Determinants of food price inflation in the European Union 27 Member States

Authors

  • Jeremiás Máté Balogh Corvinus University of Budapest
  • Balázs Sárvári Metropolitan University Green Transition Institute

DOI:

https://doi.org/10.32976/stratfuz.2025.6

Keywords:

food prices, oil prices, food inflation, European Union, panel estimation

Abstract

The objective of our research is to investigate the main determinants of food price inflation in the European Union 27 Member States between January 2001 and May 2022. Our research focuses on the role of oil prices, exchange rate volatility, and the impact of the Russian-Ukrainian war that started in February 2022. We compiled a strongly balanced panel dataset based on monthly values. Based on the a priori test results Random Effects (RE), linear regression with panel-corrected standard errors (PCSE), cointegration regression using fully modified ordinary least squares (FMOLS), and dynamic ordinary least squares (DOLS) regression methods were applied. Our result shows that both the increasing crude oil prices and the fluctuating exchange rates stimulated significantly food price inflation in the EU-27. Data demonstrates that Russia’s war against Ukraine also contributes to increasing food prices in the EU-27. In this regard, we provide country-level analysis as well.

Author Biographies

Jeremiás Máté Balogh, Corvinus University of Budapest

Associate Professor, Corvinus University, Department of Agricultural Economics

Balázs Sárvári, Metropolitan University Green Transition Institute

Research Fellow, Metropolitan University Green Transition Institute

Assistant Professor, Institute of Economics, Corvinus University of Budapest

References

AGOVINO, M., CASACCIA, M., CIOMMI, M., FERRARA, M., & MARCHESANO, K. (2019). Agriculture, climate change and sustainability: The case of EU-28. Ecological Indicators, 105, 525–543. https://doi.org/10.1016/j.ecolind.2018.04.064

ALEXANDER, P., ARNETH, A., HENRY, R., MAIRE, J., RABIN, S., & ROUNSEVELL, M. (2022). Increasing food prices may cause up to a million deaths in 2023, even if Ukraine food exports are restored. Research Square, (preprint). https://doi.org/10.21203/rs.3.rs-1851998/v1

BARROS, G. S. DE C., CARRARA, A. F., CASTRO, N. R., & SILVA, A. F. (2022). Agriculture and inflation: Expected and unexpected shocks. The Quarterly Review of Economics and Finance, 83, 178–188. https://doi.org/10.1016/j.qref.2021.12.002

BARUNÍK, J., & KLEY, T. (2019). Quantile coherency: A general measure for dependence between cyclical economic variables. The Econometrics Journal, 22(2), 131–152. https://doi.org/10.1093/ectj/utz002

BORKOWSKI, B., DUDEK, H., & SZCZESNY, W. (2008). Spatial Differentiation of Food Production Structure and Consumption Profile in Enlarged European Union. The Journal of Economic Asymmetries, 5(2), 145–156. https://doi.org/10.1016/j.jeca.2008.02.009

BREUSCH, T. S., & PAGAN, A. R. (1980). The Lagrange multiplier test and its applications to model specification in econometrics. Review of Economic Studies, 47, 239–253. https://doi.org/10.2307/2297111

DRUKKER, D. M. (2003). Testing for serial correlation in linear panel-data models. Stata Journal, 3(2), 168–177. https://doi.org/10.1177/1536867X0300300206

ECB. (2022). Supply chain disruptions and the effects on the global economy. ECB Economic Bulletin, 8/2021. https://www.ecb.europa.eu/pub/economic-bulletin/focus/2022/html/ecb.ebbox202108_01~e8ceebe51f.en.html (Letöltés ideje: 2023. február 9.)

EUROPEAN COUNCIL (2023). Infographic - Where does the EU’s gas come from? https://www.consilium.europa.eu/en/infographics/eu-gas-supply/ (Letöltés ideje: 2023. február 2.)

EUROSTAT (2022). Energy statistics - an overview. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview (Letöltés ideje: 2024. szeptember 1.)

EUROSTAT (2023). The EU imported 58% of its energy in 2020. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220328-2 (Letöltés ideje: 2023. január 8.)

FAOSTAT (2022). Consumer Price Indices. Monthly Food CPI. https://www.fao.org/faostat/en/#data/CP (Letöltés ideje: 2022. december 8.)

FRED (2023). Federal Reserve Bank of St. Louis. Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma (DCOILWTICO) https://fred.stlouisfed.org/series/DCOILWTICO (Letöltés ideje: 2023. január 14.)

