
1. INTRODUCTION

Consider the following simple model. A bookmaker takes a
bet and gets a certain amount. Let x be the bet and the win
z. The ratio r=z/x is called return rate and denoted by r. If
the bet is x, then the return value is z = rx.
The return rate is the return value of the unit bet. The bet,
the return rate and the return value can be an arbitrary real
number. If e.g. the bet is 3, and the return rate is 2, then
bookmaker wins 6, (if x = 3, r = 2, then z=6). If e.g. x = 5
and r = -3, then z = -15, then bookmaker loses 15.

Now we generalize our simple model. In the new model let
m be the number of the wagers. Let r1, r2, ..., rm be the
return rate of wagers. If  x1, x2, ..., xm are the bets on wagers,
then the return value of the wagers is

.

If the value of z is positive, then the bookmaker wins, if z is
negative, then the bookmaker loses.

In a further generalization of the model, consider an
experiment where the number of possible outcomes is n.
We use the same wagers (W) for all outcomes (O). We
assume that the return rates for all outcomes are known.
The bets can then be denoted by vector xx, the return rates
can be denoted by matrix RR, where the entry rij stands for.

The following scheme shows our data

O 1 … O j … On

x1 W1 r11 … r1j … r1n

: 
xi W i ri1 … rij … rin

: 
xm W m rm1 … rmj … rmn

If the outcome of experiment is Oj, then the return value

for some betting vector xx is

.

If there is such a betting vector xx that 

zj > 0, (j= 1, ..., n)

this means that we have a sure win for each outcome of the
experiment. This is called arbitrage or arbitrage opportunity
(arbitrage = sure win opportunity).

“Club of Economics in Miskolc” TMP Vol. 1., pp. 27–32. 2002.

27

ARBITRAGE THEOREM AND ITS 
APPLICATIONS

DR. NAGY TAMÁS

CANDIDATE OF MATHEMATICAL SCIENCE, PHD, ASSOCIATE PROFESSOR

UNIVERSITY OF MISKOLC, INSTITUTE OF MATHEMATICS

Summary
In my article I describe the concept of financial rate of return and the value of return in a very simple model first. Then as

generalisation of the model we take an experiment, which has n possible outcomes. We have the same m kind betting possibilities
for each outcome. The financial rate of return is known for each outcome and betting possibility. We define the concept of

arbitrage (the possibility of sure winning), and we are looking for the answer how to characterise the arbitrage exemption. What
is the guarantee, that any betting terms cannot be given for which the winning is sure for each outcome? For this question the

answer is given in the arbitrage theorem, which is one of the alternatives of the well-known Farkas theory. In the second part of
the article I demonstrate some applications of the theorem. I apply it for a classical betting problem first, then for an option

pricing in more details. The applications for the one-period binomial and trinomial, and the more-period binomial option pricing
will also be made known.
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2. ARBITRAGE THEOREM

The arbitrage can also be written in matrix form, that is
if there is such a betting vector xx that 

XXRR  > 00,,
then arbitrage occurs.

In the following we give a characterization of the so-called
arbitrage-free. What is the guarantee that doesn’t exist such
a betting vector xx which leads to sure win opportunity? The
Farkas theorem gives the answer to this question.

FFaarrkkaass  tthheeoorreemm:

The system
XXRR  >> 00,,

has no solution if and only if the system
RRpp  ==  00
pp  ≥ 00
pp  ≠ 00

has solution.

This theorem is known as Gondan theorem too, but this is
an other form of the original Farkas theorem.
In the original Farkas theorem the two systems are AAxx==bb,
xx≥00 and yyAA≤00, yybb>>00. J. Farkas published this famous
theorem in 1902 and he applied it for the axiomatization of
the analytical mechanics. The Farkas type theorems play an
important role in the field of optimization. This is one of
the most quoted theorem in the topic of optimization.
If we consider vector pp=(p1, p2, ..., pn) in the second system
as a probability (random) vector of the outcomes {{O1, O2,
...On}} then vector RRpp can be interpreted according to the
following: The i-th element of vector RRpp

is the expected value of the returns value of the i-th wager.
According to the Farkas theorem arbitrage doesn’t occur if
and only if the expected value of the return values is zero for
all wagers. To summarize we point out that the arbitrage
can be formulated in the following way.

AArrbbiittrraaggee  tthheeoorreemm:
Exactly one of the following statements is true:
a) there exists a probability vector pp=(p1, p2, ..., pn) 
for which

for all i=1, 2, ..., m,
b) there exists a betting vector xx=(x1, x2, ..., xm) for which

for all j=1, 2, ..., n.

