

84 B. Ónodi and A. Agárdi

Production Systems and Information Engineering

Volume 13 (1), pp. 84-98 84
doi: https://doi.org/10.32968/psaie.2025.1.8

Exploring Efficient News Aggregation Development for the Hungarian Language

BENCE ÓNODI
1

University of Miskolc, Hungary

Institute of Information Technology

onodibenc@gmail.com

ANITA AGÁRDI

University of Miskolc, Hungary

Institute of Information Technology
agardianita@iit.uni-miskolc.hu

Abstract. In recent years, the rise of digital media has fundamentally
transformed information consumption habits. The mass of content generated
by social platforms and online news portals makes it increasingly difficult to
obtain information from reliable, objective sources. The spread of fake news,
the dominance of radical views and click-oriented media phenomena distort
public discourse, making critical thinking difficult. The article presents the
development of a Hungarian-language news aggregation system that not only
collects news from different sources, but also helps their interpretation and
transparency with its analytical functions. The goal is to create a
technological solution that supports users in the conscious and critical
processing of information, contributing to balanced information in the
Hungarian-language media space.

Keywords: news aggregation system, digital media, Hungarian language

1. Introduction

In recent decades, the spread of digital media has taken on unprecedented

proportions. The endless abundance of content provided by social media and the

constantly updated news portals have revolutionized the flow of information, with

many advantages and disadvantages. One of the most significant negative

consequences is that it is more difficult for content consumers to get information

from reliable and objective sources. The hidden biases behind the news often

distort its content and presentation, and further complicate its understanding. There

is a worldwide trend that extremist and radical trends have an increasingly greater

reach than moderate ones. This is largely due to the operating mechanism of online

media, where click-baiting, attention-grabbing titles dominate. Internet content

creators often use highlights at the beginning of their videos that immediately

capture the attention of viewers. This practice favors the rapid spread of fake news

1
 This article summarizes the author’s BSc thesis entitled „ Magyar nyelvű híraggregáló webalkalmazás

fejlesztése” submitted to the University of Miskolc in 2025

https://doi.org/10.32968/psaie.2025.1.8
mailto:agardianita@iit.uni-miskolc.hu

News Aggregation Development 85

and unfounded information. All this distorts the media and public discourse,

influencing even those who would otherwise be balanced opinion formers. These

phenomena make technological solutions that help navigate the often opaque

information space particularly relevant. The article aims to provide a solution to a

current and complex problem, as fake news and manipulation pose significant

challenges to people around the world, and Hungarian-language online media is no

exception. The news aggregator site is not only used to collect news, but also helps

readers with analyses to make it easier to process information critically and

consciously.

It is important to emphasize that the aim of the article is exclusively technological

implementation, and neither the expression of specific news sites nor political

positions in general is among its objectives. The presentation of the applied

methods and results also serves this neutral, analytical purpose.

1.1. Role and operation of news aggregator systems

A news aggregator is a system, that collects content from different sources – for

example, online newspapers, blogs or other media – and then groups it according to

specific criteria and displays it on a common interface. The aim of such systems –

which are typically available in the form of web or mobile applications – is to make

news quickly and easily accessible to those who want to be informed about the

events taking place around them from multiple locations. These programs

centralize news sources, saving time and energy, and contributing to a more

objective follow-up of the news.

There are many news aggregators on the market, but they can basically be

classified into two large groups.

The technical process of the two groups is often similar, but they differ in their

principle of operation. One group includes edited format news aggregators, in

which different journalists select the content for us. Such sites prioritize quality

over quantity, as this is a method that requires human intervention, and therefore

often use analyses or various opinion-forming extracts to enhance the presentation

of news. The other group places greater emphasis on quantity and hosts

comparative analyses rather than individual analyses. These systems do not use

manual intervention and represent the added-value service in a different form.

Among them, passive systems can be observed – these only collect and display

information, thus providing space for comparison – and active systems, which also

provide an interactive user experience. The latter often have different filtering

options (for example, by topic, date or source), and some systems even support the

compilation of a personalized news feed. Such interactive platforms can be

compared to widespread social media applications, but they mostly actually place

the emphasis on information. Nowadays, users can choose from a wide range of

news aggregator applications, so they can easily find a solution that suits their

needs. The use of advanced topic categorization is increasingly common in modern

services, and with the rise of artificial intelligence, functions that previously

required manual intervention and are mostly based on language models or machine

learning have also appeared. Such functions include sentiment analysis, which

attempts to describe the mood of articles, or fake news filtering, which is of

particular importance in addition to algorithms that are optimized to capture users'

attention. These innovations significantly increase the added value of aggregators,

which is typically not provided by online newspapers themselves.

