The effects of water-CuO nanofluid flow on heat transfer inside a heated 2D channel

Szerzők

DOI:

https://doi.org/10.32972/dms.2022.005

Kulcsszavak:

Nanofluid, CFD, heat transfer enhancement, numerical method, channel, 2D

Absztrakt

The velocity distribution and heat transfer improvement in a two-dimensional channel filled with a water-CuO nanofluid is numerically studied. The nanofluid flow is assumed laminar and one-phase with Newtonian behaviour. Pure water is considered as the base fluid, and water-CuO nanofluid with four different volume fractions of CuO nanoparticles are examined. A constant heat source–sink is considered to cover the entire length of the bottom wall of the channel while the upper wall is assumed thermally insulated. The control volume technique is used to discretize the governing differential equations, and the SIMPLE algorithm is used to solve the velocity-pressure coupling. A CFD simulation is applied on nanofluid flow utilizing ANSYS FLUENT to solve the governing equations of the flow. The effects of nanoparticle volume fraction on the heat transfer, velocity profile, wall shear stress, skin friction coefficient, and Nusselt number along the channel have also been examined. The results confirm that the volume fraction of nanoparticles plays an important role in heat transfer enhancement and hydrodynamic behaviour of flow. The results are presented in figures and tables.

Hivatkozások

Hussein, A. M. – Bakar, R. A. – Kadirgama, K. – Sharma, K. V. (2013). Experimental measurement of nanofluids thermal properties. International Journal of Automotive and Mechanical Engineering, Vol. 7, No. 1. http://doi.org/10.15282/ijame.7.2012.5.0070

Choi, S. U. S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, Vol. 231. No. 1995.

Anuar, N. S. – Bachok, N. (2016). Blasius and Sakiadis Problems in Nanofluids using Buongiorno Model and Thermophysical Properties of Nanoliquids. European International Journal of Science and Technology, Vol. 5, No. 4.

Bognár, G. – Klazly, M. – Hriczó, K. (2020). Nanofluid flow past a stretching plate. Processes, Vol. 8, No. 7, 827, https://doi.org/10.3390/pr8070827.

Bognár, G. – Klazly, M. – Mahabaleshwar, U. S. – Lorenzini, G. – Hriczó, K. (2021). Comparison of Similarity and Computational Fluid Dynamics Solutions for Blasius Flow of Nanofluid. Journal of Engineering Thermophysics, Vol. 30, No. 3, pp. 461–475, http://doi.org/10.1134/s1810232821030103.

Lee, S. – Choi, S. – Li, S. – Eastman, J. (1999). Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. Heat Transfer, Vol. 121, No. 1999, http://doi.org/10.1115/1.2825978.

Khanafer, K. – Vafai, K. – Lightstone, M. (2003). Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, Vol. 46, No. 19. http://doi.org/10.1016/S0017-9310(03)00156-X

Congedo, P. M. – Collura, S. – Congedo, P. M. (2009). Modeling and analysis of natural convection heat transfer in nanofluids. 2008 Proceedings of the ASME Summer Heat Transfer Conference, HT 2008, Vol. 3. http://doi.org/10.1115/HT2008-56289

Bianco, V. – Nardini, S. – Manca, O. (2011). Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes. Nanoscale Research Letters, Vol. 6, No. 1. http://doi.org/10.1186/1556-276X-6-252

Yacob, N. A. – Ishak, A. – Pop, I. – Vajravelu, K. (2011). Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid. Nanoscale Research Letters, Vol. 6, No. 1, http://doi.org/10.1186/1556-276X-6-314.

Bianco, V. – Chiacchio, F. – Manca, O. – Nardini, S. (2009). Numerical investigation of nanofluids forced convection in circular tubes. Applied Thermal Engineering, Vol. 29, No. 17–18. http://doi.org/10.1016/j.applthermaleng.2009.06.019

Verma, A. – Jiang, W. – Abu Safe, H. H. – Brown, W. D. – Malshe, A. P. (2008). Tribological behavior of deagglomerated active inorganic nanoparticles for advanced lubrication. Tribology Transactions, Vol. 51, No. 5. http://doi.org/10.1080/10402000801947691

Moghadam, A. J. – Farzane-Gord, M. – Sajadi, M. – Hoseyn-Zadeh, M. (2014). Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Experimental Thermal and Fluid Science, Vol. 58. http://doi.org/10.1016/j.expthermflusci.2014.06.014

Patel, H. – Shah, S. – Ahmed, R. – Ucan, S. (2018). Effects of nanoparticles and temperature on heavy oil viscosity. Journal of Petroleum Science and Engineering, Vol. 167, http://doi.org/10.1016/j.petrol.2018.04.069.

Shah, R. D. (2009). Application of nanoparticle saturated injectant gases for EOR of heavy oils. Proceedings SPE Annual Technical Conference and Exhibition, Vol. 7, http://doi.org/10.2118/129539-STU.