Proof of the theorem:
The arbitrage theorem can be proved in several ways. Here
we prove it by means of the duality of linear programming.
Consider the standard primal and dual linear programming
problems:

Primal Dual 

AAzz = bb yyAA ≤ cc
zz ≥ 00
cczz → min! yybb → max! 

According to the duality theorem of the linear
programming if the primal and the dual problems have
feasible solutions then both problems have optimal
solutions and the minimal value of the primal objective
function is equal to the maximal value of the dual objective
function.
Consider the following linear programming problem. 

(1)

xm+1 → max

According to the condition of the problem we would like to
reach at least an amount xm+1 for all outcomes and beside we
want that this amount should be maximal. This problem
can be transformed to the standard dual linear
programming problem and we can write the primal
problem as follows:

(2)

pj  ≥0,      j= 1, 2, ..., n
0 → min

Note that the condition of problem (2) is the same as in the
arbitrage theorem. It can be easily observed that the
problem (1) has feasible solution (e.g. xx=00 and xm+1=0). We
distinguish two cases according that the problem (2) has or
hasn’t got any solution.
If the problem (2) has feasible solution (there exists a
probability vector) then according to the duality theorem
both problems have optimal solutions, the optimal value is
zero. So xm+1=0 means that there is no sure win
opportunity.
If the problem (2) has no feasible solution (there doesn’t
exist a probability vector) then according to the duality
theorem there isn’t any optimal solution and the objective
function of problem (1) is not bounded from above. It
means that xm+1 can be positive. In this case there is sure win
for all outcomes, so there is arbitrage. The arbitrage theorem
has been proved.
The arbitrage theorem has a weak form, which gives a
connection for the sure not-lose opportunity instead of the
sure win.
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WWeeaakk  aarrbbiittrraaggee  tthheeoorreemm:

Exactly one of the following statements is true:

a) there exists a probability vector pp=(p1, p2, ..., pn), all of
whose components are positive for which 

for all i = 1, 2, ..., m,
b)  there exists a betting vector xx=(x1, x2, ..., xm) for which

for all j= 1, 2, ..., n, but for at least one index the strict
inequality holds.

3. APPLICATIONS

3.1. CLASSICAL ODDS

Consider an experiment with n possible outcomes on which
we can bet. The odds can be given with the scheme e.g. “3
to 1”, this means that the bet is 1, the return value is 3 if the
outcome of the experiment is favourable for us in the other
case the bet is lost. Let our bet for the i-th outcome of the
experiment ''oi to 1''. In this problem the matrix RR is
quadratic, which has the following entries:

rij = 0i,    i = 1, 2, ..., n,
rij = -1,   i ≠ j.

According to the arbitrage theorem we have possibility for
the sure win if and only if there exists a probability vector
pp=(p1, p2, ..., pn) for which

from which we obtain that
.

Since pi is probability, the pi must sum to 1. If

then we can give such a bet for which we have sure win
opportunity independently of the outcome of the
experiment. It can be easily shown that the bets

yield sure win and the gain is 1 for all outcomes. If e.g. there
are three outcomes and for these the odds are ''1 to 1'', ''2
to 1'', ''3 to 1'', then we have sure win, because

.

If e.g. the bets are -1, -0.7, -0.5, then our gains are 0.2, 0.1,
0.2 . If the bets are - 6, -4, -3, then the gain is 1 for all
outcomes.

3.2. OPTION PRICING

Consider a European call option, we want to determine its
price C. The call option is a right (not the obligation) to buy
a stock for a given price (exercise or strike price) at a given
future time (expiration date). In this section we use the
following notations:

S : initial (present) price of the stock,
K : exercise price of the call option,
T : expiration time (year),
r : nominal risk-free interest rate per year 

(compounded continuously),
ST : stock price at the expiration time.

First we compute the value of the call option at the
expiration time. If the stock price (ST) at the expiration time
exceeds the exercise price (K) of the call option, then the
owner of the option will exercise the option and buy the
stock for price K. The value of the call option is ST –K. If
the stock price (ST) at the expiration time doesn’t exceed the
exercise price (K) of the call option then the owner of the
option wouldn’t exercise the option. The option is
worthless, so its value is zero. We can handle both cases
together with the help of maximum function or notation of
positive cutting. The value of the call option at the
expiration time is

max(ST – K,0),
or with notation of the so-called positive cutting:

(ST – K,0)+.

3.2.1. SINGLE PERIOD BINOMIAL MODEL

Suppose that the initial stock price is S. At the end of the
period the stock price will either be Su or Sd. We assume
that

d < 1+erT < u

The stock price at the expiration time is

.

