Comparing the market history of mobile phones and electric cars by using sigmoid curves
DOI:
https://doi.org/10.32972/dms.2024.015Keywords:
market of mobile phones, market of electric cars, comparison, sigmoid curvesAbstract
The time curves of market history for mobile phones and for electric cars is compared by sigmoid curves. Creating the approximate sigmoid curves of the curves showing the real data of products sold in function of the time, it is possible to find similarities and differences of the time history of the market of mobile phones and electric cars. One of the most important decisions during this investigation is to decide, which curve describes better the product investigated: Logistic curve (Pearl-Reed curve) or Growth curve (Bertalanffy)? On the basis of many characteristics of these curves, in the second step of the study it is possible to characterise the market of the products, and the comparison can give important points of view for the understanding the present situation of the markets and to try to forecast their possible future.
References
Bihari, J., & Sarka, F. (2018). Human-Electric Hybrid Drives in Medium-Sized Cities by Daily Traffic. Lecture Notes in Mechanical Engineering, 59-66. https://doi.org/10.1007/978-3-319-75677-6_5
Fisher, J., & Pry, R. (1971, 1). A simple substitution model of technological change. Technological Forecasting and Social Change, 3, 75-88. https://doi.org/10.1016/S0040-1625(71)80005-7
Nelder, J., & Mead, R. (1965, 1). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. https://doi.org/10.1093/comjnl/7.4.308
Pearl, R., & Reed, L. (1920, 6). On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. Proceedings of the National Academy of Sciences, 6(6), 275-288. https://doi.org/10.1073/pnas.6.6.275
Szabó, F. (2011). Analógia a sport- világcsúcsok története és az evolúciós optimáló algoritmusok iteráció- története között. GÉP, 62(9-10), 28-31.
Szabó, F. (2017). Evolutionary Based System for Qualification and Evaluation of Group Achievements (EBSYQ). International Journal of Current Research, 9(8), 55507 - 55516.
Szabó, F. (2018). Optimumkereső algoritmusok iterációtörténetének vizsgálata. GÉP, 69(4), 82-85.
Szabó, F. (2019, 9). Application of sigmoid curves in environmental protection. (K. Szita Tóthné, K. Jármai, & K. Voith, Eds.) Solutions for Sustainable Development.
Szabó, F. (2020). A COVID-19 járvány időbeli alakulásának vizsgálata szigmoid görbékkel. Multidiszciplináris Tudományok, 10(3), 294-306. https://doi.org/10.35925/j.multi.2020.3.35
Szabó, F. (2021). A szigmoid görbék multidiszciplinaritása. GÉP, 72(3-4), 61-64.
Szabó, F. (2021). Analysis of Wear Curves as Sigmoid Functions. Lecture Notes in Mechanical Engineering, 273-281. https://doi.org/10.1007/178-981-15-9529-5_24
Szabó, F. (2022). A COVID-19 járvány időbeli alakulásának vizsgálata szigmoid görbékkel II. : Több hullám összehasonlítása. Multidiszciplináris tudományok, 12(1), 58-70. https://doi.org/10.35925/j.multi.2022.1.5
Szabó, F. (2022). Szigmoid görbék a terméktervezésben. GÉP, 73(3-4), 52-55.
Szabó, F. (2023, 11). Investigation and comparison of iteration curves of optimization algorithms. Design of Machines and Structures, 13(2), 93-112. https://doi.org/10.32972/dms.2023.020
Szabó, F. (2023). Overview of the Market of Electric Cars by Multilogistic Curves. Lecture Notes in Mechanical Engineering, Vehicle and Automotive Engineering, 322-329. https://doi.org/10.1007/978-3-031-15211-5_27
Szabó, F. (2024, 10). Vizsgálatok időigényének csökkentési lehetősége szigmoid görbék alkalmazásával. Multidiszciplináris Tudományok, 14(4), 24-32. https://doi.org/10.35925/j.multi.2024.4.2
Von Bertalanffy, L. (1960). Principles and theory of growth. In: Nowinski, W.W., Ed., Fundamental Aspects of Normal and Malignant Growth, Elsevier, Amsterdam, 137-259. (W. Nowinski, Ed.) Fundamental Aspects of Normal and Malignant Growth, 137-259.