1.2. Web data collection techniques

86 B. Ónodi and A. Agárdi

The development of web data collection techniques has laid the foundation for the

spread of news aggregator systems, since data collection is a key component that

allows to manage huge amounts of information in a structured way. Among the

services of online newspapers, the Really Simple Syndication (RSS for short) [1]

function, which provides a short summary of the content that appears on the page

and is updated frequently.

In addition, another widespread format is Atom [2], which serves a similar

purpose: offers updates about web content in a structured form, but implements

more advanced metadata management, greater customization, and stricter XML-

based standards compliance.

Both RSS and Atom formats allow news aggregator systems to easily access the

links, titles, publication dates, and often cover images of articles.

One of the most common technologies is web scraping, which aims to extract

structured data from HyperText Markup Language (HTML)-based content

available on the Internet in a programmatic manner. This process allows us to

extract valuable information from pages intended for human reading in an

automated manner. Since web scraping involves analyzing the HTML structure of

websites, it is primarily useful in cases where the given page does not provide

public API access. Due to the proliferation of pages on the Internet, many

programming languages offer solutions for this with different packages, such as:

• BeautifulSoup: a popular Python library used for structured data extraction

from HTML and XML files. It allows for simple and efficient traversal and

search of the DOM tree of pages, as well as extraction of the desired data

elements. [3]

• Puppeteer: A Node.js-based library that allows programmatic, headless

control of the Chrome or Chromium browser. [4]

• Selenium: An automated browser control tool that allows for managing

interactive elements of websites and accessing dynamically loaded content.

[5]

1.3. Basics of Natural Language Processing

Natural Language Processing (NLP) combines linguistics and computer science. Its

goal is to enable machines to recognize, understand, and generate human language

in written or spoken form using machine learning. Research into the method laid

the foundation for the era of artificial intelligence that is now considered natural.

Services and tools that use this method have become an essential part of our lives

today, as they power the largest search engines, operate automated customer

services, and enable digital assistants. [6]

• Word segmentation (tokenization): Tokenization is a process in which text is

divided into words. This process results in a list of words (tokens) and their

positions in the text.

• Lemma formation: By removing suffixes, the dictionary (basic) form of the words

is obtained. The simplified form is called a “lemma”.

• POS tagging: This task determines the part of speech of the words in the sentence.

It is common for a word to have multiple part of speech roles, such as the word

“vár”, which can be a noun (“„Megújul a vár.”) or a verb

(“Villamosra vár.”). The part of speech analysis of such cases requires

taking the linguistic context into account.

News Aggregation Development 87

2. System specification and requirements

2.1. Purpose of the system

The purpose of the developed system is to automatically collect news from online

sources of Hungarian-language media and then analyze them with a self-developed

language processing process. The goal is to make it clear to visitors to the page

what kind of emotional charge can be recognized in each source or given article. In

addition, the application should be able to recognize political or other public

figures from the content, thus helping the reader to compare the mood in which the

given person is mentioned in different sources.

2.2. Functional requirements

The focus of the system's operation is the automatic collection, processing and

user-friendly display of news. The main functional requirements to be met by the

system are listed below.

2.2.1. Automated news gathering

The basic function of the system is to automatically download newly published

articles from selected news portals at predetermined intervals. This process is

essential for the operation of the system, since in the absence of automatic news

gathering there would be no content available for further processing, thus neither

analysis nor visualization could be implemented. The system can only fulfill its

purpose if content updates are continuous and reliable.

2.2.2. Structured storage of articles

Relevant metadata for downloaded news - such as the title of the article, date and

source URL-together with the full text of the article in a relational database are

stored. This solution allows efficient querying, the also filtering content and post -

processing. The cover images belonging to articles are not placed directly in the

database but in the server -side file system. The database only stores the path of the

images that is based on which the system can retrieve and display the given image

through a separate serving layer on the user interface. This approach reduces the

load on the database as well as provides fast and scalable access to files.

2.2.3. Identifying content

After processing the text of the articles, the system is able to automatically identify

persons in the writings are an entity recognition (Named Entity Recognition, NER

[7]) module. Texts related to persons thus identified in separate sentiment analysis

fall through that allows you to examine what a particular person appears in an

emotional context in each news sources. It can aggregate results through statistical

statements such as some political actors which medium is represented by what

frequency and what emotional filling.

