Full-scale tests of transporting pipeline sections – a review and consequences to our investigations
DOI:
https://doi.org/10.32972/dms.2023.003Kulcsszavak:
transporting pipeline, full-scale test, girth weld, complex loading conditionAbsztrakt
Hydrocarbon transport pipelines’ safe operation is an economic and environmental interest. These pipelines are typically designed for static loads, but during their long-time operation – due to pressure changes and environmental impacts – they are also subject to cyclical loads. The individual pipe sections are connected by girth welds, which represent potential sources of hazards in terms of damage. In order to assess the reliability of girth welds, full-scale tests are carried out under simple and complex loads. The purpose of this article is twofold. On the one hand, summarize the full-scale tests on transmission pipelines, with special attention to the tests on girth welds; on the other hand, based on this, draw con-clusions for the design and implementation of our own full-scale tests.
Hivatkozások
API (2018). API Specification 5L. Line Pipe. American Petroleum Institute.
ASTM E647-15e1. (2015). Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International.
Bajcar, T., Cimerman, F., Širok, B. & Ameršek, M. (2012). Impact assessment of traffic-induced vibration on natural gas transmission pipeline. Journal of Loss Prevention in the Process Industries, 25 (6), 1055-1068. https://doi.org/10.1016/j.jlp.2012.07.021
Bastola, A., Wang, J., Shitamoto, H., Mirzaee-Sisan, A., Hamada, M. & Hisamune, N. (2016). Full- and small-scale tests on strain capacity of X80 seamless pipes. Procedia Structural Integrity, 2, 1894-1903. https://doi.org/10.1016/j.prostr.2016.06.238
Bolton, B., Semiga, V., Tiku, S., Dinovitzer, A. & Zhou, J. (2011). Full Scale Cyclic Fatigue Testing of Dented Pipelines and Development of a Validated Dented Pipe Finite Element Model. ASME, Proceedings of the 2010 8th International Pipeline Conference, 863-872, Calgary, Alberta, Canada. https://doi.org/10.1115/IPC2010-31579
Chapetti, M., Otegui, J., Manfredi, C. & Martins, C. (2001). Full scale experimental analysis of stress states in sleeve repairs of gas pipelines. International Journal of Pressure Vessels and Piping, 78 (5), 379-387. https://doi.org/10.1016/S0308-0161(00)00063-6
Chaudhari, S. B. & Belkar, S. B. (2014). Experimental and Analytical Investi-gation in Circumferential Joint. International Journal of Mechanical Engine-ering and Information Technology, 2 (6), 453-465.
da Costa Mattos, H. S., Reis, J. M., Paim, L. M., da Silva, M. L., Lopes Junior, L. & Perrut, V. A. (2016). Failure analysis of corroded pipelines reinforced with composite repair systems. Engineering Failure Analysis, 59, 229-236. https://doi.org/10.1016/j.engfailanal.2015.10.007
Darcis, P. P., Marines-Garcia, I., Di Vito, L., Richard, G., Ruiz, E. A., de Souza, M. Quintanilla, H. (2009). Fatigue Performance of SMLS SCR Girth Welds: Comparison of Prefabrication-Type WPS. ASME, Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, 683-692. Honolulu, Hawaii, USA. https://doi.org/10.1115/OMAE2009-79811
Darcis, P. P., Marines-Garcia, I., Ruiz, E., Marques, E., Armengol, M. & Quintanilla, H. (2010). Full Scale Fatigue Performance of Pre-Strained SCR Girth Welds: Comparison of Different Reeling Frames. ASME, Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, 1039-1049. Shanghai, China. https://doi.org/10.1115/OMAE2010-21025
Demofonti, G., Mannucci, G., Hillenbrand, H.-G. & Harris, D. (2004). Evaluation of the Suitability of X100 Steel Pipes for High Pressure Gas Transportation Pipelines by Full Scale Tests. ASME, Proceedings of the 2004 International Pipeline Conference, 1685-1692. Calgary, Alberta, Canada. https://doi.org/10.1115/IPC2004-0145
Demofonti, G., Mannucci, G., Spinelly, C., Barsanti, L. & Hillenbrand, H. (2002). Large-diameter X 100 gas line pipes: Fracture propagation evaluation by full-scale burst test. EUROPIPE GmbH.