Here we use the previous terminology (experiment,
outcome, etc.). In this problem the experiment has two
outcomes, which are stock prices at the expiration time.
Now consider a portfolio, which consists of a stock and a
call option. So we have two wagers: buying (or selling) the
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stock respectively buying (or selling) the call option. What
is the matrix RR in our new model? The entry rij (i,j=1,2)
means the present return value in the case of buying of a
stock and buying of an option. As known, present value =
value times e-rT.

r11: at the expiration time the value of the stock is Su, the
return value is its present value reduced by the cost
of buying stock.

r12: at the expiration time the value of the stock is Sd, the
return value is its present value reduced by the cost
of buying stock.

r21: at the expiration time the value of the call option is
(Su–K)+, the return value is its present value reduced
by the cost of buying option.

r22: at the expiration time the value of the call option is
(Sd–K)+, the return value is its present value reduced
by the cost of buying option.

The return matrix RR can be written in the following way

Increasing stock price    Decreasing stock price 

Stock Sue-rT-S Sde-rT-S

Call option (Su–K)+-C (Sd–K)+-C

We want to determine the price of call option (C) in such a
way that there is not sure win. There is no such a portfolio
for which there is sure win independently from the stock
price. The answer for this is given by the arbitrage theorem.
Let p be the probability that the stock price increases. Let
(1-p) be the probability that the stock price decreases.
According to the arbitrage theorem there is no arbitrage
opportunity is not if there is a probability p that the expected
return of the stock and the call option is zero, that is

p(Sue-rt-S)+(1-p)(Sde-rT-S)=0,

p[ (Su-K)+-C] +(1-p)[(Sd–K)+-C]=0

After solving this system of equations the option price
becomes

C=e-rT[p(Su–K)++(1-p)(Sd–K)+],

where the probability, that the stock price increases, is

.

To summarize we note that the price of the call option is the
present value of the expected value of the option values at
the expiration time.
If e.g. the initial stock price S=200, the factors u=1.1, d=0.9,
the exercise price of the call option K=210, the expiration
time T=0.5 year, the risk-free interest rate 12 %, so r=0.12,
then p=0.8092 and C=7.621 . The price of the call option
is 7.621.

3.2.2. SINGLE PERIOD TRINOMIAL MODEL

Consider a European call option. Let S be the initial price
of stock. Suppose that the stock price will have three
possible prices at the end of the period. Let u, v, d be the
factors so the stock price will be Su, Sv respectively Sd. The
price of the call option (C) can be determined in the
following way.

In the trinomial model also consider a portfolio with stock
and call option. The matrix RR is the following:

Su Sv Sd

Stock Sue-rT-S Sve-rT-S Sde-rT-S

Call option (Su–K)+-C (Sv–K)+-C (Sd–K)+-C

Let be the probabilities of the stock prices Su, Sv, Sd.
According to the arbitrage theorem we obtain the following
system of equations

p1(Sue-rT-S)+p2(Sve-rT-S)+p3(Sde-rT-S)=0

p1[(Su–K)+-C]+p2[(Sv–K)+-C]+p3[(Sd–K)+-C]=0

From the second equation

C=p1(Su–K)++p2(Sv–K)++p3(Sd–K)+,

from the first equation

p1u++p2v+p3d=e-rT.

Considering that p1+p2+p3=1, we obtain for the option
price that

C=p1((Su–K)+-(Sd–K)+)+p2((Sv–K)+-(Sd–K)+)+(Sd–K)+,

p1(u-d)+p2(v-d)=e-rT-d,

where p1, p2 ≥ 0, p1, p2 ≤ 1. In the trinomial model the
arbitrage-free option price is not unique.

If e.g. the initial stock price S=100, the three possible stock
price at the expiration time Su=120, Sv=102, Sd=90, the
exercise price of the call option K=105, the expiration time
T=1 year, the risk-free interest rate 12 % (r=0.12), then

4.763 ≤ C ≤ 10.085.

If the price of the call option falls into the above interval
then there is no arbitrage opportunity.
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3.2.3. MULTIPERIOD BINOMIAL MODEL

Finally consider an option-pricing problem in which there
are n periods. We divide the period time (T) n parts of the
same size. Let r be the interest rate per year and the interest
rate is the same in all periods, let K be the exercise price of
the call option, let S0 be the initial stock price. Let Si be the
stock price at the end of the i-th period (i=1,2,…,n).
Suppose that the stock price either increases or decreases in
all periods. The increasing and decreasing factors are u
respectively d, where

Let Xi be a Bernoulli random variable, which characterizes
the changing of the stock price at the end of the i-th period
considering the stock price at the end of the (i-1)-th period:

In our model the outcome of the experiment is the values of
the random vector (X1, X2, ..., Xn). According to the
arbitrage theorem there is not sure win if for these outcomes
there exists such a probability that the expected value is zero.
So there must be a set of probabilities

P(X1=x1, X2=x2, ..., Xn=xn),   x1=0.1,   i=1,2,...,n.

