CONSTRUCTION OF THE CONTACT ZONE OF A HELICAL CYLINDRICAL EXTERNAL GEAR PAIR WITH STRAIGHT TOP LAND MERIDIANS

Authors

DOI:

https://doi.org/10.32972/dms.2024.003

Keywords:

contact zone, contacting generating line, top land meridian

Abstract

The study deals with the construction of the contact zone of helical cylindrical external gears. The shape and size of the contact zone determine the phenomena that occur even in the case of error-free tooth design, installation error exemption and load-induced error exemption Such a phenomenon is the vibration excitation resulting from the connection, which also affects the identification of the drive elements. It is possible to deviate from the regular rectangular shape of the contact zone by modifying the top land surfaces. The change can mean a combination of the change in the total length of the contacting generating lines and the change in the contact ratio. This study deals with the construction of the generalized contact zone.

References

Debreczeni, D. (2021). Evolvens, külsőfogazatú, hengeres fogaskerékpárok fogtő teherbírásának és egyfogpár merevségének geometriai függősége.

Drágár, Z., & Kamondi, L. (2018). The role of the tooth shape in powertrains containing gears. 26th. International Conference on Mechanical Engineering, OGÉT 2018, 232-235.

Drágár, Z., & Kamondi, L. (2021). The effect of the contact zone of cylindrical helical gears on the meshing and some considerations for determining its shape. Design of Machines and Structures, 11(1), 16-26. https://doi.org/10.32972/dms.2021.002

Erney, G. (1983). Fogaskerekek. Budapest: Műszaki Könyvkiadó.

Graf von Seherr-Thoss, H. (1965). Die Entwicklung der Zahnrad-Technik. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-92906-9

Jamali, H., Sharif, K., Evans, H., & Snidle, R. (2015). The Transient Effects of Profile Modification on Elastohydrodynamic Oil Films in Helical Gears. Tribology Transactions, 58(1), 119-130. https://doi.org/10.1080/10402004.2014.936990

Litvin, F. (1972). A fogaskerékkapcsolás elmélete. Budapest: Műszaki Könyvkiadó.

Litvin, F., Fuentes, A., Gonzalez-Perez, I., Carvenali, L., Kawasaki, K., & Handschuh, R. (2003). Modified involute helical gears: computerized design, simulation of meshing and stress analysis. Computer Methods in Applied Mechanics and Engineering, 192(33-34), 3619-3655. https://doi.org/10.1016/S0045-7825(03)00367-0

Litvin, F., Gonzalez-Perez, I., Fuentes, A., Hayasaka, K., & Yukishima, K. (2005). Topology of modified surfaces of involute helical gears with line contact developed for improvement of bearing contact, reduction of transmission errors, and stress analysis. Mathematical and Computer Modelling, 42(9-10), 1063-1078. https://doi.org/10.1016/j.mcm.2004.10.028

Niemann, G., & Winter, H. (1983). Maschinenelemente. Berlin, Heidelberg: Springer Berlin Heidelberg.

Roth, K. (1989a). Zahnradtechnik. Band I. Stirnradverzahnungen-Profilverschiebungen, Toleranzen, Festigkeit. Berlin: Springer Verlag.

Roth, K. (1989b). Zahnradtechnik. Band II. Stirnradverzahnungen-Geometrische Grundlagen. Berlin: Springer Verlag.

Tran, V.-T., Hsu, R.-H., & Tsay, C.-B. (2014). Tooth contact analysis of doublecrowned involute helical pairs shaved by a crowning mechanism with parallel shaving cutters. Mechanism and Machine Theory, 79, 198-216. https://doi.org/10.1016/j.mechmachtheory.2014.04.012

Yang, Y., Wu, Y., Li, Y., & Liu, X. (2023). Effects of Tooth Modification in the Involute Helical Gear Form-Grinding Process on Loaded Transmission Character with Consideration of Tooth Axial Inclination Error. Machines, 11(2), 305. https://doi.org/10.3390/machines11020305

Downloads

Published

2024-06-21

How to Cite

Drágár, Z. (2024). CONSTRUCTION OF THE CONTACT ZONE OF A HELICAL CYLINDRICAL EXTERNAL GEAR PAIR WITH STRAIGHT TOP LAND MERIDIANS. Design of Machines and Structures, 14(1), 32–42. https://doi.org/10.32972/dms.2024.003