulation in the usual manner, which significantly shortens the solution
time.

3. Creating the neural network

For the disk problem, we aim to develop a deep neural network, which requires
generating a solution dataset across the space of input parameters
(R1,R3, hy,hy,a,Ty,p, m). The material properties of the constituent materials
(metal: subscript 1 — ceramics: subscript 2) are
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E, = 330.0GPa,E; = 190.0 GPa,ay, = 5.0-107° K™,
o, = 12.2:107°K"L,v, = 0.25,v; = 0.3,1, = 5SW(mK)~?,
A, = 50 W(mK) 1.

The constant values include the heat transfer coefficient of 22.5 Wm?K, p, =
0 MPa, and the ambient temperatures applied to the lower and upper curved
surfaces (h(r)), which are T,,, =30°C, and T, = 20°C, respectively. The
components of the functionally graded material are the same two materials defined
earlier in the benchmark disk example. We will only accept results where the
maximum stress does not exceed 700 MPa.

To implement this process, we can use the os package in the Python programming
language. Abaqus generates model files for each simulation, which weutilize
during the evaluation phase. However, these files are no longer needed once the
data has been extracted, so we may delete them while updating, the®working
directory. The results can be stored in a text file (e.g. in CSV format). Our program
should be designed to handle issues encountered during the simulationprocess; it
should raise an error when necessary and then proceedssto the next parameter
combination to be analyzed. Error messages may be collected™and saved in a
separate text file. If the stress values exceed the allowable.limit; the carresponding
parameter sets are logged in a third text file.

In addition, it is recommended to save the progress af,the simulation (in case of a
crash, or termination due to software or/simulationfissues). The dataset we
generated was based on the following parameter combinations:
R; = [0.1,0.15,0.25],R, = Ry»R,[0]4 R,[1]:
R, = [[1.25,0.0],[1.6,0.0],[2:0,0.0],[6°0;0.7], [0.0, 1.0]],
a = [-0.25,-0.12,0,0.12,0.25],/, =»{0.005,0.025,0.06,0.1],
h, = [0.005,0.025,0.0640.075],p, = [0.01,30.0,60.0,100.0,150.0],
T, = [20.0,50.0,100.0,150.0,200:0], m = [0.1,0.5,1,5,10].

In the examined case; the@simulation was run for a limited combinations of
geometric dimensions (for a specific product, the manufacturer generally uses only
predefined, usualyastandardized sizes). To create the NN, we used the packages
Panda, Sklearn andy Tensorflow of Python. Multiple activation functions,
initialization” methods were investigated. The best one was the activation function
be Selu with, LeCun initfalization in a fully connected network. To train the
network, Nadam optimizer was used. Let us investigate the prediction of the
maximum, equivalent (von Mises) stress. We begin with a single-layer neural
network andugradually increase the number of layers. We investigated the ideal
number @f neurons between 32 and 512. In the end, we decided to use 512 neurons
insevery ‘deep layer, and the training process was conducted over 100 to 300
epochs. iThe evolution of the error, expressed as MAE (Mean Absolute Error), is
illustrated in Figure 5. The error is in MPa, in case of 7 layers, its only 0.87 MPa.
In case of 3 layers, the error is only 7.2 MPa, which is only a few percent error
compared to the average 200 MPa, while the solution time is bit better, than the
original FE solver. If we bypass the Abaqus preprocessor and solve the problem
directly using the input file and the processor module, the solution time is shorter
than that of the neural network. However, the majority of the total simulation time
is consumed by model preparation and execution through the preprocessor.
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Figure 5. The graph of mean absolute error - number ofdayers.

In our case, the goal was to predict 44 values corresponding to the equivalent (von
Mises) stresses calculated at specific nodes using finite element method. During
training, a callback method was used to save the bestsperformingymodels. The more
parameters we aim to calibrate in our case, the more epochs are typically required
for effective training. The training process_of. the, 7-layer |neural network is
illustrated in Fig. 6. In this case, the model's accuraey. showed no significant
improvement after 230 epochs, with only a 0.1 MPa reduction in error over the
final 70 epochs, furthermore val_ denotes validation.

leld

74 — loss
mae

—— val_loss

6 —— val_mae

5

N A.h‘ A‘A“—"WWAAAAAMI

T T T T T
50 100 150 200 250 300

Figure 6. The training process of a 7-layer DNN.
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4. Conclusion

In this paper, we investigated the simulation of functionally graded disks using
finite element software and deep neural networks. We presented a simulation
method, that considered parabolic disks made from functionally graded material.
The finite element software provides sufficient flexibility to handle a wide range of
thermoelastic problems, beyond the specific cases studied in this paper. We
explored how programming capabilities in Abaqus/CAE can be leveraged to reduce
solution time and developed a custom GUI plug-in tailored to the investigated
problem. The main steps of the solution process and the scripting possibilities
within the software were demonstrated. Using Abaqus/CAE, we generated a
dataset for a user-defined metal-ceramic functionally graded disk under specified
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geometrical, traction, and thermodynamic boundary conditions. This dataset was
used to train a neural network, whose predictive accuracy was then evaluated. Even
with a relatively small number of layers, the deep neural network (DNN) was able
to predict the equivalent stress distribution with only a few percent error.
Moreover, the neural network’s solution time (not including the training time) was
shorter than that of the original finite element simulation when we include the
creation of the model and the utilization of the preprocessor, although the accuracy
of finite element software is always one of its key advantages.
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