Applying Method of Line on cantilever beam under varying loads

Authors

DOI:

https://doi.org/10.32972/dms.2025.005

Keywords:

Method of Lines, cantilever beam, varying loads, Euler-Bernoulli beam theory, simplified wind turbine blade

Abstract

The Method of Lines (MoL) is a powerful numerical technique for solving partial differential equations (PDEs) by discretising the spatial domain while keeping time as a continuous variable. In this study, we employ MoL to solve the fourth-order beam equation, which governs the dynamics of an Euler-Bernoulli cantilever beam. The primary objective is to develop a simplified computational model for a wind turbine blade, treated as a cantilever beam subjected to dynamic loading. The spatial discretisation is performed using finite difference approximations, transforming the governing PDE into a system of second-order ordinary differential equations (ODEs). The resulting ODE system is then integrated over time using Runge-Kutta.

References

Al-Najjar, I. F., Jálics, K., & Kollár, L. E. (2023). Modelling beam vibration under non-uniform transverse load. Multidiszciplináris tudományok, 13(1), 42-51. doi:https://doi.org/10.35925/j.multi.2023.1.5

Al-Najjar, I., & Jálics, K. (2024). Wind turbine blades vibration: review. Multidiszciplináris Tudományok, 14(2), 175-182. doi:https://doi.org/10.35925/j.multi.2024.2.17

Al-Najjar, I., Kollár, L., & Jálics, K. (2024). Analytical and experimental study of beam bending vibration. Design of Machines and Structures, 12(2), 14-23. doi:https://doi.org/10.32972/dms.2022.009

Campo, A. (2022). The Numerical Method of Lines facilitates the instruction of unsteady heat conduction in simple solid bodies with convective surfaces. International Journal of Mechanical Engineering Education, 50(1), 3-19. doi:https://doi.org/10.1177/0306419020910423

Cash, J. (2005). Efficient time integrators in the numerical method of lines. Journal of Computational and Applied Mathematics, 183(2), 259-274. doi:https://doi.org/10.1016/j.cam.2004.12.031

Haentjens, T. (2013). Efficient and stable numerical solution of the Heston–Cox–Ingersoll–Ross partial differential equation by alternating direction implicit finite difference schemes. International Journal of Computer Mathematics, 90(11), 2409-2430. doi:https://doi.org/10.1080/00207160.2013.777710

Khosravi, M., & Jani, M. (2018). Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature. International Journal of Nonlinear Analysis and Applications, 9(1), 117-127. doi:https://doi.org/10.22075/ijnaa.2017.11240.1549

Leszczyński, H., & Matusik, M. (2016). Method of lines for parabolic functional differential equations on cylindrical domains. Calcolo, 53(1), 67-82. doi:https://doi.org/10.1007/s10092-015-0137-0

Pregla, R. (2008, 4). Analysis of Electromagnetic Fields and Waves. Wiley. doi:https://doi.org/10.1002/9780470058503

Rao, S. (2006, 12). Vibration of Continuous Systems. Wiley. doi:https://doi.org/10.1002/9780470117866

Schiesser, W., & Griffiths, G. (2009, 3). A Compendium of Partial Differential Equation Models. Cambridge University Press. doi:https://doi.org/10.1017/CBO9780511576270

Shahriar, A., Khodadadi, H., Majlesi, A., & Montoya, A. (2024). A Finite Difference Scheme for the Large-Deflection Analysis of Non-Prismatic Cantilever Beams. The interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity, 13(1), 351-360. doi:https://doi.org/10.5890/DNC.2024.06.012

Szeidl, G., & Kiss, L. (2020). Mechanical Vibrations. Cham: Springer International Publishing. doi:https://doi.org/10.1007/978-3-030-45074-8

Yaseen, M., & Batool, S. (2024). Utilizing a third order difference scheme in numerical method of lines for solving the heat equation. Physica Scripta, 99(4), 045204. doi:https://doi.org/10.1088/1402-4896/ad2be5

Zeng, X. (2024). An explicit fourth‐order hybrid‐variable method for Euler equations with a residual‐consistent viscosity. Numerical Methods for Partial Differential Equations, 40(6). doi:https://doi.org/10.1002/num.23146

Downloads

Published

2025-05-30

How to Cite

Iyad F., A.-N., & Jálics, K. (2025). Applying Method of Line on cantilever beam under varying loads. Design of Machines and Structures, 15(1), 49–58. https://doi.org/10.32972/dms.2025.005