GILLER, K., DELAUNE, T., SILVA, J., DESCHEEMAEKER, K., VEN, G. W. J., SCHUT, A. G. T., VAN WIJK, M., HAMMOND, J., HOCHMAN, Z., TAULYA, G., CHIKOWO, R., NARAYANAN, S., KISHORE, A., BRESCIANI, F., TEIXEIRA, H., ANDERSSON, J., & ITTERSUM, M. (2021). The future of farming: Who will produce our food? Food Security, 13., 1073-1099. https://doi.org/10.1007/s12571-021-01184-6

GIORDANI, P. E., ROCHA, N., & RUTA, M. (2016). Food prices and the multiplier effect of trade policy. Journal of International Economics, 101, 102–122. https://doi.org/10.1016/j.jinteco.2016.04.001

HANIF, W., AREOLA HERNANDEZ, J., SHAHZAD, S. J. H., & YOON, S.-M. (2021). Tail dependence risk and spillovers between oil and food prices. The Quarterly Review of Economics and Finance, 80, 195–209. https://doi.org/10.1016/j.qref.2021.01.019

HAUSMAN, J. A. (1978). Specification tests in econometrics. Econometrica, 46, 1251–1271. https://doi.org/10.2307/1913827

IBRAHIM, M. H. (2015). Oil and food prices in Malaysia: A nonlinear ARDL analysis. Agricultural and Food Economics, 3(1), 2. https://doi.org/10.1186/s40100-014-0020-3

JAWORSKI, K. (2021): Measuring food inflation during the COVID-19 pandemic in real time using online data: A case study of Poland. British Food Journal, 123(13). 260–280. o. https://doi.org/10.1108/BFJ-06-2020-0532

KAO, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics, 90. 1-44. https://doi.org/10.1016/S0304-4076(98)00023-2

KARAKOTSIOS, A., KATRAKILIDIS, C., & KROUPIS, N. (2021). The dynamic linkages between food prices and oil prices. Does asymmetry matter? The Journal of Economic Asymmetries, 23, e00203. https://doi.org/10.1016/j.jeca.2021.e00203

KHALFAOUI, R., SHAHZAD, U., GHAEMI ASL, M., & BEN JABEUR, S. (2023). Investigating the spillovers between energy, food, and agricultural commodity markets: New insights from the quantile coherency approach. The Quarterly Review of Economics and Finance, 88, 63–80. https://doi.org/10.1016/j.qref.2022.12.006

LIONTAKIS, A. (2012). Food Price Inflation Rates in the Euro Zone: Distribution Dynamics and Convergence Analysis. Economics Research International, 2012, e868216. https://doi.org/10.1155/2012/868216

LIONTAKIS, A. & KREMMYDAS, D. (2014). Food Inflation in the European Union: Distribution Analysis and Spatial Effects. Geographical Analysis, 46. https://doi.org/10.1111/gean.12033

LIONTAKIS, A. & PAPADAS, C. T. (2010). Stochastic Convergence and Distribution Dynamics of Food Price Inflation Rates in EU. AUA Working Paper Series, No2010-6.

MADDALA, G. S., & WU, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, 61, 631–652. https://doi.org/10.1111/1468-0084.0610s1631

MAWEJJE, J. (2016). Food prices, energy and climate shocks in Uganda. Agricultural and Food Economics, 4(1), 4. https://doi.org/10.1186/s40100-016-0049-6

ODONGO, M. T., MISATI, R. N., KAMAU, A. W., & KISINGU, K. N. (2022). Climate Change and Inflation in Eastern and Southern Africa. Sustainability, 14(22), 1–17. https://doi.org/10.3390/su142214764

PEDRONI, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics, 61, 653–670. https://doi.org/10.1111/1468-0084.0610s1653

PEERSMAN, G., RÜTH, S. K., & VAN DER VEKEN, W. (2021). The interplay between oil and food commodity prices: Has it changed over time? Journal of International Economics, 133, 103540. https://doi.org/10.1016/j.jinteco.2021.103540

PESARAN, M. H. (2004). General Diagnostic Tests for Cross Section Dependence in Panels' IZA Discussion Paper, No. 1240. https://repec.iza.org/dp1240.pdf

PESARAN, M. (2007). A simple panel unit root test in the presence of cross section dependence. Journal of Applied Econometrics. 22. 265-312. https://doi.org/10.1002/jae.951

TULE, M. K., SALISU, A. A., & CHIEMEKE, C. C. (2019). Can agricultural commodity prices predict Nigeria’s inflation? Journal of Commodity Markets, 16, 100087. https://doi.org/10.1016/j.jcomm.2019.02.002

UMAR, U. A., & UMAR, A. (2022). Effects of Exchange Rate on Food Inflation in Nigeria: A Non-Linear ARDL Approach. Gusau International Journal of Management and Social Sciences, 5(1), 195–209. https://www.gijmss.com.ng/index.php/gijmss/article/view/106/88

WESTERLUND, J. (2005). New simple tests for panel cointegration. Econometric Reviews, 24, 297–316. https://doi.org/10.1080/07474930500243019

WESTERLUND, J., & NARAYAN, P. (2015). Testing for predictability in conditionally heteroskedastic stock returns. Journal of Financial Econometrics, 13(2), 342–375. https://doi.org/10.1093/jjfinec/nbu001

WOOLDRIDGE, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. MIT Press. https://doi.org/10.1007/s00712-003-0589-6

Downloads

Published

2025-04-28

How to Cite

Balogh, J. M., & Sárvári, B. (2025). Determinants of food price inflation in the European Union 27 Member States. Strategic Issues of Northern Hungary, 22(01), 79–95. https://doi.org/10.32976/stratfuz.2025.6