Di Vito, L., Lucci, A., Amato, S., Mannucci, G., Tintori, F., Crippa, S., Quin-tanilla, H. (2012). Ultra Heavy Wall Linepipe X65: Full Scale Severe Straining Sequences of Pipeline Strings. ASME, Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engine-ering, 695-705. Rio de Janeiro, https://doi.org/10.1115/OMAE2012-83835
Elyasi, N., Shahzamanian, M., Lin, M., Westover, L., Li, Y., Kainat, M., Adeeb, S. (2021). Prediction of Tensile Strain Capacity for X52 Steel Pipeline Materials Using the Extended Finite Element Method. Applied Mechanics, 2 (2), 209-225, https://doi.org/10.3390/applmech2020013
EPRG (2014). EPRG Guidelines on the Assessment of defects in trans-mission pipeline girth welds - Revision 2014. European Pipeline Research Group e. V. Retrieved October 15, 2022, from https://www.eprg.net/fileadmin /EPRG _public/eprg-docs/guidelines/EPRG_Weld_Defect_guidelines.pdf.
Fairchild, D. P., Crapps, J. M., Cheng, W., Tang, H. & Shafrova, S. (2016). Full-Scale Pipe Strain Test Quality and Safety Factor Determination for Strain-Based Engineering Critical Assessment. ASME, Proceedings of the 2016 11th International Pipeline Conference Pipeline Safety Management Systems; Project Management, Design, Construction and Environmental Issues; Strain Based Design; Risk and Reliability, 12 pages. Alberta, Canada, https://doi.org/10.1115/IPC2016-64191
Fairchild, D. P., Shafrova, S., Tang, H., Crapps, J. M. & Cheng, W. (2014). Full-Scale Testing for Strain-Based Design Pipelines: Lessons Learned and Recommendations. ASME, Proceedings of the 2014 10th international Pipe-line Conference Production Pipelines and Flowlines; Project Management; Facilities Integrity Management; Operations and Maintenance; Pipelining in Northern and Offshore Environments; Strain-Based Design, 12 pages. Alberta, Canada, https://doi.org/10.1115/IPC2014-33748
Haagensen, P., Maddox, S. & Macdonald, K. (2003). Guidance for Fatigue Design and Assessment of Pipeline Girth Welds. ASME, Proceedings of the ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering, 377-395. Cancun, Mexico. https://doi.org/10.1115/OMAE2003-37496
Hertelé, S., Cosham, A. & Roovers, P. (2016). Structural integrity of corroded girth welds in vintage steel pipelines. Engineering Structures, 124, 429-441. https://doi.org/10.1016/j.engstruct.2016.06.045
Hertelé, S., de Waele, W., Denys, R., Verstraete, M. & van Wittenberghe, J. (2012). Parametric finite element model for large scale tension tests on flawed pipeline girth welds. Advances in Engineering Software, 47 (1), 24-34. https://doi.org/10.1016/j.advengsoft.2011.12.007
Hobbacher, A. (2008). Recommendations for Fatigue Design of Welded Joints and Components. International Institute of Welding. Springer.
Horn, A., Lotsberg, I. & Orjaseater, O. (2018). The Rationale for Update of S-N Curves for Single Sided Girth Welds for Risers and Pipelines in DNV GL RP C-203 íbased on Fatigue Performance of More than 1700 Full Scale Fatigue Test Results. ASME, Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, V004T03A024; 10 pages. Madrid, Spain, https://doi.org/10.1115/OMAE2018-78408
Igi, S., Muraoka, R. & Masamura, K. (2013). Safety and Integrity Assessment Technology for Linepipe. JFE. Retrieved October 15, 2022, from https://www. jfe-steel.co.jp/en/research/report/018/pdf/018-06.pdf. https://doi.org/10.1088/1475-7516/2013/06/018
ISO 12135. (2021). Metallic materials. Unified method of test for the deter-mination of quasistatic fracture toughness. International Organization for Standardization.
