Position control of permanent magnet DC motor
DOI:
https://doi.org/10.32972/dms.2025.001Kulcsszavak:
DC motor, position control, LQR, LQI, MPCAbsztrakt
This paper presents a study of a DC motor position control system, a critical component in many industrial applications. A detailed mathematical model is developed to represent the motor's dynamics. Three advanced control strategies, namely Linear Quadratic Regulator (LQR), Linear Quadratic Integral (LQI), and Model Predictive Control (MPC), are designed and implemented to control the motor position. An open-loop simulation is conducted to verify the DC motor model. The performance of these controllers is evaluated and compared through closed-loop step response and closed-loop ramp response scenarios. The comparison is based on several matrices, such as the rise time, settling time, and overshoot. The simulation results showed that the LQR has the fastest response, but the MPC is the most energy efficient.
Hivatkozások
Abut, T. (2016). Modeling and Optimal Control of a DC Motor. International Journal of Engineering Trends and Technology, 32(3), 146-150. doi:https://doi.org/10.14445/22315381/IJETT-V32P227
Aljawabrah, A. (2024). Analysis and Control of the Gearshift Process Based on a Dog Clutch Shiftability Model. Cognitive Sustainability, 3(3). doi:https://doi.org/10.55343/cogsust.120
Aljawabrah, A., & Lovas, L. (2021). Test Rig for Automated Transmission with Dog Clutches. GÉP, 72(3-4), 5-8.
Aljawabrah, A., & Lovas, L. (2022). Dynamic Modeling of an Electromechanical Gearshift Actuator. GÉP, 73(3-4), 19-22.
Alkurawy, L., & Khamas, N. (2018, 1). Model predictive control for DC motors. 1st International Scientific Conference of Engineering Sciences-3rd Scientific Conference of Engineering Science (pp. 56-61). Diyala: IEEE. doi:https://doi.org/10.1109/ISCES.2018.8340528
Aung, W. (2007). Analysis on modeling and simulink of DC motor and its driving system used for wheeled mobile robot. Proceedings of World Academy of Science, Engineering and Technology, 26, 299-306.
Chimborazo-Taipe, N., Torres-Hinojosa, E., & Montalvo-Lopez, W. (2023). Meta-Heuristic LQI Bio-regulator Benchmark for a Permanent Magnet DC Motor on ARM Platform. In P. López-López, D. Barredo, Á. Torres-Toukoumidis, A. De-Santis, & Ó. Avilés (Ed.), ICOMTA 2022. Communication and Applied Technologies. Smart Innovation, Systems and Technologies, pp. 105-115. Singapore: Springer. doi:https://doi.org/10.1007/978-981-19-6347-6_10
Ficzere, P. (2024). Industry 5.0. Present or Future? Design of Machines and Structures, 14(2), 19-34. doi:https://doi.org/10.32972/dms.2024.010
Jneid, M. S., Harth, P., & Ficzere, P. (2020). In-wheel-motor electric vehicles and their associated drivetrains, 10(4) (2020), International Journal for Traffic and Transport Engineering, 415-431. doi:https://doi.org/10.7708/ijtte.2020.10(4).01
Ohishi, K., Nakao, M., Ohnishi, K., & Miyachi, K. (1987). Microprocessor-Controlled DC Motor for Load-Insensitive Position Servo System. IEEE Transactions on Industrial Electronics, IE-34(1), 44-49. doi:https://doi.org/10.1109/TIE.1987.350923
Praveen, R., Ravichandran, M., Achari, V., Raj, V., Madhu, G., & Bindu, G. (2012). A Novel Slotless Halbach-Array Permanent-Magnet Brushless DC Motor for Spacecraft Applications. IEEE Transactions on Industrial Electronics, 59(9), 3553-3560. doi:https://doi.org/10.1109/TIE.2011.2161058
Xiang, Z., & Wei, W. (2021, 6). Design of DC motor position tracking system based on LQR. EECR 2021. 1887, p. 012052. IOP Publishing. doi:https://doi.org/10.1088/1742-6596/1887/1/012052
Yang, J., Wu, H., Hu, L., & Li, S. (2019). Robust Predictive Speed Regulation of Converter-Driven DC Motors via a Discrete-Time Reduced-Order GPIO. IEEE Transactions on Industrial Electronics, 66(10), 7893-7903. doi:https://doi.org/10.1109/TIE.2018.2878119