2.2.4. Sentiment analysis

The system automatically assigns a sentimental [8] value to all the texts related to

all articles, including the specific person, to the specific person. The purpose of

88 B. Ónodi and A. Agárdi

scripture analysis is to explore the emotional charge of the text and thus give an

idea of the communication tone of the news source. The sentiment analysis model

performs a separate classification for each token (word or word fragment),

classified as one of five categories. Classes can be assigned to the labels returned

by the model with the following numeric values:

• label_0: −2 (very negative),

• label_1: −1 (negative),

• label_2: 0 (neutral),

• label_3: +1 (positive),

• Label_4: +2 (very positive).

The screed value of the full text is given by the arithmetic average of the numeric

classes assigned to the tokens. This number is located on a continuous scale that

can be redeemed to text categories using the following intervals:

• [−1.5; −0.5 [range: very negative,

• [−0.5; 0 [range: negative,

• 0: neutral,

•] 0; 0.5] range: positive,

•] 0.5; 1.5] Range: Very positive.

This approach allows us to measure the emotional shades more subtle, as it not

only assigns a class to the whole text, but also takes into account its internal

diversity. The model also associates a confidence score for all token classification.

These values can be used as required when calculating the aggregated sentiment,

but the default method is the non -weighted averaging. The resulting average

sentiment is the basis for further statistical statements and visualizations.

2.2.5. Display articles in the web

More modes can be used to display articles on the user interface. Articles from the

news portals taken into account get a separate page, and a simplified feed also

serves the interests of readers where articles in analyzed media become available

on chronological order. In addition, you can filter your date screening on each page

and set on a saint scale what you want to read.

Downloaded and processed articles on the user interface are displayed in different

ways for easy transparency and targeted browsing. The system provides two main

views:

• Source -specific article pages: Each news portal receives a separate page where

only articles from a given medium appear.

• Simplified News (FEED): A central view that chronologically classifies all

available, analyzed articles, regardless of their source.

For users, additional filtration options are available on each page:

• Date -based screening: It is possible to view articles published during a given

period.

• Sentiment screening: An interactive scale allows you to select what emotional

articles appear (for example, only neutral and positive content).

• Category filtering: It is possible to display articles in the same group based on the

categories assigned to the media.

This structure allows readers to quickly navigate the news and filter information

based on their personal interest.

3. System Architecture and Planning Aspects

News Aggregation Development 89

In order to achieve the goals of a system, it is necessary to develop a

comprehensive architecture that reliably handles automatic data collection,

processing logic, data storage, and data provision to the client site. This section

shows the technological background of the selected technological background, the

construction of the server -side file structure, the operation of the processing

pipeline, the data storage solutions, and the role of client -side components in the

display. The primary consideration of the system was modularity, reusability and

easy expansion, which are essential for a long -term sustainable, efficient and well -

scale operation.

The architecture is made up of three main parts: the client-side application, the

server-side central control unit, and the background processing pipeline. The client

transmits the data to the server through HTTP requests, which manages traffic

based on appropriate routes and then transfer requests to the processing module if

necessary. During the design, the components are separated so that the system

could be easily expanded, modified and maintained.

3.1. Server side

The central element of the operation of the web application is server -side logic,

which is responsible for controlling background processes, data collection, data

processing and service to clients. Server -side components also ensure the

reliability of the data flow, the validity of the data and the scalability of the system.

3.1.1. The framework

Node.js [9] is an open source, event controlled, platform independent environment

that runs javascript. The platform is based on the Google V8 Javascript engine and

follows the "Run JavaScript Everywhere" paradigm, which extends the language to

the server page, allowing the development of full web applications using a single

programming language. This environment also runs perfectly on Windows, Linux

and MacOS, and during its operation, it provides a single process to serve the

requests without creating fibers. Thanks to this, it provides a high performance and

reliable solution, so it is widespread in the field of IT.

It is supported by its own package manager, NPM (Node Package Manager). NPM

[10] is one of the largest packages in the world, providing access to hundreds of

thousands of open source modules. The developer community is active, constantly

creating new packages, making the system inevitable in modern web development.

A minimalist and flexible framework, the Express.js. [11] is chosen as server-side.