ISO 15653. (2018). Metallic materials. Method of test for the determination of quasistatic fracture toughness of welds. International Organization for Standardization.
Koncsik, Zs. (2019). A szerkezetintegritás helye és szerepe az oktatásban és a kutatásban. Multidiszciplináris Tudományok, 9 (4), 63-71. https://doi.org/10.35925/j.multi.2019.4.5
Koncsik, Zs. (2021). Szerkezetintegritási kutatások az Innovatív Anyagtechno-lógiák Tudományos Műhelyben. Multidiszciplináris Tudományok, 11 (2), 372-379, https://doi.org/10.35925/j.multi.2021.2.49
Kristoffersen, S., Haagensen, P. & Ro̸ rvik, G. (2008). Full Scale Fatigue Testing of Fatigue Enhanced Girth Welds in Clad Pipe for SCRs Installed by Reeling. ASME, Proceedings of the ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, 169-177, Estoril, Portugal, https://doi.org/10.1115/OMAE2008-57309
Lei, Z., Chen, J., Wang, F., Xuan, W., Wang, T. & Yang, H. (2015). Full-scale Burst Test and Finite Element Simulation of 32 Inch Oil Pipe with Girth Weld Defects. Procedia Engineering, 130, 911-917. https://doi.org/10.1016/j.proeng.2015.12.240
Li, Z., Gong, B., Lacidogna, G., Deng, C. & Wang, D. (2021). Strain-based fracture response of X80 steel pipe welded girth based on constraint-modified J-R curves: from SENT specimen to full-scale pipe. Engineering Fracture Mechanics, 258, https://doi.org/10.1016/j.engfracmech.2021.108114
Lotsberg, I. (2009). Stress Concentrations due to misalignment at butt welds in plated structures and at girth welds in tubulars. International Journal of Fatigue, 31, 1337-1345, https://doi.org/10.1016/j.ijfatigue.2009.03.005
Lukács, J., Koncsik, Zs. & Chován, P. (2021). Integrity reconstruction of damaged transporting pipelines applying fiber reinforced polymer composite wraps. Procedia Structural Integrity, 31, 51-57. https://doi.org/10.1016/j.prostr.2021.03.009
Lukács, J., Koncsik, Zs. & Chován, P. (2022). Integrity increasing of damaged transporting pipelines using fiber reinforced polymer composite wrap systems. Engineering Failure Analysis, 137, 106284. https://doi.org/10.1016/j.engfailanal.2022.106284
Lukács, J., Nagy, G., Harmati, I., Koritárné, F. R. & Kuzsella, L. K. (2012). Szemelvények a mérnöki szerkezetek integritása témaköréből. Miskolc: Miskolci Egyetem.
