Investigation of S960QL type high strength steel and its welded joints applying absorbed specific fracture energy and notch opening displacement
DOI:
https://doi.org/10.32972/dms.2022.007Keywords:
high strength steel, cold cracking, notch opening displacement, absorbed specific fracture energyAbstract
Classical techniques of fracture toughness evaluation, such as determination of the plain-strain fracture toughness, or the critical value of the crack-tip opening displacement are complex methods. The determination of the absorbed specific fracture energy and the notch opening displacement is basically simpler; notched cylindrical tensile specimens characterized by different notch radii can be applied. S960QL type high strength steel and its welded joints without and with preheating were examined; notch opening displacement and absorbed specific fracture energy values were determined. Conclusions belong to the effect of the preheating and the sensitivity of the high strength steel, as well as the reliability of the applied material characteristics were drawn.
References
Ravi, S. – Balasubramanian, V. – Nemat Nasser, S. (2004). Effect of mismatch ratio (MMR) on fatigue crack growth behaviour of HSLA steel welds. Engineering Failure Analysis, Vol. 11, No. 3, pp. 413–428, June 2004. https://doi.org/10.1016/j.engfailanal.2003.05.013
Mobark, H. F. H. – Lukács, J. (2018). Mismatch effect influence on the high cycle fatigue resistance of S690QL type high strength steels. 2nd International Conference on Structural Integrity and Durability, Dubrovnik, Croatia, October 2–5.
Schroepfer, D. – Kannengiesser, T. (2016). Stress build-up in HSLA steel welds due to material behaviour. Journal of Materials Processing Technology, Vol. 227, pp. 49–58, https://doi.org/10.1016/j.jmatprotec.2015.08.003.
ISO 12135:2016. Metallic materials – Unified method of test for the determination of quasistatic fracture toughness, 2016.
ISO 15653: 2018.Metallic materials – Method of test for the determination of quasistatic fracture toughness of welds, 2018.
Koncsik, Zs. (2019). Lifetime analyses of S960M steel grade applying fatigue and fracture mechanical approaches. In: Szita Tóthné, K. – Jármai, K. – Voith, K. (eds.). Solutions for Sustainable Development: Proceedings of the 1st International Conference on Engineering Solutions for Sustainable Development (ICESSD 2019), October 3–4, Miskolc, Hungary, CRC Press, pp. 316–324, https://doi.org/10.1201/9780367824037.
Gillemot, L. (1961). Zur rechnerischen Ermittlung der Brucharbeit. Materialprüfung, Vol. 3, No 9, pp. 330–336, https://doi.org/10.1515/mt-1961-030902.
Gillemot, L. (1964). Eine neue method zur Bestimmung der Sprödbruchgefahr. Periodica Polytechnica Mechanical Engineering, Vol. 8, No. 1, pp. 1–14.
Gillemot, L. (1976). Criterion of crack initiation and spreading. Engineering Fracture Mechanics, Vol. 8, pp. 239–253. https://doi.org/10.1016/0013-7944(76)90089-8
Czoboly, E. – Havas, I. – Orbulov, I. (2012). Törési vizsgálatok a BME Mechanikai Technológia Tanszéken. Anyagvizsgálók Lapja, Válogatás 2012– Jubileumi szám, pp. 43–45.
Gillemot, L. – Czoboly, E. (1970). Generalized Theory of Fracture. II. Conference on Brittle Fracture, Marianske Lázne, No. 11, pp.1–21.
Czoboly, E. – Havas, I. – Gillemot, F. (1981). The absorbed specific energy till fracture as a measure of the toughness of metals. In: Sih, G. C. – Czoboly, E. – Gillemot, F. (eds.). Proceedings of International Symposium on Absorbed Specific Energy and/or Strain Energy Density Criterion. Sijthoff and Noordhoff International Publishers, Alphen aan den Rijn, pp. 107–130. https://amesweb.info/stress-concentration-factor-calculator/u-groove.aspx.
Pilkey, W. D. (2005). Formulas for Stress, Strain, and Structural Matrices. 2nd Edition, John Wiley & Sons, Inc., Hoboken, NJ. https://doi.org/10.1002/9780470172681.
Pikley, W. D. (1997). Peterson’s Stress Concentration Factors. 2nd Edition, John Wiley & Sons, Inc., New York/Chichester/Weinheim /Brisbane / Singapore / Toronto.