Express simplifies the use of Node.js, offers a more transparent and readable code

structure, and supports a simple and structured definition of routes. The large and

active community provides a plentiful documentation and additional package,

which facilitates the development of complex systems.

3.1.2. Structure of the source code for server -side application

When designing a server page, the goal was to separate different functional units

and to be organized into well structured modules. The following folder structure is

applied:

 Config: Here are the files containing configuration settings. Currently, for

example, the Connection.js file, which initializes the modules needed for

90 B. Ónodi and A. Agárdi

the database connection and creates the database connection.

 Controllers: The application control logic is located in this folder. The

controllers process incoming HTTP requests, calls the necessary services,

and then gives the answer to the client.

 Middleware: Intermediate layers between the client and the server logic.

Here can be found logging modules, error handlers or features responsible

for validating data.

 Router: Folder defining the path routes. This is where the individual

endpoints (such as querying articles or screens analysis) will be configured

and assigned to the appropriate controllers.

 Scrapers: Each news portal has a separate scraper file, which, with the help

of the Puppeteer directory, performs DOM processing and reducing data

according to the structure of the given website.

 Services: A folder containing business logic. For example, these services

are responsible for processing data, saving it into a database, or

communicating with the external scripture API. The controllers call these

services.

 Utils: Utils contains for reusable, general auxiliary functions. These

include date formation, text cleaning or other logical operations.

 .env: A file containing the environmental variables needed to run a project.

For example, storing the availability of the database, API keys or other

sensitive information, etc.

 Index.js: The entry point of the application. This is where the Express

server is launched, MiddleWare registration and loading routes. This file is

the first one that Node.js runs when you start the application.

3.1.3. Data collection

The central element of the research is data collection, as subsequent processing and

analysis steps can only be based on the success of this. To do this, a tool is

inevitable that is easy to manage, widely used, and its developer community is

active and is technologically well fit into the server -side environment. Based on

these aspects, the library called Puppeer [12] is chosen, which is part of the Node.js

ecosystem and allows the control of Chromium-based browsers, such as Chrome

and Firefox, through a high level of API. The layers of the chosen library ensure

that we can process the web pages without having to write low -level codes to

control the browser. The technological background behind Puppeer - JavaScript

programming language and Google development support - is a guarantee that the

project remains sustainable, documented and developed in the long run.

The Puppeer operation is based on the Chrome Devtools Protocol, a high level of

communication protocol between the browser and the control program. This

protocol allows dynamic control of websites, such as loading pages, clicking on

buttons, filling forms or taking screenshots. The Puppeer is used not only for data

reduction, but also for testing and behavioral level simulation, making it an ideal

choice for the automatic data collection component of a news system. [4]

Data extraction process from news sites

During data collection, the goal was to automatically extract relevant information

from articles appearing on news sites: the title, the publication date, the content of

the articles, and their associated images. The steps of the data collection logic are

generally structured as follows:

News Aggregation Development 91

1. Puppeteer launches a headless browser instance and loads the main page of the

given news site or a URL containing a given list of articles.

2. Based on the analysis of the DOM structure of the page, identifying the

elements that contain the list of articles (for example, article or

div.article-card tags).

3. Within the given page, iterating over the HTML blocks representing the

articles and read from them:

• the title of the article (from h1 or h2 elements),

• the publication date (for example, time tag or a given class),

• the detailed link associated with the article,

• the thumbnail image (image URL).

4. It opens the article pages individually based on the URLs identified in this way

and extracts the full text of the article from them.

5. All extracted data is serialized in JSON format and saved to a database.

6. During data upload, the system tries to avoid duplications based on the date

and title of the articles (it does not save the previously queried article again).

The above process allows the system to collect fresh data from the news pages

even on a schedule (for example, hourly or daily). Different retrieval logics apply

to different sources, since the HTML structure is not uniform. Data collection

handles the structure of the news pages and the pagination mechanism in a separate

module.

3.1.4. Data provision

The web application server provides the necessary data to the clients using REST

APIs. The server operates in a Node.js environment with the Express.js framework,

and the data exchange is in JavaScript Object Notation (JSON) format. The

purpose of the data provision is to query articles, save new articles, and provide

various sentiment analysis statistics. The client-side React application

communicates with the server via HTTP requests, and data is retrieved using GET,

while new data is saved using POST. In its current state, the system does not

include user authentication, all endpoints are publicly available in the development

environment.

