PROPOSAL OF PARAMETER CONTROL DESIGNATION SYSTEM OF ADDITIVELY MANUFACTURED PARTS
DOI:
https://doi.org/10.32972/dms.2024.008Keywords:
additive manufacturing, standardization, technical drawingAbstract
As additive manufacturing is getting more and more widespread, the need for a system regarding the technical documentation is getting more required. The tremendous amount of manufacturing parameters makes the performance of the part hard to assess. Same parameters are used with different names and there is no common knowledge of how these parameters affect the part precisely. We can find a serious amount of research data and results, but only a small portion of them is able to be compared because of the different measuring techniques or similar investigation of parameters. To be more effective with the data gathering, a systematic way of recording these aspects is needed. In this article we propose a robust way of recording information on technical drawings of additively manufactured parts. We also discuss the difficulties and future opportunities implemented by this method.
References
Albert, J., & Takács, Á. (2023). Additív gyártás biomimetikai megközelítéssel, GÉP 74 : 4 pp. 9-11.
Bhardwaj, A., Jones, S., Kalantar, N., Pei, Z., Vickers, J., Wangler, T., . . . Zou, N. (2019). Additive Manufacturing Processes for Infrastructure Construction: A Review. Journal of Manufacturing Science and Engineering, 141(9). https://doi.org/10.1115/1.4044106
Ficzere, P., & Győri, M. (2016). A jelképes ábrázolásból adódó problémák vizsgálata gyárthatósági szempontból 2D-s ábrázolás és 3D-s testmodellek használata esetén. GÉP, 67(5-6), 70-73.
Kim, S., Andreu, A., Kim, I., Kim, J.-H., Lee, J., & Yoon, Y.-J. (2022). Continuously varied infill pattern (ConVIP): improvement of mechanical properties and printing speed of fused filament fabrication (FFF) 3D printing. Journal of Materials Research and Technology, 18, 1055-1069. https://doi.org/10.1016/j.jmrt.2022.02.133
Kuznetsov, V., Tavitov, A., Urzhumtsev, O., Mikhalin, M., & Moiseev, A. (2019). Hardware Factors Influencing Strength of Parts Obtained by Fused Filament Fabrication. Polymers, 11(11), 1870. https://doi.org/10.3390/polym11111870
Li, P., Yang, F., Bian, Y., Zhang, S., & Wang, L. (2023). Design of lattice materials with isotropic stiffness through combination of two complementary cubic lattice configurations. Acta Mechanica, 234, 1843-1856. https://doi.org/10.1007/s00707-023-03480-y
Naresh, D., Raju, R., & Parveen, S. (2023). Design and development of alternate layer printing method to reduce the porosity in FDM printing process. International Journal on Interactive Design and Manufacturing (IJIDeM). https://doi.org/10.1007/s12008-023-01624-x
Sangaletti, S., Aranda, M., Távara, L., & García, I. (2024). Effect of stacking direction and raster angle on the fracture properties of Onyx 3D printed components: A mesoscale analysis. Theoretical and Applied Fracture Mechanics, 129, 104228. https://doi.org/10.1016/j.tafmec.2023.104228
Seregi, B. (2023). Gyártási paraméterek dinamikai hatásainak vizsgálata additív módon gyártott darabokon.
Simion, I., & Arion, A. (2016). Dimensioning Rules for 3D Printed Parts Using Additive Technologies (FDM). University Politechnica of Bucharest Scientific Bulletin, Series D, 78(2), 79-92.
Srinivasan Ganesh Iyer, S., & Keles, O. (2022). Effect of raster angle on mechanical properties of 3D printed short carbon fiber reinforced acrylonitrile butadiene styrene. Composites Communications, 32, 101163. https://doi.org/10.1016/j.coco.2022.101163
Thompson, M., Moroni, G., Vaneker, T., Fadel, G., Campbell, R., Gibson, I., . . .Martina, F. (2016). Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals, 65(2), 737-760. https://doi.org/10.1016/j.cirp.2016.05.004