Maddox, S. J. & Zhang, Y. H. (2008). Comparison of fatigue of girth-weldsin full-scale pipes and small-scale strip specimens. Proceedings of the Inter-national Conference on Offshore Mechanics and Arctic Engineering, 75-85. https://doi.org/10.1115/OMAE2008-57103
Maddox, S. J., Speck, J. B. & Razmjoo, G. R. (2008). An investigation of the fatigue performance of riser girth welds. Journal of Offshore Mechanics and Arctic Engineering, 130 (1), 011007, 11 pages. https://doi.org/10.1115/1.2827956
Mahdavi, H., Kenny, S., Phillips, R. & Popescu, R. (2013). Significance of geotechnical loads on local buckling response of buried pipelines with respect to conventional practice. Canadian Geothechnical Journal, 50 (1), 68-80. https://doi.org/10.1139/cgj-2011-0423
Meiwes, K. C., Höhler, S., Erdelen-Peppler, M. & Brauer, H. (2014). Full-Scale Reeling Tests of HFI Welded Line Pipe for Offshore Reel-Laying Installation. ASME, Proceedings of the 2014 10th International Pipeline Conference, V004T10A004. Calgary, Alberta, Canada. https://doi.org/10.1115/IPC2014-33163
Netto, T. A., Botto, A. & Lourenço, M. I. (2008). Fatigue performance of pre-strained pipes with girth weld defects: Local deformation mechanisms under bending. International Journal of Fatigue, 30 (6), 1080-1091. https://doi.org/10.1016/j.ijfatigue.2007.08.001
Örjasaeter, O. L., Knagenhjelm, H. O. & Haagensen, P. J. (2008). Scale Effects: Correlation of Fatigue Capacity for Full-Scale Pipes and Samll-Scale Specimens. ASME, Proceedings of the ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, 485-496, Estoril, Portugal, https://doi.org/10.1115/OMAE2008-57997
Örjasaeter, O., Hauge, O. J., Bärs, G. & Kvaale, P. E. (2004). Crack Growth During Full Scale Reeling Simulation of Pipes With Girth Welds. ASME, Proceedings of the ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering, 193-199, Vancouver, British Columbia, Canada, https://doi.org/10.1115/OMAE2004-51365
Qingshan, F., Yi-han, L., Bin, L. & Hanchen, S. (2010). Failure Assessment for Girth Weld Defects of Pipeline., Proceedings of the 8th International Pipeline Conference, 7 pages. Calgary, Alberta, Canada.
Rofooei, F. R., Jalali, H. H., Attari, N. K. & Alavi, M. (2012). Full-Scale Laboratory Testing of Buried Pipelines Subjected to Permanent Ground Displacement Caused by Reverse Faulting. SPES Sociedade Portuguesa de Engenharia Sísmica, Proceedings of the 15th World Conference on Earth-quake Engineering 2012, 24508-24518, Lisbon, Portugal.
Spinelli, C. M. & Prandi, L. (2012). High Grade Steel Pipeline for Long Dis-tance Projects at Intermediate Pressure., 7th Pipeline Technology Conference, 9 pages.
Thaulow, C., Østby, E., Nyhus, B., Zhang, Z. & Skallerud, B. (2004). Constraint correction of high strength steel: Selection of test specimens and application of direct calculations. Engineering Fracture Mechanics, 71 (16-17), 2417-2433, https://doi.org/10.1016/j.engfracmech.2004.01.003
Weeks, T. S., McColskey, J. D., Richards, M. D., Wang, Y. & Quintana, M. (2014). Curved-Wide Plate Testing of X100 Girth Welds. Proceedings of the 2014 10th International Pipeline Conference, pp. V004T11A020, 19 pages. Calgary, Alberta, Canada: ASME, https://doi.org/10.1115/IPC2014-33690
Wei, Z., Jin, H., Pei, X. & Wang, L. (2021). A simplified approach to estimate the fatigue life of full-scale welded cast steel thin-walled tubular structures. Thin-Walled Structures, 160, 107348. https://doi.org/10.1016/j.tws.2020.107348
Xuan, W., Wang, F., Zhou, L., Wang, T., Chen, J., Lei, Z. & Yang, H. (2016). Reserach on Full-Scale Hydrostatic Burst Testing of Different Pipeline Girth Weld Defects. Applied Mechanics and Materials, 853, 351-355. https://doi.org/10.4028/www.scientific.net/AMM.853.351
Yang, Y., Liu, X., Wu, K., Sui, Y., Feng, Q., Wang, D. & Zhang, H. (2022). Full-scale experimental investigation of the fracture behaviours of welding joints of APL X80 wide plate based on DIC technology. Engineering Failure Analysis, 131, 105832, https://doi.org/10.1016/j.engfailanal.2021.105832
Zhang, Y., & Maddox, S. (2014). Fatigue testing of full scale girth welded pipes under variable amplitude loading. Journal of Offshore Mechanics and Arctic Engineering, 136 (2), 021401, https://doi.org/10.1115/1.4026025