3.2. Data processing process

In modern, high-value news aggregation web applications, simply collecting and

storing data is not enough. It is necessary to extract easily interpretable, structured

information from raw text data, which helps users navigate and analyze faster. To

do this, a data processing pipeline had to be created that encompasses all steps from

data download to text analysis. The system implements this process through the

close cooperation of several components: a Node.js-based Express.js server, a

natural language processing module written in Python, and ensuring data flow

between the database and the client.

3.2.1. The data path

After successful data collection, the text content of the downloaded and pre-

processed articles must be processed by the system using Natural Language

Processing (NLP) techniques in order to draw conclusions from it later from a

statistical or reader perspective. JavaScript does not offer a suitable processing unit

optimized for the Hungarian language for such tasks, so we had to outsource this

92 B. Ónodi and A. Agárdi

layer to a separate, Python-based system. Communication between the two systems

is implemented via a REST API, which enables fast and reliable data transmission.

The main tasks of the Python component include natural language processing,

including: Named Entity Recognition (NLP) and sentiment analysis. For entity

recognition, the huSpaCy library is used for the Hungarian language optimization,

which is capable of tokenizing texts and recognizing names in a Hungarian context.

huSpaCy [13] is specifically adapted to the grammatical characteristics of the

Hungarian language, thus enabling a more precise analysis than the international

general models. For sentiment analysis, a transformers library is used, which

specializes in handling large language models. The specific sentiment model was

the NYTK/sentiment-hts5-xlm-roberta-hungarian [14] model of the Linguistics

Research Center, which is based on the XLM-RoBERTa [15] architecture. This

model was trained on Hungarian-language texts and distinguishes five sentiment

categories: very negative, negative, neutral, positive and very positive. The model

is based on text corpora that come from political, public affairs and general news,

making it particularly suitable for analyzing Hungarian-language news portals.

We can also find similar examples in international practice: for example, the

Ground News [16] platform also uses sentiment analysis and cross-source bias

testing to make the political and emotional orientation of news more transparent.

The implemented system has a similar logic, but tuned to Hungarian language

specifics. The Python-based NLP component operates as a separate Flask [17]

server, which the Node.js-based server accesses with HTTP requests. The client or

data collection module does not communicate directly with the NLP module, only

the server API calls the appropriate endpoints.

3.3. Data Storage

There are several data storage solutions available for web applications, including

relational databases, NoSQL databases, and file system-based storage for certain

types of data, such as image files. The application has a relational (SQL-based)

database because the data is well-structured, interrelated, and can be easily queried

using the SQL language.

It is important to note that the system also handles images, but they are not stored

directly in the database. The actual image files are stored in the server file system,

and the database only contains the file paths to the images in the form of text fields.

This provides significant performance and storage benefits because the database is

not burdened with large amounts of binary data.

Among the relational databases, the PostgreSQL [18] is chosen, which is one of the

most reliable and popular open source database management systems. Its

advantages include high scalability, advanced SQL support, transaction

management, and an active developer and user community. In addition, it can be

integrated with modern backend environments and serves the performance and

reliability needs of the web application well.

3.3.1. Details of the application tables

During data modeling, the relationships between the data is developed as clear and

easy to query, so ensured the relationships between the different tables with foreign

keys. The purpose of the created database structure was to effectively support the

operation of the application, and to quickly access and modify data. Most of the

data stored in the database is structured text or numerical information, such as

article titles, content, author names, categories, and various bias values. The system

News Aggregation Development 93

also handles image files, but they are not stored directly in the database. Instead,

the database only records the server-side path to the image files, while the image

file itself is located in the server's file system. This approach relieves the database,

reduces response times, and allows for more flexible file management.

article_tags

This table implements the many-to-many relationship between articles and tags. An

article can belong to multiple tags, and a tag can be linked to multiple articles. The

article_id column is a foreign key that references the primary key of the

articles table, while tag_id references the identifier of the tags table. The

updated_at field stores the time the record was last modified.

articles

This table stores newspaper article data, including the title, content, URL, image,

and publication date. The id is the primary key, the title, content, url,

and img_url fields record the textual characteristics of the article. The table also

contains three foreign keys: category_id refers to categories, author_id

refers to authors, and source_id refers to the sources table. The

published_at and updated_at fields record the time of publication or

update, while bias_score contains the bias value of the article.

authors

This table stores data of authors. The id is the primary key, the name field

contains the name of the author. updated_at records the time the record was

updated, and bias_score records the bias value associated with the given

author.

categories

The categories table serves as the basis for the thematic classification of articles.

