Surface modification methods of plastic components produced by additive manufacturing: a review

Szerzők

DOI:

https://doi.org/10.32972/dms.2023.017

Kulcsszavak:

surface treatment, plastic, additive manufacturing, surface roughness

Absztrakt

Additive manufacturing (AM) is a widely used process today, especially for the production of complex parts that cannot be produced with traditional material removal technologies. However, in the case of components produced by 3D printing, due to the specifics of the technology, poor surface quality is often to be expected. From the point of view of the product and production process, the so-called textural characteristics, surface roughness can be considered the most critical component. The surface of the part produced by 3D printing must meet several criteria (e.g., mechanical, physical, tribological, aesthetic, etc.). This article discusses the possibilities of surface modification of polymer parts produced with additive manufacturing technology, focusing on their effects on surface roughness. The paper also deals with the features suitable for describing the surface texture of 3D printed parts and their role in the characterization of printed parts.

Hivatkozások

Alzyod, H., Takács, J., & Ficzere, P. (2023). Improving surface smoothness in FDM parts through ironing post-processing. Journal of Reinforced Plastics and Composites. https://doi.org/10.1177/07316844231173059

Balani, K., Verma, V., Agarwal, A., & Narayan, R. (2015). Chapter A1 - Physical, Thermal, and Mechanical Properties of Polymers. In Biosurfaces: A Materials Science and Engineering Perspective (pp. 329-344).

Berczeli, M., Hatoss, B., & Kókai, E. (2022). Surface treatment of polymer matrix nano-composites for adhesion enhancement by cold plasma., (pp. 1-9). https://doi.org/10.1088/1757-899X/1246/1/012028

Bewilogua, K., & Hofmann, D. (2014). History of diamond-like carbon films -From first experiments to worldwide applications. Surface & Coatings Technology, 242, 214-225. https://doi.org/10.1016/j.surfcoat.2014.01.031

Casiraghi, C., Robertson, J., & Ferrari, A. (2007). Diamond-like carbon for data and beer storage. Materials Today,, 10(1-2), 44-53. https://doi.org/10.1016/S1369-7021(06)71791-6

Crystallography 365. (2023, 11 01). Retrieved from Crystallography 365 web site: https://crystallography365.wordpress.com/2014/11/11/common-beauty-malachite/

Dangnan, F. (2021). Enhancing additively manufactured polymers through functional diamondlike carbon coatings. PhD thesis. University of Leeds. Elakkad, A. (2019). 3D Technology in the automotive industry. International Journal of Engineering Research & Technology, 8(11), 248-251. https://doi.org/10.17577/IJERTV8IS110122

Ficzere, P. (2023, szeptember 15). A vasalási eljárás paraméter-változásának hatása a felületi érdességre FFF eljárással készített additív gyártás esetén. (N. J. Egyetem, Director) Országos Additív Ipari Tudományos Konferencia és Workshop, Kecskemét.

Galantucci, L., Lavecchia, F., & Percoco, G. (2010). Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling. CIRP Annals, 59(1), 247-250. https://doi.org/10.1016/j.cirp.2010.03.074

Golhin, A., Tonello, R., Frisvad, J., Grammatikos, S., & Strandlie, A. (2023). Golhin, A., Tonello, R., et. al.: Surface roughness of as-printed polymers: a comprehensive review. The International Journal of Advanced Manufacturing Technology, 127, 987-1043. https://doi.org/10.1007/s00170-023-11566-z

Hegemann, D., Brunner, H., & Oehr, C. (2003). Plasma treatment of polymers for surface and adhesion improvement. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 208, 281-286. https://doi.org/10.1016/S0168-583X(03)00644-X

Heinze, M., Menning, G., & Paller, G. (1995). Wear resistance of PVD coatings in plastics processing. Surface and Coatings Technology, 74-75(2), 658-663. https://doi.org/10.1016/0257-8972(95)08352-9

Karoly, Z., Kalácska, G., Sukumaran, J., Fauconnier, D., Kalácska, Á., Mohai, M., & Klébert, S. (2019). Effect of Atmospheric Cold Plasma Treatment on the Adhesion and Tribological Properties of Polyamide 66 and Poly(Tetrafluoroethylene). Materials, 12(4), 1-14. https://doi.org/10.3390/ma12040658

Károly, Z., Klébert, S., & Kalácska, G. (2015). Hidegplazmák alkalmazása polimerek felületmódosítására. Polimerek, 1(5), 147-152.