that makes all bets fair. Now consider the following type of
bet. First choose a period e.g. i-th period (i=1,2,…,n) and
to this period we choose an arbitrary vector which assumes
0 or 1 elements. This vector shows how to change the stock
price until the i-th period. If Xj=xj for all j=1,2,…,i-1, then
we choose the following strategy: We buy one unit stock
and sell it back the next period. When we buy the stock in
the (i-1)-th period, then its cost is Si-1, when we sell it in the
i-th period, then we get either amount uSi-1 or dSi-1. The
present value in the (i-1)-th period of these amounts can be
obtained if we multiply it by e-rT/n. The return value in the
(i-1)-th period can be the following two values:

Let q be the probability that the stock is purchased, so

q=P(X1=x1, X2=x2, ..., Xi-1=xi-1).

Let p be the probability (conditional probability) that the
price of a purchased stock increases in the next period, that is

p=P(X1=1| X1=x1, X2=x2, ..., Xi-1=xi-1).

The probability (1-p) means that the price of a purchased
stock decreases in the next period. The expected return
value at the (i-1)-th period can be computed in the
following way

According to the arbitrage the above bet is arbitrage-free if
this expected value is zero, that is

After reducing the equation we obtain that

,

from this, the probability p is

.

We obtained that the only probability vector that results
arbitrage-free for this bet is the following

.

Since the vector is arbitrary this implies that the probability,
that the stock price increases, is the same in all period and
equal to the above conditional probability, that is

.

The above implies that the random variables X1, X2,…, Xn
are independent, all having the same distribution. The
expected values E(Xi) and the variances Var(Xi) (i=1,…,n)
are the following

E(Xi)=p,
Var(Xi)=p(1-p).

Let Y be a new random variable defined by

,

that is the sum of random variable Xi, The random variable
Y shows the number of the increasing of the stock price in
the n period. The random variable (n-Y) shows the number
of the decreasing of the stock price in the n period. This
random variable has binomial distribution with the
following expected value and variance

E(Y)=np,
Var(Y)=np(1-p).

At the end of the total period the stock price Sn is also a
random variable, which can be expressed with random
variable Y in the following way

Sn=S0uydn-y,
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The value of the call option at the expiration time is 
(Sn-K)+, its present value at the beginning of the period is

e-rT(Sn-K)+

and its expected value will be the price of the call option C.
Summarizing, the following option price results arbitrage-
free

C=e-rTE((S0uYdn-Y)+).
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Összefoglalás

Cikkemben elôször egy nagyon egyszerû modellben ismertetem a
megtérülési ráta és a megtérülési érték fogalmakat. Majd a mo-
dell általánosításaként tekintsünk egy olyan kísérletet, amelynek
n lehetséges kimenetele van. Mindegyik kimenetre ugyanaz az m
féle fogadási lehetôségünk legyen. Ismert minden kimenetre és fo-
gadási lehetôségre a megtérülési ráta. Definiáljuk az arbitrázs
(biztos nyerés lehetôsége) fogalmát, és arra keressük a választ,
hogy az arbitrázsmentességet hogyan lehet karakterizálni. Mi ga-
rantálja azt, hogy nem lehet olyan fogadási téteket megadni,
amelynél minden kimenetre biztos a nyerés? Erre a választ az ar-
bitrázs tételben adjuk meg, ami az ismert Farkas tétel egy válto-
zata. A cikk második részében a tétel néhány alkalmazását mu-
tatom be. Elsôként egy klasszikus fogadási problémára, majd
részletesebben az opcióárazásra alkalmazom a tételt. Ismertetés-
re kerül az egyperiódusos binomiális és trinomiális ill. a többpe-
riódusos binomiális opcióárazásra történô alkalmazás.

Zusammenfassung

In meinem Artikel zuerst bespreche ich die Umschlagsrate und
den Umschlagswert in einem einfachen Modell. Dann als
Generalizierung des modells betrachten wir ein Experiment mit
n Ausgaben. Alle Ausgaben haben den gleichen Wetten. Die
Umschlagsraten sind bekannt für alle Ausgaben und Wetten.
Wir definieren die Arbitrage, und wir suchen die Antwort für
die Fragen: Was charakteriziert die Arbitrage-frei? What is die
Garantie dazu, dass wir keinen Beten geben können, dass das
Gewinnen für alle Ausgaben sicher ist? Die Arbitrage Satz gibt

die Antwort für diese Fragen. Dieser Satz ist ein Version des
Farkas Satzes. Im zweiten Teil des Artikels demonstrieren wir
einige Anwendungen des Arbitrage Satzes. Erstens anwenden
wir diesen Satz für eine classishe Wette, dann für die
Optionspreisung.
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