Bognár, G. – Hriczó, K. (2020). Ferrofluid flow in magnetic field above stretching sheet with suction and injection. Mathematical Modelling and Analysis, Vol. 25, No. 3, pp. 461–472, http://doi.org/10.3846/mma.2020.10837.

Bognár, G. – Hriczó, K. (2020). Numerical Simulation of Water Based Ferrofluid Flows along Moving Surfaces. Processes, Vol. 8, No. 7, p. 830. http://doi.org/10.3390/pr8070830

Eastman, J. A. – Choi, U. S. – Li, S. – Thompson, L. J. – Lee, S. (1997). Enhanced thermal conductivity through the development of nanofuids. Nanophase and Nanocomposite Materials II, http://doi.org/10.1557/PROC-457-3.

Heris, S. Z. – Etemad, S. G. – Esfahany, M. N. (2006). Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, Vol. 33, No. 4. http://doi.org/10.1016/j.icheatmasstransfer.2006.01.005

Sivakumar, A. – Alagumurthi, N. – Senthilvelan, T. (2016). Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink. Heat and Mass Transfer/Waerme- und Stoffuebertragung, Vol. 52, No. 7. http://doi.org/10.1007/s00231-015-1649-5

Rudyak, V. Y. – Belkin, A. A. – Tomilina, E. A. (2010). On the thermal conductivity of nanofluids. Technical Physics Letters, Vol. 36, No. 7. http://doi.org/10.1134/S1063785010070229

Peng, H. – Ding, G. – Jiang, W. – Hu, H. – Gao, Y. (2009). Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. International Journal of Refrigeration, Vol. 32, No. 6. http://doi.org/10.1016/j.ijrefrig.2009.01.025

Lu, L. – Liu, Z. H. – Xiao, H. S. (2011). Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors. Part 1: Indoor experiment, Solar Energy, Vol. 85, No. 2. http://doi.org/10.1016/j.enconman.2013.04.010

Peyghambarzadeh, S. M. – Hashemabadi, S. H. – Chabi, A. R. – Salimi, M. (2014). Performance of water based CuO and Al2O3 nanofluids in a Cu-Be alloy heat sink with rectangular microchannels. Energy Conversion and Management, Vol. 86, http://doi.org/10.1016/j.enconman.2014.05.013.

Zarringhalam, M. – Karimipour, A. – Toghraie, D. (2016). Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO-Water nanofluid. Experimental Thermal and Fluid Science, Vol. 76. http://doi.org/10.1016/j.expthermflusci.2016.03.026

Chein, R. – Chuang, J. (2007). Experimental microchannel heat sink performance studies using nanofluids. International Journal of Thermal Sciences, Vol. 46, No. 1, http://doi.org/10.1016/j.ijthermalsci.2006.03.009.

Aminossadati, S. M. – Ghasemi, B. (2011). Natural convection of water-CuO nanofluid in a cavity with two pairs of heat source-sink. International Communications in Heat and Mass Transfer, Vol. 38, No. 5. http://doi.org/10.1016/j.icheatmasstransfer.2011.03.013

Alrashed, A. A. A. A. et al. (2018). The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel. Physica B: Condensed Matter, Vol. 537. http://doi.org/10.1016/j.physb.2018.02.022

Khanafer, K. – Vafai, K. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, Vol. 54, No. 19–20, http://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048.

Xuan, Y. – Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, Vol. 21, No. 1. http://doi.org/10.1016/S0142-727X(99)00067-3

Mahbubul, I. M. – Saidur, R. – Amalina, M. A. (2012). Latest developments on the viscosity of nanofluids. International Journal of Heat and Mass Transfer, Vol. 55, No. 4, http://doi.org/10.1016/j.ijheatmasstransfer.2011.10.021.

Abu-Nada, E. (2008). Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. International Journal of Heat and Fluid Flow, Vol. 29, No. 1, pp. 242–249. http://doi.org/10.1016/j.ijheatfluidflow.2007.07.001

Kakaç, S. – Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, Vol. 52, No. 13–14, http://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006.

Kherbeet, A. S. – Mohammed, H. A. – Salman, B. H. (2012). The effect of nanofluids flow on mixed convection heat transfer over microscale backwardfacing step. International Journal of Heat and Mass Transfer, Vol. 55, No. 21–22, http://doi.org/10.1016/j.ijheatmasstransfer.2012.05.084.

##submission.downloads##

Megjelent

2022-05-30

Hogyan kell idézni

Najafabadi, M. K., Bognár, G., & Hriczó, K. (2022). The effects of water-CuO nanofluid flow on heat transfer inside a heated 2D channel. Design of Machines and Structures, 12(1), 47–62. https://doi.org/10.32972/dms.2022.005