Khosravani, M., Zolfagharian, A., Jennings, M., & Reinicke, T. (2020). Structural performance of 3D-printed composites under various loads and environmental condition. Polymer Testing, 91, 1-9. https://doi.org/10.1016/j.polymertesting.2020.106770

Kim, D., Lim, J., Jung, D., Oh, W., Kyeong, J., Kwon, S., & Lee, S. (2023). Thermal and mechanical properties of polymeric materials for automotive applications using molecular dynamics simulation 36. Materials Today: Communication, 36, 1-12. https://doi.org/10.1016/j.mtcomm.2023.106529

Kmetz, B., & Takács, Á. (2020). Demand for recycling filament in 3D printing. Design of Machines and Structures, 10(2), 65-72. https://doi.org/10.32972/dms.2020.016

Kostov, K., Nishime, T., Castro, A., & Toth, A. (2014). Surface modification of polymeric materials by cold atmospheric plasma jet. Applied Surface Science, 314, 367-375. https://doi.org/10.1016/j.apsusc.2014.07.009

Laszlo, N. (2021). Investigation of Adhesion Behaviour of Different Underlayered DLC Coated Cold Forming Tool Steel. U.Porto Journal of Engineering, 7(2), 60-68. https://doi.org/10.24840/2183-6493_007.002_0008

Lavecchia, F., Guerra, M., & Galantucci, L. (2021). Chemical vapor treatment to improve surface finish of 3D printed polylactic acid (PLA) parts realized by fused filament fabrication, , 2021, 7, 65, p.65-75,. Progress in Additive Manufacturing, 7(1), 65-75. https://doi.org/10.1007/s40964-021-00213-2

Lim, C., Le, K., Lu, Q., & Wong, C. (2016). An overview of 3D printing in manufacturing, aerospace, and automotive industries. IEEE potentials, 35(4), 18-22.

Mandolfino, C., Lertora, E., & Gambaro, C. (2014). Effect of Cold Plasma Treatment on Surface Roughness and Bonding Strength of Polymeric Substrates. Key Engineering Materials, 611-612, 1483-1493. https://doi.org/10.4028/www.scientific.net/KEM.611-612.1484

Marian, M., Zambrano, D., Rothammer, B., Waltenberger, V., Boidi, G., Krapf, A., . . . Grützmacher, P. (2023). Combining multi-scale surface texturing and DLC coatings for improved tribological performance of 3D printed polymers. Surface and Coating Technology, 466, 1-8. https://doi.org/10.1016/j.surfcoat.2023.129682

Medel, F., Martinez-Nogues, V., Mariscal, M., Endrino, J., Krzanowski, J., Yubero, F., & Puértolas, J. (2010). Tribological performance of DLC coatings on UHMWPE. Journal of Physics: Conference Series, 1-9. https://doi.org/10.1088/1742-6596/252/1/012006

Mushtaq, R., Iqbal, A., Wang, Y., Khan, A., & Petra, M. (2023). Advancing PLA 3D Printing with Laser Polishing: Improving Mechanical Strength, Sustainability, and Surface Quality. Crystals, 13(4), 1-17. https://doi.org/10.3390/cryst13040626

Patil, A., Patel, A., & Purohit, R. (2017). An overview of Polymeric Materials for Automotive Applications. Materials Today: Proceedings, 4(2), 3807-3815. https://doi.org/10.1016/j.matpr.2017.02.278

Raheem, D. (2012). Application of plastics and paper as food packaging materials - An overview. Emirates Journal of Food and Agriculture, 25(3), 177-188. https://doi.org/10.9755/ejfa.v25i3.11509

Sadiku, R., & Ibrahim, D. (2007). Polyolefin Fibres - Structure, Properties and Industrial Applications (2. ed.). (S. Ugbolue, Ed.) Science Direct. https://doi.org/10.1016/B978-0-08-1

Schneider, M., Fritsche, N., Puciul-Malinowska, A., Balis, A., Mostafa, A., Bald, I.,. . . Taubert, A. (2020). Surface Etching of 3D Printed Poly(lactic acid) with NaOH: A Systematic Approach. Polymers, 12(8), 1-16. https://doi.org/10.3390/polym12081711

Tuazon, B., Custodio, N., Basuel, R., Reyes, L., & Dizon, J. (2022). 3D printing technology and materials for automotive application: a mini-review. Key Engineering Materials, 913, 3-16. https://doi.org/10.4028/p-26o076

Young, W., Sun, B., Huang, J., Jin, Y., Meng, Z., Choy, H., . . . Wong, W. (2016). Photochemical Copper Coating on 3D Printed Thermoplastics. Scientific Reports,, 6, 1-7. https://doi.org/10.1038/srep31188

Zhang, R., Häger, A., Friedrich, K., Song, Q., & Dong, Q. (1995). Study on tribological behaviour of plasma-treated PEEK and its composites. Wear, 181-183(2), 613-623. https://doi.org/10.1016/0043-1648(95)90177-9

Zigon, J., Kariz, M., & Pavlic, M. (2020). Surface Finishing of 3D-Printed Polymers with Selected Coatings. Polymers, 12(12), 1-14. https://doi.org/10.3390/polym12122797

Zlamal, T., Mrkvica, I., Szotkowski, T., & Malotova, S. (2019). The Influence of Surface Treatment of PVD Coating on Its Quality and Wear Resistant. Coatings, 9(7), 1-12. https://doi.org/10.3390/coatings9070439

##submission.downloads##

Megjelent

2023-11-30

Hogyan kell idézni

Ficzere, P., & László, N. (2023). Surface modification methods of plastic components produced by additive manufacturing: a review. Design of Machines and Structures, 13(2), 46–59. https://doi.org/10.32972/dms.2023.017