Advancing plant cell wall modelling: parametric finite element approach
DOI:
https://doi.org/10.32972/dms.2024.013Kulcsszavak:
wheat, plant cell wall, modelling, parametric finite element approachAbsztrakt
The study utilized genetic algorithms to optimize the mechanical properties of wheat stems, focusing on axial stress, shear stress, bending stress, and critical buckling force. The results indicated that the optimized stem design could withstand applied forces with adequate safety margins, enhancing lodging resistance. Future work will include advanced optimization techniques and validation to further improve wheat stem structural integrity.
Hivatkozások
Bedö, Z., & Láng, L. (Eds.). (2001). Wheat in a Global Environment. 6th International Wheat Conference. 9. Dordrecht: Springer Netherlands.
Berry, P., Spink, J., Sterling, M., & Pickett, A. (2003, 12). Methods for Rapidly Measuring the Lodging Resistance of Wheat Cultivars. Journal of Agronomy and Crop Science, 189(6), 390-401. https://doi.org/10.1046/j.0931-2250.2003.00062.x
Borbás, L., & Ficzere, P. (1970, 1). A generatív tervezés biomechanikai alkalmazásának lehetőségei. Biomechanica Hungarica, 16(1), 50-54. https://doi.org/10.17489/biohun/2023/1/581
Crook, M., & Ennos, A. (1994, 10). Stem and root characteristics associated with lodging resistance in four winter wheat cultivars. The Journal of Agricultural Science, 123(2), 167-174. https://doi.org/10.1017/S0021859600068428
Dömötör, C. (2014). Természeti analógiák adatbázisának statisztikai elemzése,. GÉP, 65(6-7), 13-17.
Khobra, R., Sareen, S., Meena, B., Kumar, A., Tiwari, V., & Singh, G. (2019, 5). Exploring the traits for lodging tolerance in wheat genotypes: a review. Physiology and Molecular Biology of Plants, 25(3), 589-600. https://doi.org/10.1007/s12298-018-0629-x
Kong, E., Liu, D., Guo, X., Yang, W., Sun, J., Li, X., . . . Zhang, A. (2013, 10). Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal, 1(1), 43-49. https://doi.org/10.1016/j.cj.2013.07.012
Liang, L., & Guo, Y. (2009). Finite element analysis of single wheat mechanical response to wind and rain loads. 841-846. https://doi.org/10.1007/978-1-4419-0211-5_6
Oduntan, Y., Stubbs, C., & Robertson, D. (2022, 12). High throughput phenotyping of cross-sectional morphology to assess stalk lodging resistance. Plant Methods, 18(1), 1. https://doi.org/10.1186/s13007-021-00833-3
Reynolds, M., Foulkes, M., Slafer, G., Berry, P., Parry, M., Snape, J., & Angus, W. (2009, 5). Raising yield potential in wheat. Journal of Experimental Botany, 60(7), 1899-1918. https://doi.org/10.1093/jxb/erp016
Shah, L., Yahya, M., Shah, S., Nadeem, M., Ali, A., Ali, A., . . . Ma, C. (2019, 8). Improving Lodging Resistance: Using Wheat and Rice as Classical Examples. International Journal of Molecular Sciences, 20(17), 4211. https://doi.org/10.3390/ijms20174211
Stubbs, C., McMahan, C., Tabaracci, K., Kunduru, B., Sekhon, R., & Robertson, D. (2022, 4). Cross-sectional geometry predicts failure location in maize stalks. Plant Methods, 18(1), 56. https://doi.org/10.1186/s13007-022-00887-x
Stubbs, C., Oduntan, Y., Keep, T., Noble, S., & Robertson, D. (2020, 12). The effect of plant weight on estimations of stalk lodging resistance. Plant Methods, 16(1), 128. https://doi.org/10.1186/s13007-020-00670-w
Valluru, R., Reynolds, M., & Lafarge, T. (2015, 10). Food security through translational biology between wheat and rice. Food and Energy Security, 4(3), 203-218. https://doi.org/10.1002/fes3.71
Zhang, Y., Xu, W., Wang, H., Fang, Y., Dong, H., & Qi, X. (2016, 11). Progress in improving stem lodging resistance of Chinese wheat cultivars. Euphytica, 212(2), 275-286. https://doi.org/10.1007/s10681-016-1768-1