The id is the primary key, name contains the name of the category, and description

contains its detailed description. The updated_at field records the time the

record was last modified.

sources

This table stores online news sources. The id is the primary key. name describes

the name of the source, url describes its accessibility, category describes the

orientation of the source (government-related, independent), and updated_at

contains the time the record was updated.

person_bias

A table containing the bias values of persons for public figures. id is the primary

key, name records the name of the person, and bias_score records the bias

value. The source_id field is a foreign key that points to the sources table.

updated_at contains the time the record was updated.

tags

A table containing tags, keywords, with which articles can be categorized. id is the

primary key, name contains the name of the tag. The source_id field is a

foreign key that points to the sources table, and updated_at records the time the

record was last modified.

94 B. Ónodi and A. Agárdi

Figure 1. ER diagram of the database

After introducing the role and data content of each table, the ER diagram shown in

Figure 1 illustrates the entire structure of the database and the relationships

between each entity. The diagram clearly shows how articles, sources, categories,

authors, tags, and sentiment values assigned to people are related to each other.

3.1.2. File system and file management

The system handles not only structured data, but also binary files, primarily

images. These are not stored directly in the database, but in the server's file system

in order to make more efficient use of performance and storage space. Images are

saved in the /public/images directory, and the paths are stored in text form in

the database. Scraper modules automatically generate file names and avoid name

conflicts. This approach is flexible, maintainable, and allows images to be managed

separately, even when moved to external storage.

4. Implementation and Deployment Process

4.1. Server Side Implementation

During the development of the server, first the data collection modules are created

using Puppeteer. The purpose of the scraper was to automatically crawl the pages,

collect the titles, publication dates, images and texts of the articles, and then store

the data in a structured way. The scraper can handle the pagination of the pages and

prevent the saving of duplicate entries.

For this module, REST API endpoints are developed using the Express.js

framework, which provide access to the data for the client side. During the

News Aggregation Development 95

development of the APIs, great emphasis on robust error handling is placed, which

allows for the appropriate handling of network or database problems.

4.2. Pipeline Implementation

The purpose of the processing pipeline was to clean the collected data, analyze it,

and save the results back to the database. HTML tags were removed from the text

data, the texts were normalized, and erroneous data was filtered out. For sentiment

analysis of the data, a pre-trained Hungarian NLP model is used, which assigned a

bias value to each article. The pipeline has a modular structure, and the data

processing steps are implemented in separate modules, thus ensuring easy

extensibility and maintainability.

4.3. Client side implementation

During the development of the frontend, the goal was to create a clean, easy-to-use

user interface. The component-based approach of the React framework allowed for

separate, modular implementation of each view (home page, statistics pages). On

the home page, newly downloaded articles are displayed with infinite scrolling, in

card format. On a separate page, statistical analyses are also available using

diagrams, such as the change in average bias values over time.

4.4. Adding a new news source to the system

The application was designed to make integrating news source easy. The scraper

modules are located in a separate file and communicate with the backend via a

unified interface. The following steps are required to support a new news portal:

1. Create a new scraper module

The first step is to create a new JavaScript file in the scraper folder (for example,

sourceName.scraper.js). In this file, it is necessary to implement the

crawling of the website of the given news portal, the identification of relevant

DOM elements, and the collection of the following data using the Puppeteer

library:

• article title,

• publication date,

• image URL (if available),

• full text.

The pagination of the page also needs to be handled if articles can be collected

from multiple pages.

2. Adapting data saving to the system

The collected data must be stored through the existing database management layer.

The system includes a unified saveArticle() function, which ensures data

validation and structured saving. A unique identifier based on the title and date of

the article is used to avoid duplicate records.

3. Adding a new endpoint

To call the scraper module, a new route and its associated controller must be

defined in the server-side Express.js application. This requires the following

elements:

• a route entry (for example /get-latest/sourceName),

• a controller function associated with the route that calls the scraper

module.

4. Testing and validation

96 B. Ónodi and A. Agárdi

It is advisable to test the operation of the new scraper by running it manually. It is

advisable to check the collected articles:

• whether they are saved to the database correctly,

• whether the pipeline processes them without errors,

• whether they are displayed on the client side as expected.

The scraper operation can then be scheduled using the existing cron-based

mechanism. By following the steps described, the integration of a new news source

can be done by creating a few files and making minimal changes, without affecting

other components of the system. This ensures scalability and long-term

expandability.

4.5. Achieved results

The following main achievements were achieved during the development process:

• Data collection: Automatic collection of news articles from two major

Hungarian news sources was achieved using Puppeteer-based scraping

modules.

• Text processing: Raw data processing, cleaning and the application of a

Hungarian-language sentiment analysis model were successfully

integrated into the processing pipeline.

• Data storage and API: Data was stored in a structured manner and made

available via a REST API.

• Client-side display: A responsive, card-based news reader interface and

statistical charts were created to support the user experience.

Approximately a thousand articles were downloaded, processed and sentiment

analyzed during the project.

4.6. System limitations and development opportunities

Although the developed system performs its basic functions well, shortcomings and

development opportunities can be identified in several areas.

4.6.1. Data collection sensitivity

The operation of scraping modules strongly depends on the current HTML

structure of the pages. In the event of a change in the page structure, the scraper

can quickly become faulty, which results in a need for maintenance. In the future, it

would be advisable to:

• Apply machine learning-based page structure recognition.

• Introduce content-based scraping solutions.

• Develop or use a scraping library that increases flexibility.

4.6.2. News aggregation and thematic grouping

Currently, aggregation is implemented at the level of simple article listing, without

thematic linking. In this area:

• Automatic topic grouping could be used to connect news stories.

• Duplicate content could be reduced by detecting duplication.

This development would significantly increase the relevance of information and the

reader experience.

4.6.3. Development of personalized news feeds

News Aggregation Development 97

The current system displays a common news feed to all users. However, modern

news consumption habits are increasingly moving towards personalized feeds.

Future developments include:

• Recording user preferences (e.g. topics, sentiment directions).

• Introducing machine learning-based news recommendation algorithms.

These developments would strengthen the social media-like functions of the

system.

4.6.4. Real-time operation

The system is currently updated with a scheduled run. Implementing real-time

processing and display of news would further enhance the experience of current

events.

5. Summary

The implemented system is overall stable, well-designed, and successfully

demonstrates the possibilities of automatic data collection, text processing, and

sentiment analysis for Hungarian-language news. During the development process,

not only the set functional goals were achieved, but a technological foundation was

created that allows for further expansion and refinement of the system. The

development opportunities revealed during the evaluation – such as the use of a

proprietary sentiment analysis model, thematic grouping of news, the creation of

personalized news feeds, or the introduction of real-time data updates – clearly

show that the system has significant development potential. At the same time, these

development directions do not reduce the value of the current solution, but rather

support its successful implementation and future usability.

98 B. Ónodi and A. Agárdi

References

[1] Dave Winer. Rss 2.0 at harvard law. https://cyber.harvard.edu/rss/rss.html

[2] Mark Nottingham and Robert Sayre. The atom syndication format.

https://datatracker.ietf.org/doc/html/rfc4287

[3] Leonard Richardson. Beautiful soup documentation.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

[4] Anber Arif. What is puppeteer? popular node.js library explained.

https://www.webshare.io/academy-article/what-is-puppeteer

[5] Selenium. Selenium history. https://www.selenium.dev/history/

[6] Wikipédia. Natural language processing.

https://en.wikipedia.org/wiki/Natural_language_processing

[7] Li, J., Sun, A., Han, J., & Li, C. (2020). A survey on deep learning for named entity

recognition. IEEE transactions on knowledge and data engineering, 34(1), 50-70.

https://doi.org/10.1109/TKDE.2020.2981314

[8] Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis

methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-

5780. https://doi.org/10.1007/s10462-022-10144-1

[9] Node.js: https://nodejs.org/en

[10] Node Package Manager: https://nodejs.org/en/learn/getting-started/an-introduction-to-

the-npm-package-manager

[11] Express.js: https://expressjs.com/

[12] Puppeer: https://pptr.dev/

[13] Huspacy: https://huspacy.github.io/

[14] NYTK/sentiment-hts5-xlm-roberta-hungarian:

https://huggingface.co/NYTK/sentiment-hts5-xlm-roberta-hungarian

[15] XLM-RoBERTa: https://huggingface.co/docs/transformers/model_doc/xlm-roberta

[16] Ground News: https://ground.news/

[17] Flask: https://flask.palletsprojects.com/en/stable/

[18] PostgreSQL: https://www.postgresql.org/

https://doi.org/10.1109/TKDE.2020.2981314
https://doi.org/10.1007/s10462-022-10144-1

